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Abstract

We study the problem of learning from multiple views using kernel methods in a su-
pervised setting. We approach this problem from a multi-task learning point of view and
illustrate how to capture the interesting multimodal structure of the data using multi-task
kernels. Our analysis shows that the multi-task perspective offers the flexibility to design
more efficient multiple-source learning algorithms, and hence the ability to exploit multiple
descriptions of the data. In particular, we formulate the multimodal learning framework
using vector-valued reproducing kernel Hilbert spaces, and we derive specific multi-task
kernels that can operate over multiple modalities. Finally, we analyze the vector-valued
regularized least squares algorithm in this context, and demonstrate its potential in a series
of experiments with a real-world multimodal data set.

Keywords: multimodal learning, multiple views, multi-task kernels, vector-valued RKHS,
cross-covariance operator.

1. Introduction

Learning from multiple sources1, a.k.a multi-view learning, deals with the integration of
different representations of the data, that can be either redundant, complementary, inde-
pendent, or contradictory, in order to solve a learning problem (Cesa-Bianchi et al., 2010).
Taking into account multimodal inputs can bring various information useful for improving
the quality of the learned classifier. This could be very helpful in applications such as bioin-
formatics, computer vision, multimedia indexing and web search, where several descriptions
on the same objects are available.

A number of studies have appeared in the last decade on multi-view learning, which can
be broadly classified into three categories:

1. Sources, or views, or modalities: the term multi-view learning is used to describe all learning algorithms
that exploit different views of the input data, whether these views are independent or not.
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• supervised setting: multi-view learning is achieved through early fusion of descriptors
then learning, or by learning on each view followed by a late fusion (Muslea and
Knoblock, 2006; Kludas et al., 2007);

• semi-supervised setting: starting from co-training (Blum and Mitchell, 1998), learning
approaches that fall in this category aim at exploiting the agreements between views,
usually through regularization approaches on the non-labeled examples (Balcan et al.,
2004; Christoudias et al., 2008; Sindhwani and Rosenberg, 2008; Wang and Zhou,
2008);

• unsupervised setting: the idea here is to apply the co-regularization framework to un-
supervised learning problems, such as clustering and dimensionality reduction (Kumar
and Daumé III, 2011; Kumar et al., 2011).

In this paper, we focus on the supervised learning part. We tackle the multi-view
learning problem with a multi-task learning point of view and illustrate how to capture the
interesting multimodal structure of the data using multi-task kernels. Indeed, learning from
multiple views is closely related to multi-task learning, and some work has pointed out this
connection (Szedmak et al., 2005; Cavallanti et al., 2008; Crammer et al., 2008). However,
most research in the area of multi-view (or/and multimodal) learning seems to have evolved
as a “parallel learning strategy” to the larger area of multi-task learning. While the two
learning mechanisms are similar, the viewpoints and ways of thinking about these tasks
tend to be quite different. A major goal of this paper is to make some directly ideas from
multi-task learning applicable in multi-view setting.

Learning from multiple views can be viewed as a special case of multi-task learning,
where all tasks share the same label (Cavallanti et al., 2008). To further strengthen the
link between multi-task and multi-view learning in this paper, we take advantage of the
flexibility endowed by the vector-valued reproducing kernel Hilbert space (RKHS) frame-
work (Micchelli and Pontil, 2005) and the ability of multi-task kernels (Micchelli and Pontil)
to operate over multiple modalities (Section 3). Then, we describe and analyze the vector-
valued regularized least squares algorithm for learning when multiple views of the data are
provided for training (Section 4). Finally, we demonstrate the merits of our approach on a
real-world multimodal data set (Section 5).

To the best of our knowledge, the most directly related work to this paper is that
of Luo et al. (2013) and Minh et al. (2013). In these two papers, the authors have studied
the problem of multi-view learning using vector-valued RKHS in semi-supervised setting.
However, in (Luo et al., 2013) the vector-valued approach has been adopted to deal with
multi-label classification and not the multi-view setup. A multiple kernel learning (MKL)
approach has been used due to the presence of multiple views of input data, but this
fails to capture between-view information. In (Minh et al., 2013) the connection between
multi-view learning and vector-valued manifold regularization has been explored, providing
a unifying framework linking these two learning approaches. In this setting, a crucial
issue, which has not been discussed in (Minh et al., 2013), is the choice of the multi-task
kernel as a way to exhibit the interesting multimodal structure of the data. We address
this by introducing multi-task kernels based on cross-covariance operators on RKHS that
allow modeling variables of multiple types and modalities. The remainder of the paper is
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mainly concerned with vector-valued RKHS and multi-task kernels, and their connections
to supervised learning from multiple sources/views.

