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Abstract

We are interested in the question of stability in the field of shape optimization. Precisely, we prove
that under structural assumptions on the hessian of the considered shape functions, the necessary second
order minimality conditions imply that the shape hessian is coercive for a given norm. Moreover, under
an additional continuity condition for the second order derivatives, we derive precise optimality results
in the class of regular perturbations of a domain. These conditions are quite general and are satisfied
for the volume, the perimeter, the torsional rigidity and the first Dirichlet eigenvalue of the Laplace
operator. As an application, we provide non trivial examples of inequalities obtained in this way.

2000MSC : 49K20, 49Q10.
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1 Introduction

In this paper, we are interested in the question of stability in the field of shape optimization. More precisely,

given J : A → R defined on A ⊂ {Ω smooth enough open sets in R
d}, we consider the optimization

problem

min {J(Ω), Ω ∈ A} , (1.1)

and we ask the following question:

if Ω∗ ∈ A is a critical domain satisfying a stability condition (that is to say a strict second order

optimality condition), can we conclude that Ω∗ is a strict local minimum for (1.1) in the sense that

J(Ω)− J(Ω∗) ≥ cd(Ω,Ω∗)2, for every Ω ∈ V(Ω∗) (1.2)

where c ∈ (0,∞), d is a distance among sets, and V(Ω∗) is a neighborhood of Ω∗, also relying on a suitable

distance ?

Notations and shape calculus:

We start by introducing our notations: we shall use the usual shape calculus first introduced by

Hadamard, then developed by Murat-Simon and Delfour-Zolesio. The main idea is to consider diffeomor-

phisms to encode variations of the domain that is to say one defines the function J on a neighborhood of 0

in the Banach space Θ = C3,∞(Rd,Rd) = {θ : R
d → R

d, θ is of class C3 and ∀k ∈ J0, 3K,Dkθ is bounded}

(this space is chosen for convenience as the space of shape differentiability in the whole paper, though

most of the results can be adapted to other spaces) by

∀θ ∈ Θ, J (θ) = J [(I + θ)(Ω)].
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One then uses (in the whole paper) the usual notion of Fréchet-differentiability: shape derivatives are

the successive derivatives of J at 0, when they exist. In particular, the first shape derivative is J ′(Ω) :=

J ′(0) ∈ Θ′ and the second order shape derivative is J ′′(Ω) := J ′′(0), a continuous symmetric bilinear form

on Θ.

Distance between domains:

We use the usual distance introduced by Michelletti:

dΘ(Ω1,Ω2) := inf
{
‖θ‖Θ + ‖(I + θ)−1 − I‖Θ, θ ∈ Θ diffeomorphism such that (I + θ)(Ω1) = Ω2

}
.

Let us emphasize that since we consider diffeomorphims that are close to the identity, the boundaries of the

perturbed domains are graphs over the boundary of the initial domain: for any domain Ω2 = (I + θ)(Ω1)

with θ ∈ Θ close to 0, there is a unique real-valued function h = hΩ1,Ω2
defined on ∂Ω1 such that

∂Ω2 =∂[(I + θ)(Ω1)] = {x+ h(x)n(x), x ∈ ∂Ω1}, (1.3)

see Lemma 3.1 in [17].

Main difficulties and contributions of the present paper:

It is well-known since Hadamard that the shape gradient is a distribution supported on the boundary of

the domain acting on the normal component of the diffeomorphism of deformation. On a critical domain

Ω∗ for J , that is a domain such that the shape gradient of J vanishes, the shape hessian reduces to a

bilinear form ℓ2 acting also on normal components of diffeomorphisms so that the following Taylor formula

holds

J((I + θ)(Ω∗)) = J(Ω∗) +
1

2
ℓ2(θ · n, θ · n) + O(‖θ‖2Θ). (1.4)

see Section 2.1 for more details.

Let us make precise the formulation of (1.2): we consider a domain Ω∗ ∈ A, and J a shape functional

such that

(A1) the domain Ω∗ is critical for J ,

(A2) the shape hessian at Ω∗ is nonnegative i.e.: ℓ2(ϕ,ϕ) > 0 for all ϕ 6= 0

Our main result is that conclusion (1.2) holds under these assumptions and some structure assumptions

on the bilinear form ℓ2, for suitable distance to be precised.

To prove this, we have to face two main difficulties. The first one is that Assumption (A2) is not natural:

in order to dominate the reminder term in (1.4), one needs a coercive bilinear form. We first provide a result

(Lemma 3.3) stating that under a structure assumption a nonnegative bilinear form defined on Sobolev

spaces is coercive. Notice that our statement holds for general bilinear forms on Sobolev spaces and is

not connected to shape hessian. Similar statements exists for particular functionals in the literature:

for example, one can mention the works of Grosse-Brauckmann [12] in the context of stable minimal

surfaces and of Acerbi, Fusco and Morini [2] in the context of non local isoperimetric problems. Our main

contribution about this step is to identify general assumptions: indeed, the above-mentioned structure

assumptions (see (H1) − (H2) in Lemma 3.3) are satisfied for a large class of functionals including the

volume of Ω, its perimeter, the first eigenvalue of the Dirichlet Laplace operator and the Dirichlet energy,

examples we will treat in this paper.
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The second difficulty comes from the two norms discrepancy that appears in Taylor-Formula (1.4): the

bilinear form ℓ2 is usually coercive in a Sobolev norm which is strictly weaker than the C3,∞ norm of

differentiability that appears in the reminder, so it is a priori not possible to control the sign of the term
1
2 ℓ2(θ · n, θ · n) + O(‖θ‖2Θ). We may think that we should rather change the space of differentiability for

the functional (choosing for example the space for which there is coercivity), unfortunately for functionals

relying on PDE, as we are interested in this work, it is well-known that it is usually not possible, the

functionals are no longer differentiable in those spaces (see [13] for example). This difficulty is well-known

in the literature: it appeared in the work of Descloux [9], was overcome in the works of [8] of Dambrine

and Pierre and of Dambrine [7], then a very similar approach can be found in the work of Acerbi, Fusco

and Morini [2]. The idea is, given Ω∗ a critical and stable domain and Ω a domain sufficiently close for

dΘ, to consider the path (Ωt)t∈[0,1] defined through its boundary

∂Ωt = {x+ t h(x) n(x), x ∈ ∂Ω}. (1.5)

connecting Ω∗ to Ω, where h = hΩ∗,Ω is defined in (1.3) and to write a Taylor formula with integral rest

for the function j(t) = J(Ωt) defined on [0, 1]. The stability assumption provides j′′(0) > 0 and one need

to propagate this sign property for t > 0. Therefore, we introduce the following hypothesis (CHs) which

can be seen as a suitable continuity of the second order shape derivative:

(CHs) there exist η > 0 and a modulus of continuity ω such that for every domain
Ω = (I + θ)(Ω∗) with ‖θ‖Θ ≤ η, and all t ∈ [0, 1]:

∣∣j′′(t)− j′′(0)
∣∣ ≤ ω(‖θ‖Θ)‖θ · n∂Ω∗‖2Hs .

This technical assumption is essential to provide uniform (with respect to the deformations direction)

results. In the literature, this assumption is established for a lot of examples (see Section 3.2). Our con-

tribution on this point is to generalize the strategy, and also to simplify the proofs from [7, 2], especially

in the case of volume constraint and translation invariance of the functional, which is the case of most

interesting examples, see the comments after Theorem 1.1 in this introduction.

