The Multi-Task Learning View of Multimodal Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

The Multi-Task Learning View of Multimodal Data

Résumé

We study the problem of learning from multiple views using kernel methods in a supervised setting. We approach this problem from a multi-task learning point of view and illustrate how to capture the interesting multimodal structure of the data using multi-task kernels. Our analysis shows that the multi-task perspective offers the flexibility to design more efficient multiple-source learning algorithms, and hence the ability to exploit multiple descriptions of the data. In particular, we formulate the multimodal learning framework using vector-valued reproducing kernel Hilbert spaces, and we derive specific multi-task kernels that can operate over multiple modalities. Finally, we analyze the vector-valued regularized least squares algorithm in this context, and demonstrate its potential in a series of experiments with a real-world multimodal data set.
Fichier principal
Vignette du fichier
Kadri13.pdf (231.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01070601 , version 1 (07-10-2014)

Identifiants

  • HAL Id : hal-01070601 , version 1

Citer

Hachem Kadri, Stéphane Ayache, Cécile Capponi, Sokol Koço, François-Xavier Dupé, et al.. The Multi-Task Learning View of Multimodal Data. Asian Conference on Machine Learning (ACML), Nov 2013, Canberra, Australia. pp.261--276. ⟨hal-01070601⟩
352 Consultations
170 Téléchargements

Partager

More