2. Multi-Task Learning with Kernels: A Brief Review

In this section, we briefly review the formal setup for multi-task learning using regularization
in a reproducing kernel Hilbert space (RKHS) H with a multi-task kernel K(·, ·). It extends
the single-task kernel learning framework (Schölkopf and Smola, 2001) to multi-task setting.
We refer the reader to (Evgeniou et al., 2005) and references therein for more details.

In the standard multi-task learning setup we have p tasks. For the l-th task, l ∈ Np (we
use the notation Np for the set {1, . . . , p}), n examples {(xil, yil) : i ∈ Nn} ⊂ Xl × Yl

sampled i.i.d. from an unknown probability distribution Pl on Xl × Yl are available. The
total data available is then {(xil, yil) : i ∈ Nn, l ∈ Np}, and the goal is to learn all p functions
fl : Xl → Yl simultaneously from the available data. It is common in multi-task learning to
assume that the tasks share the same input space, that is Xl = X for all l. In this case, multi-
task learning can be formulated as a vector-valued function learning problem (Micchelli and
Pontil, 2005), where the goal is to learn a function f from X to Y; the input space X is
typically a subset of Rd, the d dimensional Euclidean space, and the output space Y is a
subset of Rp containing the outputs of the p tasks. To this end, a common approach is to
learn f as the minimizer in a vector-valued RKHS H of the functional

1

n

∑

i∈Nn

V (yi, f(xi)) + λ‖f‖2H, (1)

where yi = (yil)l∈Np
∈ R

p, λ > 0 is a regularization parameter, and ‖f‖H is the norm of f
in H. V is a convex loss function such as the square error ‖yi − f(xi)‖

2
Y .

A vector-valued RKHS is uniquely defined by a positive definite multi-task kernelK(·, ·);
that is a matrix-valued function of two variables satisfying the following two properties.

Definition 1. (Positive definite multi-task kernel). A function K : X × X → L(Y), where
L(Y) is the the space of bounded linear operators from Y into itself 2, is positive definite if
the following holds

(a) K(x, z)∗ = K(z, x), for any (x, z) ∈ X 2, where ∗ denotes the adjoint,

(b)
∑

i,j∈Nq

〈yi,K(xi, xj)yj〉Y ≥ 0, for any q ∈ N, {xi : i ∈ Nq} ⊆ X , and {yi : i ∈ Nq} ⊆ Y.

Corresponding to any such kernel K(·, ·) there is a map Φ from X ×Y to a feature space
F , such that:

〈y,K(x, z)v〉Y = 〈Φ(x, y),Φ(z, v)〉F ,

for any (x, z)∈X 2 and (y, v)∈Y2. Hence, the kernel can be used, as with the basic scalar-
valued kernel, to compute an inner product in the feature space. This is referred to as
the multi-task “kernel trick”. Note that the usual kernel trick can be recovered when p = 1.

2. If p, the number of tasks, is finite, Y ⊆ R
p is finite-dimensional and L(Y) = R

p×p is the vector space of
symmetric matrices of size p × p. In this case, the multi-task kernel K(·, ·) is also called matrix-valued
kernel (Reisert and Burkhardt, 2007).
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One particularly attractive instantiation of such a feature space is the vector-valued
RKHS H associated with the multi-task kernel K(·, ·). Consider the set of functions
{K(·, x)y : x ∈ X , y ∈ Y}, where x and y index the set of functions and the dot repre-
sents the argument to a given function. The span of such functions defines a linear space
that is unique and can always be completed into a Hilbert space (Schwartz, 1964; Mic-
chelli and Pontil, 2005). The crucial property of these Hilbert spaces is the “reproducing
property” of the kernel

〈y, f(x)〉Y = 〈K(·, x)y, f〉H,

for any x ∈ X , y ∈ Y, and f ∈ H. Note in particular that if we define Φ(x, y) = K(·, x)y as
a map into the vector-valued RKHS, then we have

〈Φ(x, y),Φ(z, v)〉F = 〈K(·, x)y,K(·, z)v〉F = 〈y,K(x, z)v〉Y ,

and thus Φ(x, y) = K(·, x)y is indeed an instantiation of the feature space perspective of
the multi-task kernel. For completeness, we recall the definition of vector-valued RKHS.

Definition 2. (vector-valued RKHS). A vector-valued reproducing kernel Hilbert space is
a Hilbert space H of functions f : X → Y that possesses a (matrix-valued) multi-task
reproducing kernel, i.e., a function K : X × X → L(Y) for which the following holds

(a) K(x, ·)y ∈ H for all x ∈ X , y ∈ Y,

(b) 〈f,K(·, x)y〉H = 〈f(x), y〉Y for all x ∈ X , y ∈ Y, and f ∈ H.