Main result:

Here is the main result of this paper, stated in a simplified way for an unconstraint problem (see Section

3 for a similar statement for problems with volume constraint and translation invariant functionals):

Theorem 1.1 Let Ω∗ be a domain of class C5, and J be a shape functional, twice Fréchet differentiable

on a neighborhood of Ω∗ for dΘ, such that

• Structural hypotheses: there exists 0 ≤ s1 < s2 ≤ 1 such that

– the hessian ℓ2 of J at Ω∗ can be written ℓ2 = ℓm + ℓr with

{
ℓm is lower semi-continuous in Hs2(∂Ω∗) and ℓm(ϕ,ϕ) ≥ c1|ϕ|

2
Hs2 , ∀ϕ ∈ C∞(∂Ω∗),

ℓr continuous in Hs1 .
(1.6)

where c1 > 0.

– J satisfies CHs2 .

• Necessary optimality conditions:
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– Ω∗ is a critical domain for J ,

– Ω∗ is a stable shape for J :

ℓ2(ϕ,ϕ) > 0 for all ϕ ∈ Hs2(∂Ω,R) \ {0}. (1.7)

Then Ω∗ is an Hs2-stable local minimum of J in a Θ-neighborhood, that is to say there exists η > 0

and c = c(η) > 0 such that

∀ Ω such that dΘ(Ω
∗,Ω) ≤ η, J(Ω) ≥ J(Ω∗) + c‖h‖2Hs2 (1.8)

where the function h = hΩ∗,Ω is defined in (1.3).

Of course, we will provide several examples of functionals satisfying these conditions, but we here notice

that the reader can have in mind the following generic example: if Ω∗ is a ball of volume V0 ∈ (0,∞),

P (Ω) = Hd−1(∂Ω) denotes the perimeter of Ω, and E is the Dirichlet energy:

E(Ω) = min

{
1

2

∫

Ω
|∇u|2 −

∫

Ω
u, u ∈ H1

0 (Ω)

}
, (1.9)

then the conditions of Theorem 1.1 (more precisely the conditions of Theorem 3.2 which are of the same

nature, but take into account the constraint and invariance of the problem, see also below in the intro-

duction) are fulfilled if Ω∗ is the ball of volume V0 and we can conclude from our strategy that the ball is

a local minimizer of the following optimization problem

min {P (Ω) + γE(Ω), |Ω| = V0} , (1.10)

where | · | denotes the volume, V0 ∈ (0,∞), and γ ≥ γ0 where γ0 ∈ (−∞, 0). For γ ≥ 0 this result is

not surprising, since the ball minimizes both the perimeter and the Dirichlet energy. Though we obtain a

quantitative version of the inequality for small smooth deformations, see also [2, 5] for related statements.

However, this result is surprising when γ is nonpositive, in which case there is a competition between

minimizing the perimeter and maximizing the Dirichlet energy. In that case, if γ is close enough to 0, we

conclude that Ω∗ is a local minimizer, again in a neighborhood subjected to a strong norm, namely (1.2)

is valid for

V(Ω∗) = {Ω, dΘ(Ω
∗,Ω) ≤ η} with η > 0. (1.11)

This time, this is no longer valid when one consider larger neighborhood of Ω∗, for example in the L1-norm.

A counterexample is given in Section 3. This last question of stability in an L1-neighborhood has been

investigated for the isoperimetric problem in [21, 15] and recently received again some attention in the

papers [2, 5]. For a problem related to (1.10) when γ < 0, see also [19].

In the previous example as in all of our applications, A is the class of domains with fixed volume,

and the shape functionals under consideration are translation invariant. In that case the natural second

order necessary condition is, instead of (A2) above, that the hessian is coercive on the subspace tangent

to the “manifold” of domains satisfying the constraint and the invariance, therefore it is to be expected

that we only assume the positivity assumption (1.7) valid for the Lagrangian J − µVol in the space

T (∂Ω∗) :=
{
ϕ : R

d → R,
∫
∂Ω ϕ = 0,

∫
∂Ω ϕ

−→x =
−→
0
}

(which, in other words, is the space where the first

derivative of the volume and the barycenter vanish). In the previous works [7, 2], concerned with similar

invariance and constraints, the authors construct a path satisfying the volume constraint and fixing the
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barycenter, which is not the case of the one defined in (1.5). This leads to rather technical difficulties. We

drastically simplify this strategy and show that the hypothesis (CHs) suffices to conclude that a precise

stability statement as (1.2) holds, thanks to an exact penalization procedure. We state the corresponding

Theorem in the beginning of Section 3. It is clear, looking at the proofs of our results, that the situation

we aim to describe in this paper is quite general and can be applied to many other situations. Thanks to

this degree of generality, we obtain several local isoperimetric inequalities (see Proposition 3.7, in Section

3.5).

Going deeper in the computations, it is possible, as it is done in [16] for the second inequality involving

(P, λ1), to compute the optimal value of the constant γ0 such that these inequalities are valid in a neigh-

borhood of the ball. We insist on the fact that even in this particular case, we improve the result of [16],

since our analysis provides a uniform neighborhood where we have an isoperimetric inequality, while this

author make an asymptotic analysis on each path. This is done thanks to the (CHs) assumption.

In Section 2, we remind the classical results about second order shape derivatives, in particular in which

norms they are continuous, and focus on the case of the ball for which we diagonalize the shape hessians

and recall (also classical) stability properties. Section 3 contains the main results of this work: we state

the version of Theorem 1.1 adapted to the constrained/invariant case, we discuss coercivity assumptions,

and precise the known results about the (CHs) assumption, before proving our main theorem. We then

prove some local isoperimetric inequalities, some are known, some are new, see Proposition 3.7. These

inequalities are simple corollaries of our main result, combined with the computations reminded in Section

2. In the last Section, we show how to compute some explicit (sometimes optimal) constants for all the

inequalities of Proposition 3.7.

2 On Second order shape derivatives.

2.1 Definitions and Structure theorem

It is well-known since Hadamard’s work that the shape gradient is a distribution supported on the moving

boundary and acting on the normal component of the deformation field. The second order shape derivative

also has a specific structure as stated by A. Novruzi and M. Pierre in [17]. We quote their result.

Theorem 2.1 (Structure theorem of first and second shape derivatives) Let k ≥ 1 be an integer

and J a real-valued shape function defined Ok the set of open bounded domains of R
d with a Ck boundary.

Let us define the function J on Ck,∞(Rd,Rd) by

J (θ) = J [(I + θ)(Ω)].

(i) If Ω ∈ Ok+1 and J is differentiable at 0, then there exists a continuous linear form ℓ1 on Ck(∂Ω) such

that J ′(0)ξ = ℓ1(ξ · n) for all ξ ∈ Ck,∞(Rd,Rd).

(ii) If Ω ∈ Ok+2 and J is twice differentiable at 0, then there exists a continuous symmetric bilinear form

ℓ2 on Ck(∂Ω)× Ck(∂Ω) such that for all (ξ, ζ) ∈ Ck,∞(Rd,Rd)2

J ′′(0)(ξ, ζ) = ℓ2(ξ · n, ζ · n) + ℓ1((Dτnζτ ) · ξτ −∇τ (ζ · n) · ξτ −∇τ (ξ · n) · ζτ ),

where ∇τ is the tangential gradient and ξτ and ζτ stands for the tangential components of ξ and ζ.

The so-called shape derivative are then the shape gradient usually denoted J ′(Ω) := J ′(0) and the shape

hessian usually denoted J ′′(Ω) := J ′′(0). With respect to this work, it is important to notice that at a

critical domain for J , the shape hessian is reduced to ℓ2 and hence does not see the tangential components

of the deformations fields.
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2.2 Examples of shapes derivatives on general domains.

