Learning a Repertoire of Actions with Deep Neural Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Learning a Repertoire of Actions with Deep Neural Networks

Résumé

We address the problem of endowing a robot with the capability to learn a repertoire of actions using as little prior knowledge as possible. Taking a handwriting task as an example, we apply the deep learning paradigm to build a network which uses a high-level representation of digits to generate sequences of commands, directly fed to a low-level control loop. Discrete variables are used to discriminate different digits, while continuous variables parametrize each digit. We show that the proposed network is able to generalize learned actions to new contexts. The network is tested on trajectories recorded on the iCub humanoid robot.
Fichier principal
Vignette du fichier
camera_ready.pdf (1013.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01065741 , version 1 (18-09-2014)

Identifiants

  • HAL Id : hal-01065741 , version 1

Citer

Alain Droniou, Serena Ivaldi, Olivier Sigaud. Learning a Repertoire of Actions with Deep Neural Networks. Joint International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob), Oct 2014, Italy. 6 p. ⟨hal-01065741⟩
301 Consultations
833 Téléchargements

Partager

More