It is important to note that there is a bijection between positive semidefinite multi-task
kernels and vector-valued RKHS. Moreover, the multi-task kernel associated with a vector-
valued RKHS is unique. This guarantees the unicity of the solution to the problem (1)
which is given by the representer theorem (Micchelli and Pontil, 2005).

Representer theorem. (vector-valued case). Any solution to the problem: find f ∈ H to
minimize (1) has a representation of the form

f(·) =
∑

i∈Nn

K(·, xi)ci, (2)

where ci ∈ Y.

The result in Equation (2) is noteworthy as it makes the optimization problem (1)
amenable for computations. In particular, the unique minimizer of functional (1) can be
found by replacing f by the right hand side of Equation (2) in Equation (1) and then
optimizing with respect to the parameters {ci : i ∈ Nn}.

We now show how multi-task learning using regularized kernel methods, as described
above, is useful for “supervised” learning when multiple views of the data are available.

3. Multi-View Learning from a Multi-Task Perspective

In this section, we start by formalizing the link between kernel-based multi-task learning
and multi-view learning. We then discuss multi-task kernels built from cross-covariance
operators as a viable way of modeling within- and between-view information.
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3.1. Framework

Consider the general setting of supervised learning with multiple views, where we aim to
identify a target function given a set of labeled data drawn from m different sources. The
training data is composed by multiple and various sets of features. One way to tackle this
problem is to define a kernel for each view and to consider a regularized risk minimization
problem in a reproducing kernel Hilbert space (RKHS) H

argmin
f(·)∈H

1

n

n
∑

i=1

V (yi, f(xi)) + λ‖f‖2, (3)

where f = (f1, . . . , fm) ∈ H1 × . . . × Hm, V (y, ·) is a convex loss function, and λ ≥ 0 is a
regularization parameter. Given n training data {(xi, yi) : i ∈ Nn} ⊂ (X ×Y)n (we use the

notation Nn for the set {1, . . . , n}) where each example xi = (x
(1)
i , . . . , x

(m)
i ) is seen in m

views, H1, . . . ,Hm are the scalar-valued RKHSs associated respectively to the reproducing
kernels k1, . . . , km defined for each view.

Much previous work in the machine learning literature has focused on learning f in a
scalar-valued RKHS (Brefeld et al., 2006; Farquhar et al., 2006; Sindhwani and Rosenberg,
2008). This means that the decision function f(x) is obtained by computing the m functions
fs, s ∈ Nm, independently for each view. It is true that these previous work succeed in
taking into account dependencies between views ; however, this is achieved only through
regularization and mainly in the presence of unlabeled data. In the supervised setting,
using a scalar-valued RKHS and learning independently the function (fs)s∈Nm

may fail to
fully take into account the structure of multimodal data, since it is difficult to optimize the
agreement between views under some assumptions (redundancy of views and conditional
independence) or to promote some other properties among views, especially when the num-
ber of views m is large. Vector-valued RKHS and their associated multi-task kernels offer
more natural and more powerful specialized procedures for addressing this issue.

In this work we adopt a multi-task kernel approach to take into account within- and
between-view information. Multi-task kernels have been introduced in the machine learning
community by Micchelli and Pontil in order to learn simultaneously multiple tasks (Evgeniou
et al., 2005) and have recently been used successfully in functional regression (Kadri et al.,
2011) and structured output prediction (Brouard et al., 2011; Kadri et al., 2013b), but
to our knowledge have never been applied to the problem of multi-view learning until
recently (Minh et al., 2013). We recall that the idea here is to consider the problem of
learning from multiple views as a special case of multi-task learning where all tasks share
the same label, and to learn the function f in a vector-valued RKHS. To this end, output
values (labels) yi are considered to be vectors in R

m, where m is the number of views,
instead of real variables as usual. The simplest representation would therefore consist of m
repetitions of the real-valued labels, even if it might be possible to design more sophisticated
representations to encode specific prior knowledge about the task into the model. By doing
this, one can make use of multi-task kernels, which in this case are matrix-valued functions
from X × X → R

m×m (since Y = R
m), to exhibit the interesting multimodal structure of

the data represented by different features. In the following we show how to construct such
kernels, but before this we recall that the solution to the multi-view learning problem (3)
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in a vector-valued RKHS is given by the representer theorem, and has the following form

f(·) =
∑

i∈N

K(·, xi)ci, (4)

where ci ∈ R
m. The learning algorithm will then be based on computing and manipulating

the kernel matrix associated with the matrix-valued function K(·, ·). In this setting, the
kernel matrix is a block matrix of size nm× nm, where each block of size n× n at the s-th
row and the t-th column, (s, t)∈(Nm)2, is devoted to take into account information between
views s and t. This is described in more details in the next subsection.