We need to precise some geometrical definitions. The mean curvature (understood as the sum of the

principal curvatures of ∂Ω) is denoted by H. We recall that Dτn is the second fundamental form of ∂Ω

and that TDτnDτn is the sum of the squares of the principal curvatures of ∂Ω, hence H2−Tr( TDτnDτn)

is the sum of the products of each pair of principal curvatures, it is nonnegative when Ω is convex.

For a domain Ω ⊂ R
d, we consider its volume |Ω|, its perimeter P (∂Ω) and its Dirichlet energy E(Ω)

defined as

E(Ω) = −
1

2

∫

∂Ω
|∇uΩ|

2,

where uΩ is the solution of −∆u = 1 in H1
0(Ω) and λ1 the first eigenvalue of the Dirichlet Laplace operator.

The shape derivatives of these functionals are well known (see [13, Section 5.9.6]), and we notice briefly

that we assume enough regularity on Ω so that those derivatives exist and are well-defined, therefore we do

not discuss the shape differentiability of the considered functional which is also well-known in this smooth

setting.

Lemma 2.2 (Expression of shape derivatives) If Ω is C2, one has, for any ϕ ∈ C∞(∂Ω),

ℓ1[Vol](Ω).ϕ =

∫

∂Ω
ϕ; (2.1a)

ℓ2[Vol](Ω).(ϕ,ϕ) =

∫

∂Ω
Hϕ2. (2.1b)

ℓ1[P ](Ω).ϕ =

∫

∂Ω
Hϕ; (2.1c)

ℓ2[P ](Ω).(ϕ,ϕ) =

∫

∂Ω
|∇τ ϕ|

2 +

∫

∂Ω

[
H2 − Tr( TDτnDτn)

]
ϕ2; (2.1d)

ℓ1[E](Ω).ϕ = −
1

2

∫

∂Ω
(∂nu)

2ϕ; (2.1e)

ℓ2[E](Ω).(ϕ,ϕ) = 〈−∂nu ϕ,Λ(−∂nu ϕ)〉H1/2×H−1/2 +

∫

∂Ω

[
∂nu+

1

2
H(∂nu)

2

]
ϕ2; (2.1f)

ℓ1[λ1](Ω).ϕ = −

∫

∂Ω
(∂nv)

2ϕ; (2.1g)

ℓ2[λ1](Ω).(ϕ,ϕ) =

∫

∂Ω
2w(ϕ) ∂nw(ϕ) +H(∂nv)

2ϕ2; (2.1h)

where Λ : H1/2(∂Ω) → H−1/2(∂Ω) is the Dirichlet-to-Neumann map defined as Λ(ϕ) = −∂nV (ϕ) with

V (ϕ) is the solution of

−∆V (ϕ) = 0 in Ω, V (ϕ) = −ϕ on ∂Ω, (2.2)

and v is the associated eigenfunction solution in H1
0(Ω) of −∆v = λ1v with v > 0 in Ω and ‖v‖L2(Ω) = 1

and w(ϕ) is the solution of




−∆w(ϕ) = λ1w(ϕ) − v

∫

∂Ω
(∂nv)

2ϕ in Ω,

w(ϕ) = −ϕ∂nv on ∂Ω,
∫

Ω
v w(ϕ) = 0.

(2.3)

6



A fundamental fact for this work appears here in the expression of the shape hessian. Even if they

are defined and derived for regular perturbations, they are naturally defined and continuous on different

Sobolev spaces on ∂Ω. The hessian of the perimeter is defined on H1(∂Ω), the hessian of Dirichlet energy

on H1/2(∂Ω) while the hessian of the volume is defined on L2(∂Ω) as expressed in the following continuity

properties:

Lemma 2.3 (Continuity of shape Hessian) If Ω is C2, there is a constant C > 0 such that

|ℓ2[P ](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2H1(∂Ω), and |ℓ2[Vol](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2L2(∂Ω),

|ℓ2[E](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2
H1/2(∂Ω)

and |ℓ2[λ1](Ω).(ϕ,ϕ)| ≤ C‖ϕ‖2
H1/2(∂Ω)

.

Therefore, from this Lemma, it is natural to consider the extension of these bilinear forms to their space

of continuity.

2.3 The case of balls

For the sequel of this work, let us explicit the shape derivatives of these functionals on the balls BR. To

explicit the derivatives of the Dirichlet energy E, we need to remark that u(x) = (R2 − |x|2)/2d solves

−∆u = 1 in H1
0(BR) and satisfies ∂nu = −R/d on ∂BR. For λ1, we recall that the eigenvalue and

eigenfunction are

λ1(BR) =
j2d/2−1

R2
associated to v(x) = αd |x|1−d/2 Jd/2−1

(
jd/2−1

R
|x|

)
,

where the normalization constant is defined as

αd =

[
|∂B1|

∫ R

0
rJ2

d/2−1

(
jd/2−1

R
r

)
dr

]−1/2

,

and where jd/2−1 is the first zero of Bessel’s function Jd/2−1. On the unit ball, the eigenfunction satisfies

∂nv =

√
2

P (B1)
jd/2−1 := γd, so that γ2d =

2λ1
P (B1)

; (2.4)

from [14, p. 35]. We obtain the shape gradients:

ℓ1[Vol](BR).ϕ =

∫

∂BR

ϕ; ℓ1[P ](BR).ϕ =
d− 1

R

∫

∂BR

ϕ;

ℓ1[E](BR).ϕ = −
R2

2d2

∫

∂BR

ϕ; ℓ1[λ1](BR).ϕ = − γ2d

∫

∂BR

ϕ.

Let us notice that these four shape gradients at balls are colinear. As a consequence, the balls are critical

domains for the perimeter, λ1 and Dirichlet energy under a fixed volume constraint since Euler-Lagrange

equations are trivially satisfied, and also of λ1 and Dirichlet energy under fixed volume constraint.
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Let us turn our attention to the hessians. The value of ℓ2[λ1] is a bit more involved, so we deal with it

in the next Lemma. For the other functionals, it is known that:

ℓ2[Vol](BR).(ϕ,ϕ) =
d− 1

R

∫

∂BR

ϕ2; (2.5a)

ℓ2[P ](BR).(ϕ,ϕ) =

∫

∂BR

|∇τ ϕ|
2 +

(d− 1)(d − 2)

R2

∫

∂BR

ϕ2; (2.5b)

ℓ2[E](BR).(ϕ,ϕ) =
R2

d2
〈ϕ,Λϕ〉H1/2×H−1/2 −

d+ 1

2d2
R

∫

∂BR

ϕ2. (2.5c)

It is well known in the literature (see for example [7] for Vol, P and E) that on balls these quadratic

forms are coercive on their natural space as stated in next lemma. Let us make this point precise by

diagonalizing the Hessian. The useful tool to explicit the shape hessian under consideration is spherical

harmonics defined as the restriction to the unit sphere of harmonic polynomials.

We recall here facts from [20, pages 139-141]. We let Hk denote the space of spherical harmonics of

degree k. It is also the eigenspace of the Laplace-Beltrami operator on the unit sphere associated with the

eigenvalue −k(k + d− 2). Its dimension is

dk =

(
d+ k − 1

k

)
−

(
d+ k − 3
k − 2

)
.

