Article Dans Une Revue Journal of Lie Theory Année : 2016

On the geometry of normal horospherical $G$-varieties of complexity one

Résumé

Let $G$ be a connected simply-connected reductive algebraic group. In this article, we consider the normal algebraic varieties equipped with a horospherical $G$-action such that the quotient of a $G$-stable open subset is a curve. Let $X$ be such a $G$-variety. Using the combinatorial description of Timashev, we describe the class group of $X$ by generators and relations and we give a representative of the canonical class. Moreover, we obtain a smoothness criterion for $X$ and a criterion to determine whether the singularities of $X$ are rational or log-terminal respectively.
Fichier principal
Vignette du fichier
Geometry__horo_comp1_final_version.pdf (409.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01081134 , version 1 (07-11-2014)
hal-01081134 , version 2 (23-12-2016)

Identifiants

Citer

Kevin Langlois, Ronan Terpereau. On the geometry of normal horospherical $G$-varieties of complexity one. Journal of Lie Theory, 2016, 26 (1), pp.49-78. ⟨hal-01081134v2⟩
75 Consultations
126 Téléchargements

Altmetric

Partager

More