3.2. Multi-task kernels for multimodal data

In the multi-view learning setting and in order to encode within- and between-view informa-
tion, we strongly prefer to view the multi-task kernel as a scalar-valued function rather than
viewing it as a matrix-valued function. The multi-task kernel K(·, ·), which takes two exam-
ples x and x′ and outputs a matrix of dimension m×m, with m the number of views, can be
reformulated using a scalar-valued function (kernel) k on two pairs of input/view (Wahba,
1992; Evgeniou et al., 2005) as follows

k(x, t, x′, s) =
(

K(x, x′)
)

ts
,

where (x, x′) ∈ (X )2, (s, t) ∈ (Nm)2, and K(x, x′) ∈ R
m×m. In this way, it is possible to

construct the block kernel matrix K =
(

K(xi, xj)
)

(i,j)∈(Nn)2
∈ R

nm×nm from blocks of size

n × n over input features of each view (or source) instead of blocks of size m × m over
outputs. Since the tasks share the same labels, this is more convenient in order to extract
the inherent structure that is informative on the multimodal data.

Multi-task kernel based on cross-covariance operator. In order to take into ac-
count within- and between-view information, we consider multi-task kernels built from
cross-covariance operators on RKHS. Covariance operators on RKHS have recently re-
ceived considerable attention. For example, these operators that provide the simplest
measure of dependency have been successfully applied to the problem of dimensionality
reduction (Fukumizu et al., 2004) and played an important role in dealing with a num-
ber of statistical test problems (Gretton et al., 2005). More recently, covariance-based
operator-valued kernels have been introduced in the context of structured output learning
to capture the dependencies between the outputs as well as between the input and output
variables (Kadri et al., 2013b). Here we expand the applicability of these kernels to multi-
view learning setting. We propose to construct a multi-task kernel that can operate over
multiple modalities as the following

k(xi, t, xj , s) =
〈

kt(x
(t)
i , ·), CXtXs

ks(x
(s)
j , ·)

〉

, (5)

where CXtXs
: Hs → Ht is the cross-covariance operator between the RKHSs Hs and Ht. To

compute the kernel k, we have to estimate the cross-covariance operator with given data.

The empirical cross-covariance operator Ĉ
(n)
XtXs

is given by

Ĉ
(n)
XtXs

=
1

n

n
∑

i=1

kt(x
(t)
i , ·)⊗ ks(x

(s)
i , ·),
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where ⊗ is the tensor product defined by (f ⊗ g)h = 〈g, h〉f , for all f ∈ Xt and g, h ∈ Xs.
Thus, by restricting the cross-covariance operator CXtXs

to the n-dimensional subspaces

spanned by {kt(x
(t)
i , ·)}ni=1 and {ks(x

(s)
i , ·)}ni=1, we can estimate the operator by

Ĉ
(n)
XtXs

= ktks,

where kt and ks are the kernel matrices associated with the scalar-valued kernels kt and
ks, respectively (Fukumizu et al., 2004). The multi-task kernel thus built permits us
to encode the interactions between views s and t, and the resulting block kernel matrix

K =
(

k(xi, t, xj , s)
)(s,t)∈(Nm)2

(i,j)∈(Nn)2
allows to incorporate all the available information regarding

the m views into the model.

Special cases. The kernel matrix built from the above multi-task kernel is a full
block matrix in that it consists of all the cross-covariance blocks from the views. One can
alternatively consider only within-view information and would not necessarily need between-
view dependencies. In this case, the kernel matrix is block diagonal and the associated
multi-task kernel is

k(xi, t, xj , s) = δts
〈

kt(x
(t)
i , ·), CXtXs

ks(x
(s)
j , ·)

〉

,

where δts is the Kronecker delta function: δts = {1 if t = s, 0 otherwise}. One particularly
attractive instantiation of such a kernel is when the cross-covariance operator is replaced
by the identity operator

k(xi, t, xj , s) = δts
〈

kt(x
(t)
i , ·), ks(x

(s)
j , ·)

〉

. (6)

The kernel matrix is then block diagonal and each block corresponds to the “scalar-valued”
kernel matrix over one view (or source). In other works, applying the vector-valued RKHS
framework using the multi-task kernel of Equation (6) is equivalent to using a basic “uni-
formly weighted” multiple kernel learning (MKL) approach (Bach et al., 2004).

4. Algorithm and Computational Aspects

We now discuss the multi-task kernel based algorithm used in this work to tackle the problem
of learning from multiple views. In particular, based on the framework described above,
we will concentrate on the vector-valued regularized least squares (RLS) algorithm, and we
show how computational efficiency results well know in the scalar-valued case (Rifkin and
Lippert, 2007) can be restated in the vector-valued setting.