Let (Y k,l)1≤l≤dk be an orthonormal basis of Hk with respect to the L2(∂B1) scalar product. The (Hk)k∈N

spans a vector space dense in L2(∂B1) and the family (Y k,l)k∈N,1≤l≤dk is a Hilbert basis of L2(∂B1). Hence,

any function ϕ in L2(∂B1) can be decomposed as the Fourier series:

ϕ(x) =

∞∑

k=0

dk∑

l=1

αk,l(ϕ)Y
k,l(x), for |x| = 1. (2.6)

Then, by construction, the function u defined by

u(x) =

∞∑

k=0

|x|k
dk∑

l=1

αk,l(ϕ)Y
k,l

(
x

|x|

)
, for |x| ≤ 1,

is harmonic in B1 and satisfies u = ϕ on ∂B1. Moreover, the sequence of coefficients αk,l characterizes the

Sobolev regularity of ϕ: indeed ϕ ∈ Hs(∂B1) if and only if the sum
∑

k(1 + k2)s
∑

l |αk,l|
2 converges. Let

us now prove the following Lemma expressing the fact that the shape hessian of the volume, the perimeter,

the Dirichlet energy and the first eigenvalue are diagonal on the basis of spherical harmonics.

Lemma 2.4 Assume that ϕ is decomposed on the basis of spherical harmonics as in (2.6), then

ℓ2[Vol](B1).(ϕ,ϕ) =
∞∑

k=0

dk∑

l=1

(d− 1) αk,l(ϕ)
2, (2.7)

ℓ2[E](B1).(ϕ,ϕ) =
∞∑

k=0

dk∑

l=1

[
1

d2
k −

d+ 1

2d2

]
αk,l(ϕ)

2, (2.8)
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ℓ2[P ](B1).(ϕ,ϕ) =
∞∑

k=0

dk∑

l=1

[
k2 + (d− 2)k + (d− 1)(d − 2)

]
αk,l(ϕ)

2, (2.9)

ℓ2[λ1](B1)(ϕ,ϕ) = γ2d

(
3P (B1)

2α2
0,1(ϕ) +

∞∑

k=1

dk∑

l=1

[
k − jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ)

)
. (2.10)

where γd is the constant defined in (2.4).

Proof. We decompose ϕ ∈ L2(∂B1) on the spherical harmonics basis as

ϕ(x) =
∞∑

k=0

(
dk∑

l=1

αk,l(ϕ)Y
k,l(x)

)
, for |x| = 1. (2.11)

and let us express the various integrals arising in the shape hessian in terms of the spherical harmonics

decomposition. First we check that

∫

∂B1

ϕ2 =

∞∑

k=0

dk∑

l=1

αk,l(ϕ)
2.

∫

∂B1

|∇τ ϕ|
2 = −

∫

∂B1

ϕ ∆τ ϕ =

∞∑

k=0

k(k + d− 2)

dk∑

l=1

αk,l(ϕ)
2.

Then, we precise the term involving the Dirichlet-to-Neumann map that appears in the shape hessian of

the Dirichlet energy. The series defining u is normally convergent inside B1, we cannot directly differentiate

with respect to r up to the boundary. Though, by Green formula, we have:

〈ϕ,Λϕ〉H1/2×H−1/2 =

∫

∂B1

ϕ∂nu =

∫

B1

|∇u|2

=

∫ 1

0

(∫

∂Br

(
(∂nu

2 + |∇τ u|
2
)
dσ

)
dr =

∫ 1

0

(∫

∂Br

(
(∂nu

2 − u∆τ u
)
dσ

)
dr

=

∞∑

k=0

dk∑

l=1

∫ 1

0
rd−1

[
k2r2(k−1) +

k(k + d− 2)

r2
r2k
]
dr αk,l(ϕ)

2

=

∞∑

k=0

dk∑

l=1

[
k2

2k + d− 2
+
k(k + d− 2)

2k + d− 2

]
αk,l(ϕ)

2 =

∞∑

k=0

dk∑

l=1

k αk,l(ϕ)
2.

We obtain ℓ2[Vol], ℓ2[P ] and ℓ2[E] by gathering these elementary terms.

Let us now consider the case of the first eigenvalue. Again we decompose ϕ on the basis of spherical

harmonics according to (2.11). The computation is given by D. Henry in [14, p. 35]. He uses a volume

preserving deformation field V generating a family of diffeomorphisms Tt and he gets

(
d2

dt2
λ1(Tt(B1))

)

t=0

=

∞∑

k=1

dk∑

l=1

γ2d

[
k + d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(Vn)

where we have used the recurrence formula for Bessel function J ′
ν(z) = (ν/z)Jν(z)− Jν+1(z) to adapt his

expression to our notations ([1, 9.1.27, p 361]). To deduce ℓ2[λ1] from his computation, we note that the

deformations path Tt preserves the volume so its second order Taylor expansion I + tϕ+ t2/2 ψ satisfies

0 =

(
d2

dt2
Vol′′(Tt(B1)

)

t=0

= ℓ2[Vol](ϕ,ϕ) + ℓ1[Vol](ψ) hence (d− 1)ak,l(ϕ)
2 + ak,l(ψ) = 0.
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Then, we get:

ℓ2[λ1](ϕ,ϕ) =

(
d2

dt2
λ1(Tt(B1)

)

t=0

− ℓ1[λ1](ψ),

=

∞∑

k=1

dk∑

l=1

γ2d

[
k + d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ) + γ2d

∞∑

k=1

dk∑

l=1

ak,l(ψ),

=
∞∑

k=1

dk∑

l=1

γ2d

[
k − jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2
k,l(ϕ).

It remains to compute the coefficient associated to the mode k = 0. It suffices to consider the deformations

as Tt(x) = x+t‖Y 0,1‖x mapping the ball B1 onto the ball of radius 1+tP (B1)
1/2. Since λ1 is homogeneous

of degree −2, we get λ(t) = (1 + tP (B1)
1/2)−2λ1(B1) so that λ′′(0) = 6P (B1)λ1(B1).

�

3 Main Theorem

Let us precise here the suitable definitions of critical and stable domains for problems with volume con-

straint and translation invariant functionals:

Definition 3.1 Let Ω be a shape and J a shape functional defined and twice Fréchet differentiable on a

neighborhood of Ω∗ for dΘ.

• We say that Ω is a critical domain for J under volume constraint if

∀ϕ ∈ C∞(∂Ω) such that ℓ1[Vol](Ω).ϕ =

∫

∂Ω
ϕ = 0, ℓ1[J ](Ω).(ϕ) = 0. (3.1)

It is well-known that it is equivalent to the existence of µ ∈ R such that (ℓ1[J ]− µℓ1[Vol])(Ω) = 0 on

C∞(∂Ω); in that case, µ is called a Lagrange multiplier associated to J .

• When Ω is a critical domain for J under volume constraint, we say that Ω is a stable shape for J

under volume constraint and up to translations if

∀ϕ ∈ T (∂Ω) \ {0}, (ℓ2[J ]− µℓ2[Vol])(Ω).(ϕ,ϕ) > 0 (3.2)

where

T (∂Ω) :=

{
ϕ ∈ Hs(∂Ω),

∫

∂Ω
ϕ = 0,

∫

∂Ω
ϕ−→x =

−→
0

}
,

µ is the Lagrange multiplier associated to J and s ≥ 0 is the lowest index so that ℓ2(J) is continuous

on Hs(∂Ω).

Here is the main result of this paper:

Theorem 3.2 Let Ω∗ of class C5 and J a shape functional, translation invariant, twice Fréchet differen-

tiable on a neighborhood of Ω∗ for dΘ, such that

• Structural hypotheses: there exists 0 ≤ s1 < s2 ≤ 1 such that
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– ℓ2[J ](Ω
∗) can be written ℓ2[J ](Ω

∗) = ℓm + ℓr satisfying (1.6)

– J satisfies CHs2 .

