Stability in shape optimization with second variation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Stability in shape optimization with second variation

Résumé

We are interested in the question of stability in the field of shape optimization. Precisely, we prove that under structural assumptions on the hessian of the considered shape functions, the necessary second order minimality conditions imply that the shape hessian is coercive for a given norm. Moreover, under an additional continuity condition for the second order derivatives, we derive precise optimality results in the class of regular perturbations of a domain. These conditions are quite general and are satisfied for the volume, the perimeter, the torsional rigidity and the first Dirichlet eigenvalue of the Laplace operator. As an application, we provide non trivial examples of inequalities obtained in this way.
Fichier principal
Vignette du fichier
Final1.pdf (211.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01073089 , version 1 (08-10-2014)
hal-01073089 , version 2 (19-09-2016)
hal-01073089 , version 3 (30-09-2016)
hal-01073089 , version 4 (04-10-2016)
hal-01073089 , version 5 (26-02-2018)
hal-01073089 , version 6 (23-07-2018)
hal-01073089 , version 7 (10-09-2019)

Identifiants

Citer

Marc Dambrine, Jimmy Lamboley. Stability in shape optimization with second variation. 2014. ⟨hal-01073089v1⟩
768 Consultations
652 Téléchargements

Altmetric

Partager

More