4.1. Vector-valued RLS

Vector-valued RLS algorithm is based on the squared loss

V (y, ŷ) = ‖y − ŷ‖2Rm . (7)

Substituting Equation (7) in the problem (3), the minimization problem associated with
the multi-task formulation of supervised multi-view learning can be written as

argmin
f(·)∈H

1

n

n
∑

i=1

‖yi − f(xi)‖
2 + λ‖f‖2H. (8)
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Using the representer theorem, the problem (8) becomes

argmin
c∈Rnm

1

n
‖y −Kc‖2 + λ〈Kc, c〉, (9)

where c = (ci)i∈Nn
∈ R

nm×1 (ci ∈ R
m), y = (yi)i∈Nn

∈ R
nm×1, and K is the block kernel

matrix such that K =
(

k(xi, t, xj , s)
)

i,j,s,t
∈ R

nm×nm, for all (i, j)∈(Nn)
2 and (s, t)∈(Nm)2.

Setting the derivative with respect to c to zero, we see that c must satisfy

(K+ λI)c = y, (10)

where I denotes an appropriately-sized identity matrix. The prediction of a new test point
x is given by

f(x) =
∑

i∈Nn

K(x, xi)ci

= Kx(K+ λI)−1y,

where Kx is the m × nm matrix with m × m block entries
(

K(x, xi)
)

i∈Nn
. These results

are very similar to those in the usual scalar-valued case. A major difference is the use of a
block kernel matrix instead of a Gram matrix.

4.2. Leave-one-out procedure

In this subsection, we show how the classical result regarding computing in a closed form
the leave-one-out solution in the case of regularized least squares (Wahba, 1990; Rifkin and
Lippert, 2007) can be extended to the vector-valued setting. While the extension can be
carried out in a direct way, it has, to the best of our knowledge, never been worked out
before, and provides an adequate mechanism for finding a “good” value of the regularization
parameter λ involved in the vector-valued RLS optimization problem (see Equation (8)).

We shall use the notation of (Rifkin and Lippert, 2007) . Let fSi be the solution of
the vector-valued RLS function trained on Si, where Si is the data set with the i-th point
removed from the training set S = {(xj , yj) : j ∈ Nn} ⊂ (X × Y)n (Y = R

m, where m is
the number of views). We define LOOV =

(

fSi(xi)
)

i∈Nn
and LOOE =

(

yi− fSi(xi)
)

i∈Nn
to

be the vectors of leave-one-out values and errors over the training set. Let yi = (yij)j∈Nn
,

where yij ∈ R
m, be the nm-dimensional vector defined by:

yij =

{

yj j 6= i

fSi(xi) j = i.

If we solve the vector-valued RLS problem (8) when replacing the outputs y = (yj)j∈Nn
by

yi, the optimal solution will be fSi . This can be seen by observing that, for any f ∈ H,

1

n

n
∑

j=1

‖yij − f(xi)‖
2 + λ‖f‖2H ≥

1

n

∑

j 6=i

‖yij − f(xi)‖
2 + λ‖f‖2H

≥
1

n

∑

j 6=i

‖yij − fSi(xi)‖
2 + λ‖fSi‖2H

=
1

n

n
∑

j=1

‖yij − fSi(xi)‖
2 + λ‖fSi‖2H.
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The above inequality says that we can write the vector of expansion coefficients ci of the
predictor fSi given by the representer theorem as ci = G−1yi, where G = (K + λI) with
K =

(

K(xi, xj)
)

(i,j)∈(Nn)2
the nm× nm block kernel matrix associated with the multi-task

kernel K(·, ·) evaluated at the training points, and therefore

fSi(xi) = Kxi
G−1yi,

where Kxi
is the m× nm matrix with m×m block entries

(

K(xi, xj)
)

j∈Nn
. This allows us

to express fSi(xi) in terms of fS(xi)

fSi(xi)− fS(xi) = Kxi
G−1yi −Kxi

G−1y

=
∑

j∈Nn

[KG−1]i,j(y
i
j − yj)

= [KG−1]i,i(fSi(xi)− yj),

which leads to
fSi(xi) = [I − (KG−1)i,i]

−1 [fS(xi)− (KG−1)i,iyi].

Then,
fSi(xi) = [I − (KG−1)i,i]

−1 [Kxi
G−1y − (KG−1)i,iyi]. (11)

From Equation (11), it is straightforward to see that

LOOV = [diagb(I −KG−1)]−1 [KG−1y − diagb(KG−1)y],

where diagb denotes the block diagonal operator3. We thus obtain

LOOE = y − LOOV

= y + [diagb(I −KG−1)]−1 [diagb(KG−1)y −KG−1y]

= [diagb(I −KG−1)]−1 [diagb(I −KG−1)y + diagb(KG−1)y −KG−1y]

= [diagb(I −KG−1)]−1 [y −KG−1y]. (12)