• Necessary optimality conditions:

– Ω∗ is a critical shape under volume constraint for J ,

– Ω∗ is a stable shape for J under volume constraint and up to translations:

Then Ω∗ is an Hs2-stable local minimum of J in a Θ-neighborhood under volume constraint,

that is to say there exists η > 0 and c = c(η) such that (1.8) holds:

∀ Ω such that dΘ(Ω,Ω
∗) ≤ η and |Ω| = |Ω∗|, J(Ω) ≥ J(Ω∗) + c inf ‖h‖2Hs2 .

where h = hΩ∗,Ω+τ is defined in (1.3) and the infimum is taken over τ ∈ R.

Note that the minimization in τ ∈ R
d is here to take into account the translation invariance of the

functional.

3.1 About coercivity

Usually the coercivity property for the augmented Lagrangian has to be proved by hand on each specific

example by studying the lower bound of the spectrum of the bilinear form ℓ2 defined in Theorem 2.1

typically thanks to Lemma 2.4. Nevertheless, when ℓ2 enjoys some structural property, coercivity can be

more easily checked as a consequence of the following general lemma.

Lemma 3.3 If the bilinear form ℓ can be written as ℓ = ℓm + ℓr where

(H1) the main part ℓm is lower semicontinuous on Hs2(∂Ω) and there ex-
ists a constant C > 0 such that ℓm(ϕ,ϕ) ≥ C|ϕ|2Hs2 when ϕ ∈ V .

(H2) the remainder part ℓr is continuous on Hs1(∂Ω).

where 0 ≤ s1 < s2 ≤ 1 and V a vectorial subspace of Hs2(∂Ω), closed for the weak convergence in Hs2(∂Ω).

Then the following propositions are equivalent:

(i) ℓ(ϕ,ϕ) > 0 for any ϕ ∈ V \ {0}.

(ii) ∃λ > 0, ℓ(ϕ,ϕ) ≥ λ‖ϕ‖2Hs1 for any ϕ ∈ V .

(iii) ∃λ > 0, ℓ(ϕ,ϕ) ≥ λ‖ϕ‖2Hs2 for any ϕ ∈ V .

Proof. Since the implications (iii) =⇒ (ii) and (ii) =⇒ (ii) are trivial, it suffices to prove

(i) =⇒ (iii). To that end, let (ϕk)k a minimizing sequence for the problem

inf
{
ℓ(ϕ,ϕ), ϕ ∈ V, ‖ϕ‖Hs2 (∂Ω) = 1

}
.

Up to a subsequence, ϕk weakly converges in Hs2(∂Ω) to some ϕ∞ ∈ V . By the compactness of the em-

bedding of Hs2(∂Ω) into Hs1(∂Ω), ϕk → ϕ∞ in Hs1(∂Ω) so that ℓr(ϕk, ϕk) → ℓr(ϕ∞, ϕ∞). We distinguish

the cases ϕ∞ = 0 or not. If ϕ∞ 6= 0, lim ℓm(ϕk, ϕk) ≥ ℓm(ϕ∞, ϕ∞) by the lower semi continuity of ℓm, so

that lim ℓ(ϕk, ϕk) ≥ ℓ(ϕ∞, ϕ∞) > 0 by assumption (i). If ϕ∞ = 0, then lim |ϕk|H1 = lim ‖ϕk‖H1 = 1 and

lim ℓ(ϕk, ϕk) ≥ C lim |ϕk|H1 = C > 0. �

11



Remark 3.4 The equivalence between coercivity in L2(∂Ω) and H1(∂Ω) is already known in the context

of stable minimal surface it appears in the work [12] of Grosse-Brauckmann.

Remark 3.5 When, one applies this lemma to a shape hessian, assumption (i) is not natural. Indeed,

shape derivatives are defined for regular perturbations that are dense subsets of Hs(∂Ω) and one would

have expect: ℓ(ϕ,ϕ) > 0 in ϕ ∈ C2 ∩ V \ {0}. But, in that case, our proof is not valid since ϕ∞ may

not be smooth and therefore not admissible to test the positivity property. Therefore, the bilinear form ℓ

has to be extended by continuity to the whole Hs(∂Ω) (see assumption (1.7) in Theorem 1.1 and (3.2) for

Theorem 3.2). Notice that this extension is for free once the expression of the shape derivative has been

computed as illustrated by Lemma 2.2.

The shape hessians of the model functionals admit such a splitting. The shape hessian of the perimeter

can be written as ℓ2[P ] = ℓm[P ] + ℓr[P ] where

ℓm[P ](ϕ,ϕ) =

∫

∂Ω
|∇τ ϕ|

2 and ℓr[P ](ϕ,ϕ) =

∫

∂Ω

[
H2 − Tr( TDτnDτn)

]
ϕ2

satisfy (H1)− (H2) with s1 = 0 and s2 = 1. The same holds for the Dirichlet energy and λ1 with

ℓm[E](ϕ,ϕ) = 〈−∂nuϕ,Λ(−∂nuϕ)〉H1/2×H−1/2 and ℓr[E](ϕ,ϕ) =

∫

∂Ω

[
∂nu+

1

2
H(∂nu)

2

]
ϕ2;

ℓm[λ1](Ω).(ϕ,ϕ) =

∫

∂Ω
2w(ϕ) ∂nw(ϕ) and ℓr[λ1](ϕ,ϕ) =

∫

∂Ω
H(∂nv)

2ϕ2;

satisfy (H1)− (H2) with s1 = 0 and s2 = 1/2.

However, this splitting property is not universal: shape functionals used for domain reconstruction from

boundary measurements are such that (i) holds while (ii) and (iii) are false (see [3], [4]). The general

situation in the general class of such inverse problems is then: for a reconstruction function J (for example

the least square fitting to data), the Riesz operator corresponding to the shape Hessian ℓ2[J ] at a critical

domain is compact. This means, roughly speaking, that, in a neighborhood of the critical domain (i.e.

for t small), J behaves as its second order approximation and one cannot expect an estimate of the kind

J(Ωt) − J(Ω0) ≥ ct2 with a constant c uniform in the deformation direction. This explains also why

regularization is required in the numerical treatment of this type of problem.

3.2 About Condition CHs

This condition is the main ingredient to overcome the two norms discrepancy problem that appears when

one wants to use a Taylor formula to use second order information: the norm where coercivity holds is

strictly weaker than the norm of differentiability. As a consequence, Taylor formula (1.4) is not sufficient

since the second order reminder small in the norm of differentiability can be larger than the positive second

order term. One has to use the integral form of the remainder and to that end build a path connecting

domains and estimate the second order derivative of the shape function along that path.

Condition CHs expresses the continuity property of that second order derivative so that its sign at the

original shape is preserved along the path. This continuity is a keystone in proving stability with second

order based methods, it has be proven on a lot of examples: first in dimension two for Dirichlet energy

in [8], then for general functions in any dimension in [7], and then in [2]. For the completeness of the

presentation, we recall now the leading steps of the approach of [8, 7] where Condition CH0 is established

for the volume, CH1 for the perimeter and CH1/2 for Dirichlet energy. Note that Condition CH1/2 is also

12



established for the drag in a Stokes flow in [6] with the same strategy.

The first step is to build the path connecting a domain Ω to some perturbed domain (I + θ)(Ω) with

normal deformations. The idea is that the boundary of a perturbed domain (I + θ)(Ω) close Ω for dΘ is

in fact a graph over ∂Ω: the boundary of (I + θ)(Ω) is parametrized as {x + h(x)n(x), x ∈ ∂Ω} where

h = hΩ,(I+θ)(Ω) is a real-valued function defined on ∂Ω. Then, we consider the path (Ωt) defined by the

boundary ∂Ωt = {x+ th(x)n(x);x ∈ ∂Ω}. This corresponds to the deformation of Ω under the flow Tt of

the vector field Vθ(x) = h(p∂Ω(x))n(x) in the neighborhood of ∂Ω and extended in the complement.

