Geometric and asymptotic properties associated with linear switched systems
Résumé
Consider a continuous-time linear switched system on $\mathbb{R}^n$ associated with a compact convex set of matrices. When it is irreducible and its largest Lyapunov exponent is zero there always exists a Barabanov norm associated with the system. This paper deals with two types of issues: $(a)$ properties of Barabanov norms such as uniqueness up to homogeneity and strict convexity; $(b)$ asymptotic behaviour of the extremal solutions of the linear switched system.Regarding Issue $(a)$, we provide partial answers and propose four related open problems. As for Issue $(b)$, we establish, when $n=3$, a Poincar\'e-Bendixson theorem under a regularity assumption on the set of matrices. We then revisit a noteworthy result of N.E. Barabanov describing the asymptotic behaviour of linear switched system on $\mathbb{R}^3$ associated with a pair of Hurwitz matrices $\{A,A+bc^T\}$. After pointing out a fatal gap in Barabanov's proof we partially recover his result by alternative arguments.
Domaines
Optimisation et contrôle [math.OC]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...