This expression can be simplified in a way that leads to better computational properties.
Let D and Q be the square matrices such that K = QDQ⊤. D and Q are generated by
matrix diagonalization. We can note that

KG−1 = QDQ⊤Q(D + λI)−1Q⊤

= QD(D + λI)−1Q⊤

= Q(D + λI − λI)(D + λI)−1Q⊤

= I − λG−1. (13)

Substituting Equation (13) in Equation (12), we obtain

LOOE = [diagb(I − (I − λG−1))]−1 [y − (I − λG−1)y]

= [diagb(G
−1)]−1 G−1y

= [diagb(G
−1)]−1 c. (14)

3. Given a block matrix M of size nm×nm, diagb(M) is the block diagonal matrix satisfying diagb(M)i,i =
Mi,i, where Mi,i is the block at the ith row and the ith column of size m×m and i ∈ Nn.
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It is interesting to note that the leave-one-out solution in the scalar-valued case can be
recovered from Equation (14) when the number of views m is equal to 1.

4.3. Efficient computation

As we have seen in the previous subsection, the leave-one-out error associated with a vector-
valued RLS algorithm can be computed in a closed form that provides a convenient way to
choose a “good” value for the regularization parameter λ. However, this needs the compu-
tation of the solution of the vector-valued RLS algorithm for each value of λ. Selecting the
value of λ using leave-one-out procedure can be then computationally demanding, since we
have to perform a matrix inversion which costs O(n3m3) for every λ. To address this issue,
we show, as with the scalar-valued case, how the vector of coefficients c (Equation (10)),
solution of the vector-valued RLS problem, can be efficiently calculated for different values
of λ.

Let the eigendecomposition of K be K = QDQ⊤, where D is diagonal with Di,i ≥ 0
and QQ⊤ = I. Then, the solution of the vector-valued RLS c can be expressed as

c = (K+ λI)−1y

= (QDQ⊤ + λI)−1y

=
(

Q(D + λI)Q⊤
)−1

y

= Q(D + λI)−1Q⊤y. (15)

The computational complexity of computing the eigendecomposition of K and calculating
Q⊤y is O(n3m3) and O(n2m2), respectively. Once these two terms have been computed,
they will be stored in the memory. Hence, since the inversion and the multiplication of the
diagonal matrix D+ λI with Q⊤y can be performed in O(nm) time and the multiplication
of the resulting matrix from left by Q costs O(n2m2), the solution c can be calculated from
Equation (15) for different values of the regularization parameter λ with the complexity of
O(n2m2).

Moreover, we can compute [diagb(G
−1)]−1 (see Equation (14)) in O(n2m3) time instead

of O(n3m3). This can be seen from the following equation

(G−1)(i,j)∈(Nn)2 =
(

Q(D + λI)−1Q⊤
)

(i,j)∈(Nn)2
=

∑

l∈Nn

Qi,l(Dl,l + λI)−1Qj,l, (16)

where M(i,j)∈(Nn)2denotes the (i, j)-th m×m block of the block matrix M of size nm×nm.
(G−1)(i,j)∈(Nn)2 can be calculated from Equation (16) in O(nm3) time. The computation
of [diagb(G

−1)]−1 can then be performed in O(n2m3), since the inverse of a block diagonal
matrix is also a block diagonal matrix and can be found by inverting individually the blocks.
Therefore, as the computational cost of the vector-valued RLS algorithm is O(n3m3), we
can compute the solution coefficients c and the leave-one-out error LOOE over a fine grid of
λ without additional cost if we perform an eigendecomposition of the block kernel matrix K.

4.4. Speeding-up training : sparse vector-valued RLS

Obviously, the computational complexity of the vector-valued RLS algorithm is O(n3m3),
and the training can be too costly with large numbers of training examples and/or views.
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This complexity can be reduced via the Kronecker tensor product (Minh et al., 2013) ;
however this is restricted to the particular case of separable multi-task kernels (or block
diagonal kernel matrix). Here we are interested in the general case of any multi-task kernel,
and consider a sparse approximation of vector-valued RLS in which only a part of the
training instances has a non-zero coefficient in Equation (2) (Rifkin et al., 2003; Pahikkala
et al., 2012).