The second step is to compute the derivatives of the function along the path. The use of the speed

method simplifies the computation of that second order derivative for all t ∈ [0, 1].

The third step is to obtain control on the variations of geometrical quantities along the previously

defined path given in next Lemma proven in [7]:

Lemma 3.6 There is a constant C > 0 depending on Ω such that

• the surface jacobian J(t) := detDTt/‖(
tDT−1

t )n‖ satisfies

‖J(t)− 1‖C1(∂Ω) ≤ C‖Tt − I‖Θ, ∀t ∈ [0, 1]; (3.3)

• the normal field nt to ∂Ωt satisfies

‖nt ◦ Tt − n‖C1(∂Ω) ≤ C‖Tt − I‖Θ, ∀t ∈ [0, 1]. (3.4)

• Set ϕθ := Vθ · ñ where ñ is a unitary extension of n to a neighborhood of Ω, then for all t ∈ [0, 1]:

‖ϕθ ◦ Tt − ϕθ‖L2(∂Ω) ≤ C ‖ϕθ‖L2(∂Ω) ‖Tt − I‖Θ, (3.5)

‖ϕθ ◦ Tt − ϕθ‖H1/2(∂Ω) ≤ C ‖ϕθ‖H1/2(∂Ω) ‖Tt − I‖Θ. (3.6)

The fourth step is to obtain control on the variations of derivatives of the state functions along the

previously defined path. Obviously, this step is problem dependent. The general idea is to transport the

boundary value problem defined on Tt(Ω) on the original domain Ω, this provides a new boundary value

problem of the type L(t)v = f ◦ T−1
t on Ω. Using estimates, uniform in θ and t, on the coefficients of the

variable coefficient operator L(t), one can apply uniform a priori estimates up to the boundary in order

to obtain uniform control of the variations of the derivatives of the state.

3.3 Proof of Theorem 1.1

We are now in position to prove Theorem 1.1 corresponding to the unconstrained case. Let Ω∗ be a domain

satisfying the assumption of Theorem 1.1. Let η > 0 and let Ω be a domain in a ball centered in Ω∗ of

radius η for dΘ. Then, there exists h such that the boundary of Ω is the set {x + h(x)n(x), x ∈ ∂Ω∗}.

Consider the path (Ωt)t∈[0,1] defined in (1.5), j the restriction of J to the path Ωt. We write Taylor formula

along this path:

J(Ω)− J(Ω∗) =

∫ 1

0
j′′(t)(1 − t)dt

=
1

2
j′′(0) +

∫ 1

0
[j′′(t)− j′′(0)](1 − t)dt ≥

1

2
j′′(0) −

∫ 1

0
|j′′(t)− j′′(0)|(1 − t)dt.
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By Lemma 3.3, there is a constant λ > 0 such that

ℓ2[J ](Ω
∗).(h, h) ≥ λ‖h‖2Hs2 .

Applying the CHs2 assumption, we obtain that for η small enough,

∣∣j′′(t)− j′′(0)
∣∣ ≤ λ

4
‖h‖2Hs2 , ∀t ∈ [0, 1], then J(Ω)− J(Ω∗) ≥

λ

4
‖h‖2Hs2 .

3.4 Proof of Theorem 3.2

We denote µ the Lagrange multiplier associated to J . Therefore we consider Jµ = J−µVol and Ω∗ satisfies

J ′
µ(Ω

∗) = 0.

Step 1: Stability under volume and barycenter constraint: The bilinear form ℓ2 associated to the

second order derivative of the Lagragian Jµ is ℓ2[J ]− µℓ2[Vol]. Under the structural hypotheses on ℓ2[J ],

we can applied Lemma 3.3 to ℓ[Jµ]. We introduce the constants c1, c2, c3 and c4 > 0 such that

∀ϕ ∈ C∞(∂Ω∗), |ℓm[J ].(ϕ,ϕ)| ≥ c1|ϕ|
2
Hs1 |ℓr[J ].(ϕ,ϕ)| ≤ c2‖ϕ‖

2
Hs1 , |ℓ2[Vol].(ϕ,ϕ)| ≤ c3‖ϕ‖

2
L2 ,

∀ϕ ∈ T (∂Ω∗) ∩ C∞(∂Ω∗), , ℓ2[J − µVol](Ω∗).(ϕ,ϕ) ≥ c4‖ϕ‖
2
Hs2 , (3.7)

where we have used that ℓ2[Vol](Ω
∗) is continuous in the L2-norm, and therefore in the Hs2-norm as well.

Step 2: Stability without constraint: In order to deal with the volume constraint and the invariance

with respect to translations, we use an idea of [21, 12] by considering

Jµ,C = J − µVol +C (Vol − V0)
2 + C ‖Bar(Ω)− Bar(Ω∗)‖2 ,

where Bar(Ω) :=
∫
Ω x and ‖ · ‖ is the euclidean norm in R

d. The shape Ω∗ still satisfies J ′
µ,C(Ω

∗) = 0. We

claim that Ω∗ is an Hs2-strictly stable shape for Jµ,C on the entire space C∞(∂Ω∗) when C is big enough:

there is a constant λ > 0 such that for all ϕ in Hs2 ,

ℓ2[Jµ,C ](Ω
∗).(ϕ,ϕ) ≥ λ‖ϕ‖2Hs2 .

Indeed, if it was not the case, we would have the existence of ϕn ∈ C∞(∂Ω∗) such that

ℓ2[Jµ,n](Ω
∗).(ϕn, ϕn) ≤ 0. (3.8)

According to the structure of the shape hessian of Jγ , this leads to

c1|ϕn|
2
Hs2 − c2‖ϕn‖

2
Hs1 − |µ|c3‖ϕn‖

2
Hs2 + 2n

(∫
ϕn

)2

+ 2n

∥∥∥∥
∫

∂Ω∗

ϕnx

∥∥∥∥
2

≤ 0. (3.9)

Assuming by homogeneity that ‖ϕn‖Hs2 = 1 for every n, and using the compactness of Hs2(∂Ω∗) in

Hs1(∂Ω∗), we have, up to a subsequence, that ϕn converges weakly in Hs2 and strongly in Hs1 and L2.

Therefore, (3.9) implies first that 2n[Vol′(ϕn)
2 + Bar′(ϕn)

2] is bounded, then that ϕ ∈ T (∂Ω∗) that is

∫

∂Ω∗

ϕ = 0 and

∫

∂Ω∗

ϕx = 0,
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where ϕ is the limit of (ϕn) and then the semi-lower continuity assumption (1.6) implies

ℓ2[Jµ](Ω
∗).(ϕ,ϕ) ≤ 0, with ‖ϕ‖Hs1 = 1

which contradicts (3.7), since ϕ 6= 0.

Step 3: Taylor expansion: We consider now Ω close to Ω∗ for dΘ and introduce h = hΩ∗,Ω as in (1.3),

and proceed as in the unconstrained case using Lemma 3.3 and hypothesis CHs2 to prove

Jµ,C(Ω)− Jµ,C(Ω
∗) =

1

2

d2

ds2
Jµ,C(Ωs)|s=0 +

∫ 1

0
(1− t)

[
d2

ds2
Jµ,C(Ωs)|s=t −

d2

ds2
Jµ,C(Ωs)|s=0

]
dt

≥
λ

2
‖h‖2Hs2 − cω(η)‖h‖2Hs2 ≥

λ

4
‖h‖2Hs2 , (3.10)

the last inequality holds if we assume that η is small enough. Writing this inequality in particular for

shapes Ω of volume V0 and having the same barycenter as Ω∗,

Jµ(Ω)− Jµ(Ω
∗) ≥

λ

4
‖h‖2Hs2 .