LetW ⊆ Nn be a subset of Nn and w = |W |. ByMw ∈ R
wm×nm we denote the block sub-

matrix of M ∈ R
nm×nm that contains only the block rows indexed by W . Mww ∈ R

wm×wm

denotes a block submatrix of M having block rows and columns indexed by W . Follow-
ing (Rifkin et al., 2003), we consider instead of Equation (2) a solution allowing only the
training points indexed by W to have non-zero coefficients. More formally, we consider

f(·) =
∑

i∈W

K(·, xi)ci,

where the set W is selected in advance. In this case, the vector of expansion coefficients
c = (ci)i∈W , where ci ∈ R

m, is a wm-dimensional vector, and the minimization problem (9)
associated with the vector-valued RLS algorithm becomes

argmin
c∈Rwm

1

n
‖y −K⊤

wc‖
2 + λ〈Kwwc, c〉. (17)

By setting the derivative of problem (17) with respect to c to zero, we obtain

(KwK
⊤
w + λKww)c = Kwy. (18)

Equation (18) shows that when we only allow a subset of size w points to have non-zero
coefficients in the expansion, we can solve a wm by wm system of equations rather than
an nm by nm system. Moreover, as in the scalar-valued case (Pahikkala et al., 2012),
we can see that the matrices Kww and KwK

⊤
w = (KK)ww are principal sub matrices

of the positive definite block kernel matrices K and KK, respectively. Then the matrix
T = (KwK

⊤
w + λKww) is also positive definite and invertible. The solution of the vector-

valued RLS optimization is then given by

c = T−1Kwy. (19)

Hence, the matrix inversion involved in the vector-valued RLS algorithm can be performed
by this procedure in O(w3m3) time (Equation (19)) instead of O(n3m3) (Equation (10)).

5. Experiments

In order to get a first experimental feedback of the usefulness of the cross-covariance op-
erator within the vector-valued RLS algorithm, we performed experiments on the dataset
Animals With Attributes (AwA) (Lampert et al., 2009), which features six views describ-
ing images from 50 concepts (i.e. labels) in a multiclass supervised setting. Each view is
described through hundreds of float-typed attributes. We compare our algorithm with: (1)
a “uniformly weighted” MKL with a least squares loss, which can be seen as a late fusion
algorithm and can be derived from our framework, and (2) an early fusion SVM algorithm.
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5.1. Dataset Animals with Attributes (AwA)

We chose the dataset AwA because it comes with 6 views over 30, 475 images to be classified
within 50 concepts in a multi-class setting (only one class labels each example). As pointed
out below, these views depict various focus on the numerical representation of images; they
may be either correlated, complementary, redundant, or even conflicting.

• cq: (global) color histogram (1×1+2×2+4×4 spatial pyramid, 128 bins each, each
histogram L1-normalized).

• lss: local self similarity (2, 000 entry codebook, raw bag-of-visual-word counts).

• phog: histogram of oriented gradients (1× 1 + 2× 2 + 4× 4 spatial pyramid, 12 bins
each, each histogram L1-normalized or all zero).

• rgsift: rgSIFT descriptors (2, 000 entry codebook, bag-of-visual-word counts, L1-
normalized).

• sift: SIFT descriptors (2, 000 entry codebook, raw bag-of-visual-word counts).

• surf: SURF descriptors (2, 000 entry codebook, raw bag-of-visual-word counts)

5.2. Protocol

Since AwA is a multi-class learning problem, we processed a one-vs-all learning and testing
protocol. For each concept, a classifier is trained from the n examples of the concept and
2n randomly selected examples among other concepts (n varies from 46 to 584, depending
on the concept ; see Table 1). Each experiment is performed once with a random training
set of size 3n (n is the number of examples of the current concept) and a random testing
set of twice that size. In each experiment, the hyper-parameter λ is set using the LOOE
method. All reported methods use a kernel: the χ2 kernel is used everywhere, as usually
done on histogram-based descriptors.

The accuracy of each algorithm is reported for the algorithms: MKL (uniformly weighted),
MVK (our Multi-View learning method with cross-covariance multi-task Kernel), and an
SVM processed on the Early fusion of views using SVM (E-SVM).

5.3. Results

Table 1 summarizes the performance results of the MKL, MVK, and E-SVM, on the dataset
AwA4. It shows that our approach with multi-task cross-covariance kernel (MVK) performs
better than the other approaches on many concepts, and in average. It is worthwhile
noticing that when MVK is worse than MKL on a given concept, the difference may not
be significative. Still, MVK performs better on the most difficult concepts if considering
all the views (mole which has only 46 examples for learning, Polar-bear where only color-
based views are informative, etc.). Besides, Having a large look on all concepts (cf. row
ALL – mean accuracy ), MVK performs better in accuracy than the other methods. These

4. For more experimental results with the same data set, see (Kadri et al., 2013a).
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class n MKL MVK E-SVM class n MKL MVK E-SVM

antelope 273 98.21 95.34 90.89 hamster 421 62.03 93.62 83.57
grizzly+bear 440 74.77 94.55 86.76 squirrel 454 61.07 95.07 84.51
killer+whale 271 75.45 92.92 90.12 rhinoceros 350 97.71 97.12 87.80

beaver 93 97.62 91.48 83.17 rabbit 284 98.13 95.14 83.48
dalmatian 295 98.07 95.24 88.12 bat 201 50.03 91.51 82.46
persian+cat 357 97.59 92.91 86.91 giraffe 550 96.39 95.44 88.51

horse 411 84.60 92.38 87.66 wolf 273 98.21 93.33 86.34
german+shepherd 529 84.11 95.24 86.83 chihuahua 347 97.73 92.80 86.10

blue+whale 131 95.11 92.02 89.54 rat 152 98.84 93.37 85.73
siamese+cat 243 98.41 91.88 86.16 weasel 140 99.07 80.17 84.59

skunk 142 93.93 96.56 88.35 otter 363 97.62 94.46 83.99
mole 46 63.01 94.97 75.23 buffalo 280 98.16 94.14 88.02
tiger 273 98.21 95.36 87.58 zebra 385c 81.37 98.32 92.71

hippopotamus 362 97.60 93.04 87.08 giant+panda 471 59.25 96.44 89.73
leopard 304 98.00 94.78 89.11 deer 537 56.42 90.64 83.76
moose 361 83.51 92.41 85.14 bobcat 321 97.90 93.69 84.49

spider+monkey 176 91.28 95.61 92.09 pig 166 98.90 98.25 89.30
humpback+whale 358 96.55 94.53 90.46 lion 242 98.41 92.20 87.79

elephant 374 72.99 94.36 87.94 mouse 104 99.10 82.28 81.05
gorilla 402 97.36 95.15 89.40 polar+bear 408 64.01 92.53 87.28
ox 84 47.77 92.87 93.33 collie 584 49.67 94.06 96.16

fox 213 98.60 94.15 89.27 walrus 169 97.14 94.14 90.35
sheep 316 97.93 96.46 87.70 raccoon 317 97.92 94.89 87.57
seal 255 97.01 89.68 82.89 cow 329 97.84 91.11 86.07

chimpanzee 351 76.51 89.06 87.27 dolphin 341 67.18 92.80 89.16

ALL 86.686 93.409 87.190

Table 1: Accuracy of unweighted MKL, our approach MVK based on cross-covariance multi-
task kernel, and an early fusion with SVM (E-SVM), on the dataset AwA.

first experimental results acknowledge the relevance of our approach: information between-
views is actually taken into account for a better accuracy. The overall performances of our
approach are quite promising, and validate its pertinence.

6. Conclusion

The main point of this paper was to introduce and evaluate a method for learning from mul-
tiple views using a multi-task learning perspective. We have shown the ability of multi-task
kernels in conjunction with cross-covariance operators on RKHS to capture the interesting
multimodal structure of the data. Our first experimental results on a real-world dataset
show that, in contrast to standard supervised multi-view learning methods, the vector-
valued RLS algorithm with cross-covariance multi-task kernels allows to easily incorporate
both within and between-view information. Future work will aim to extend the presented
multi-view/multi-task ideas towards ranking problems.
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U. Brefeld, T. Gärtner, T. Scheffer, and S. Wrobel. Efficient co-regularised least squares
regression. In ICML, pages 137–144, 2006.

C. Brouard, F. D’Alche-Buc, and M. Szafranski. Semi-supervised penalized output kernel
regression for link prediction. In ICML, pages 593–600, 2011.

G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear algorithms for online multitask clas-
sification. In Omnipress, editor, Proceedings of the 21st Annual Conference on Learning
Theory, 2008.

N. Cesa-Bianchi, D. R. Hardoon, and G. Leen. Guest editorial: Learning from multiple
sources. Machine Learning, 79(1-2):1–3, 2010.

M. Christoudias, R. Urtasun, and T. Darrell. Multi-view learning in the presence of view
disagreement. In UAI 2008, 2008.

K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. Journal of
Machine Learning Research, 9:1757–1774, 2008.

T. Evgeniou, C. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods.
Journal of Machine Learning Research, 6:615–637, 2005.

J. D. R. Farquhar, D. R. Hardoon, H. Meng, J. Shawe-Taylor, and S. Szedmak. Two view
learning: SVM-2K, theory and practice. In NIPS, pages 355–362, 2006.

K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised
learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research,
5:73–99, 2004.

A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf. Measuring statistical dependence
with hilbert-schmidt norms. In Algorithmic Learning Theory: 16th International Confer-
ence. Springer-Verlag, 2005.

274



The Multi-Task Learning View of Multimodal Data

H. Kadri, A. Rabaoui, P. Preux, E. Duflos, and A. Rakotomamonjy. Functional regularized
least squares classification with operator-valued kernels. In ICML, pages 993–1000, 2011.

H. Kadri, S. Ayache, C. Caponni, S. Koço, F. X. Dupé, and E. Morvant. The multi-task
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A. Kumar and H. Daumé III. A co-training approach for multi-view spectral clustering. In
ICML, pages 393–400, 2011.
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