We conclude using the invariance of Jµ with translations. �

3.5 Applications

Combining the general Theorem 3.2 to the computations of shape derivatives from Section 2.1, we easily

obtain the following:

Proposition 3.7 Let V0 ∈ (0,∞), and B a ball of volume V0. Then there exists γ0 ∈ (0,∞) such that for

every γ ∈ [−γ0,∞), and every ϕ in C∞(∂Ω,R) ∩ T (∂Ω):

ℓ2[P + γE](B)(ϕ,ϕ) > 0, ℓ2[P + γλ1](B)(ϕ,ϕ) > 0,

ℓ2[E + γλ1](B)(ϕ,ϕ) > 0, ℓ2[λ1 + γE](B)(ϕ,ϕ) > 0.

Therefore, there exists η = η(γ) > 0 and c = c(γ) > 0 such that for every Ω ∈ Vη := {Ω′, dΘ(Ω
′, B) < η}

having the same barycenter as B,

(P + γE)(Ω) ≥ (P + γE)(B) + c‖h‖2H1 , (P + γλ1)(Ω) ≥ (P + γλ1)(B) + c‖h‖2H1

(E + γλ1)(Ω) ≥ (E + γλ1)(B) + c‖h‖2
H1/2 , (λ1 + γE)(Ω) ≥ (λ1 + γE)(B) + c‖h‖2

H1/2 ,

where h = hB,Ω is such that ∂Ω = {x+ h(x)n(x), x ∈ ∂B}.

Proof of Proposition 3.7: It suffices to prove that Theorem 3.2 can be applied to Ω∗ = B and

(F1, F2) ∈ {(P,E), (P, λ1), (E,λ1), (λ1, E)}.

It is explained in Section 3.1 that (P,E, λ1) satisfies the structural hypotheses, and in Lemma 2.4 that

the ball is stable in T (∂B). �
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Corollary 3.8 With the same notations as in Proposition 3.7, we have, with η0 = η(γ0):

∀Ω ∈ Vη0 ,
P (Ω)− P (B)

E(Ω)− E(B)
≥ γ0,

P (Ω)− P (B)

λ1(Ω)− λ1(B)
≥ γ0

γ0 ≤
λ1(Ω)− λ1(B)

E(Ω)− E(B)
≤ γ−1

0 .

Remark 3.9 In [16], the second inequality in Corollary 3.8 is also investigated, and the author computes

the optimal value γ0 when the size of the neighborhood Vη0 goes to 0. We also refer to [18] for some result

of this kind.

To the contrary to the last two-sided inequality, it is not possible to bound the first two ratio from above.

Indeed, for every γ ∈ (0,∞), there exists Ωγ = (Id+ θγ)(B) of class C∞ such that

|Ωγ | = |B|, ‖θγ‖Θ ≤ γ−1 and
P (Ω)− P (B)

E(Ω)− E(B)
> γ.

3.6 Counterexample for non smooth perturbations

Let us consider P the perimeter and E the Dirichlet energy with second right hand side 1 (defined in

(1.9)), and Ω∗ = B a ball of volume V0. We have seen in Proposition 3.7 that there is a real number

γ0 ∈ (0,∞) such that for every γ ∈ (−γ0,∞), B is a stable local minimum for P + γE.

For γ ≥ 0 this is not very surprising: since the ball minimizes E among sets of given volume, it is enough

to prove that the ball is a stable minimizer for the perimeter, which goes back to Fuglede [10]. Moreover,

it has been proven that B is an L1-stable minimizer of the perimeter in a L1-neighborhood of the ball,

that is to say there exists η > 0 such that

∀ Ω such that |Ω∆B| ≤ η, |Ω| = |B|, P (Ω)− P (B) ≥ c|Ω∆B|2 (3.11)

where we assume the barycenter of Ω to be the same as the one of B (actually this is no longer local, this

inequality can be stated for every set Ω of finite perimeter, see [11]). Therefore a similar inequality is valid

for P + γE if γ ≥ 0.

However, for γ < 0, the fact that the ball is a local minimizer is no longer trivial, there is a competition

between the minimization of the perimeter and maximization the Dirichlet energy. Though if the coefficient

in E is small enough, our result state that B is still a local minimizer in a Θ-neighborhood. Nevertheless,

in that case B is no longer a local minimizer in a L1-neighborhood. In other words, for every γ < 0 and

any ε > 0 one can find Ωε such that

dL1(Ωε, B) < ε, |Ωε| = |B|, and (P + γE)(Ωε) < (P + γE)(B).

To prove this, we use the idea of topological derivative, it is well known that if one consider a small hole of

size ε in the interior of a fixed shape. The energy will change at order εd−2 if d ≥ 3 and 1/log(ε) if d = 2,

which is strictly bigger than the change of perimeter which is of order εd−1, and therefore will strictly

decrease the energy P + γE when γ < 0.

We compute here explicitly these estimates when the hole is at the center of the ball: let us consider a

fixed ball B1 = B(0, 1) of radius 1 (to simplify the computations) and define Ωε = B1 \B(0, ε) an annulus.

Using that ∆u = ∂rru+ d−1
r ∂ru when u is radial, the state function is:

uΩε(r) =
(εd−2 − εd)r2−d + εd − 1

2d(εd−2 − 1)
−
r2

2d
, if d ≥ 3
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uΩε(r) =
1− ε2

−4 log(ε)
log(r) +

1− r2

4
, if d = 2

and therefore

if d ≥ 3, E(Ωε) = −
1

2

∫

Ωε

uΩε =

[
d(1− ε2)2εd−2 − 2(1 − εd)2

8d2(1− εd−2)
+

1− εd+2

4d(d + 2)

]
P (B1)

=

[
−

1

2d2(d+ 2)
+
d− 2

8d2
εd−2 + o(εd−2)

]
P (B1),

if d = 2, E(Ωε) = −
1

2

∫

Ωε

uΩε =

[
(1− ε2)

−8 log(ε)
(1− ε2(1− 2 log(ε))) −

1

16
(1− ε2 +

ε4

2
)

]
P (B1B1

)

=

[
−

1

16
−

1

8 log(ε)
+ o

(
1

log(ε)

)]
P (B1).

We now define Ω̃ε = µεΩε where µε = (1− εd)−1/d so that

|Ω̃ε| = |B1|, P (Ω̃ε)− P (B1) =
[
µd−1
ε (1 + εd−1)− 1

]
P (B1) ∼ε→0 ε

d−1P (B1)

E(Ω̃ε)− E(B1) ∼ε→0
(d− 2)P (B1)

8d2
εd−2 > 0, if d ≥ 3, E(Ω̃ε)− E(B1) ∼ε→0

P (B1)

−8 log(ε)
> 0, if d = 2

so that in both cases, for any nonpositive γ, (P + γE)(Ωε)− (P + γE)(B1) < 0 for small ε.

4 Explicit constants

In this section, we are interested in computing explicit numbers γ such that the inequalities of Proposition

3.7 holds. To simplify the expressions, we restrict ourselves to the case of the unit ball.

Proposition 4.1 Using notations of Proposition 3.7 and γd defined in (2.4), under the constraint Vol(Ω) =

Vol(B1)

(i) if γ > −(d+ 1)d2, then B1 is a local strict minimizer of P + γE: there exists η = η(γ) > 0 such that

∀Ω ∈ Vη, (P + γE)(Ω) ≥ (P + γE)(B).

Moreover, when γ = −(d+ 1)d2, the second derivative of the Lagrangian cancels in some directions

and when γ < −(d+ 1)d2, the ball is a saddle shape for P + γE.

(ii) if γ > −
d(d+ 1)

γ2d(d+ j2d/2−1)
, then B1 is a local strict minimizer of P + γλ1: there exists η = η(γ) > 0

such that

∀Ω ∈ Vη, (P + γλ1)(Ω) ≥ (P + γλ1)(B);

Moreover, when γ = −
d(d + 1)

γ2d(d+ j2d/2−1)
, the second derivative of the Lagrangian cancels in some direc-

tions and when γ < −
d(d+ 1)

γ2d(d+ j2d/2−1)
, the ball is a saddle shape for P + γλ1.
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(iii) if γ > −
1

d2(d+ 1)γ2d
, then B1 is a local strict minimizer of E + γλ1: there exists η = η(γ) > 0 such

that

∀Ω ∈ Vη, (E + γλ1)(Ω) ≥ (E + γλ1)(B);

(iv) if γ > −γ2dd
2, then B1 is a local strict minimizer of λ1 + γE: there exists η = η(γ) > 0 such that

∀Ω ∈ Vη, (λ1 + γE)(Ω) ≥ (λ1 + γE)(B).

Note that the additional term ‖h‖2Hs2 can be added in the former inequalities with s2 = 1 for the cases

(i)-(ii) and with s2 = 1/2 for the cases (iii)-(iv).

Remark 4.2 In the cases (iii) and (iv), the constants we compute are not optimal, in particular we do

not claim the ball is a saddle point once we go beyond the computed value. Though it is possible to

compute the optimal value, one just need to compute explicitly the value of supk≥2 τ
′
k and supk≥2 τ

′′
k (see

the notations in the proof below) as it is done in the cases (i) and (ii). As it is seen in the second case

handled by Nitsch in [16], this computation can be rather technical.

Proof of Proposition 4.1:

Proof of (i): We first compute the Lagrange multiplier µ(t) associated to the volume constraint at B1:

it is defined as ℓ1[P + tE) + µ(t)Vol] = 0 that is from the expression of the shape gradients of Vol, P and

E:

µ(t) =
1

2d2
t − (d− 1).

Let us now turn our attention to hessian of the function P + tE+µVol on the balls B1. As a consequence

of Lemma 2.4, the shape hessian of the lagrangian P + tE + λ(t)Vol at balls is

ℓ2[P + tE + µ(t)Vol](B1).(ϕ,ϕ) =

∞∑

k=0

ck

dk∑

l=1

αk,l(ϕ)
2

where we have set

ck(t) = k2 +

[
(d− 2) +

1

d2
t

]
k −

[
(d− 1) +

1

d2
t

]
= (k − 1)

[
k + (d− 1) +

1

d2
t

]
.

Therefore, the hessian of the Lagrangian ℓ2[P + tE + µ(t)Vol](B1) is coercive in H1(∂B1) when t solves

the inequalities

k + (d− 1) +
1

d2
t > 0

for all k ≥ 2. Of course, it suffices to solves that inequality in the special case k = 2 that provides

t > −(d+ 1)d2.

Proof of (ii): Notice that the case t ≥ 0 is well known so we consider the case where t < 0. We compute

the Lagrange multiplier µ(t) associated to the volume at B1 defined by ℓ1[P + tλ1) + µ(t)Vol] = 0 that is

from the expression of the shape gradient of the volume, the perimeter and λ1:

µ(t) = γ2d t − (d− 1).
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Let us now turn our attention to the hessian of the Lagragian P + tE + µ(t)Vol on the balls B1:

ℓ2[P + tλ1 + µ(t)Vol](B1).(ϕ,ϕ) =

∞∑

k=0

ck(t)

dk∑

l=1

αk,l(ϕ)
2

where we have set

ck(t) = k2 + (d− 2 + tγ2d)k − (d− 1) + tγ2d

[
d− 1− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
.

We introduce the sequences ak = Jk−1+d/2(jd/2−1) and bk = ak+1/ak so that:

ck(t) = k2 + (d− 2)k − (d− 1) + tγ2d
[
k + d− 1− jd/2−1bk

]
.

One should have c1(t) = 0 for any t, as known for the invariance by translations of all the involved

functions, we can attest this once we describe how one can compute the numbers bk, see below. For a

given integer k ≥ 2, ck(t) > 0 holds when t > τk defined as

τk = −
(k − 1)(k + d− 1)

γ2d(k + d− 1− jd/2−1bk)
.

In order to obtain to find the optimal value of t so that these inequalities are satisfied for every k ≥ 2, we

need to compute the supremum of {τk, k ≥ 2}. It is proven by Nitsch in [16, p. 332, proof of Lemma 2.3]

that for all k ≥ 2, τk ≤ τ2. We describe here how one can obtain a more explicit version of τ2: from the

recurrence formula for Bessel function ([1, 9.1.27, p 361])

(2ν/z)Jν(z) = Jν−1(z) + Jν+1(z)

applied to ν = k − 1 + d/2 and z = jd/2−1, the sequences ak and bk satisfy the recurrence property

ak+1 =
2(k − 1) + d

jd/2−1
ak − ak−1 and bk+1 =

2(k − 1) + d

jd/2−1
−

1

bk

with the initial terms a0 = 0 and a1 = Jd/2(jd/2−1) so that b1 = a2/a1 = d/jd/2−1. Therefore, we have:

b2 =
d

jd/2−1
−
jd/2−1

d
=
d2 − j2d/2−1

djd/2−1

and as a consequence, we obtain that

τ2 = −
d(d+ 1)

γ2d(d+ j2d/2−1)
.

Proof of (iii): The Lagrange multiplier is µ(t) = (1/d2) + tγ2d . The Hessian of the Lagrangian is

ℓ2[E + tλ1 + µ(t)Vol](B1).(ϕ,ϕ) =

∞∑

k=0

ck(t)

dk∑

l=1

αk,l(ϕ)
2

where we have set

ck(t) =

(
1

d2
+ tγ2d

)
k −

1

d2
+ tγ2d

[
d− 1− jd/2−1bk

]
.
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Again c1(t) = 0 and ck(t) > 0 if and only if

t > τ ′k = −
k − 1

d2γ2d(k + d− 1− jd/2−1bk)
.

Using that b1 ≥ bk > 0, we obtain

τ ′k < −
1

d2γ2d

k − 1

k + d− 1
= −

1

d2γ2d

(
1−

d

k + d− 1

)
≤ −

1

d2(d+ 1)γ2d
.

Therefore, if t > −
1

d2(d+ 1)γ2d
then for any k ≥ 2, t > τ ′k, which leads to the result.

Proof of (iv): The Lagrange multiplier is µ(t) = (t/d2) + γ2d . The Hessian of the Lagrangian is

ℓ2[λ1 + tE + µ(t)Vol](B1).(ϕ,ϕ) =
∞∑

k=0

ck(t)

dk∑

l=1

αk,l(ϕ)
2

where we have set

ck(t) =

(
t

d2
+ γ2d

)
k −

t

d2
+ γ2d

[
d− 1− jd/2−1bk

]
.

We check c1(t) = 0 and ck(t) > 0 if and only if

t > τ ′′k = −γ2dd
2

(
1 +

d− jd/2−1bk

k − 1

)
.

Using that b1 ≥ bk > 0, we obtain

τk ≤ −γ2dd
2,

and therefore, if t > −γ2dd
2 then for any k ≥ 2, t > τ ′′k , which leads to the result.
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