Rigidity of maximal holomorphic representations of Kähler groups - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Rigidity of maximal holomorphic representations of Kähler groups

Marco Spinaci
  • Fonction : Auteur
  • PersonId : 947502

Résumé

We investigate representations of Kähler groups $\Gamma = \pi_1(X)$ to a semisimple non-compact Hermitian Lie group $G$ that are deformable to a representation admitting an (anti)-holomorphic equivariant map. Such representations obey a Milnor--Wood inequality similar to those found by Burger--Iozzi and Koziarz--Maubon. Thanks to the study of the case of equality in Royden's version of the Ahlfors--Schwarz Lemma, we can completely describe the case of maximal holomorphic representations. If $\dim_{\C}X \geq 2$, these appear if and only if $X$ is a ball quotient, and essentially reduce to the diagonal embedding $\Gamma < \SU(n,1) \to \SU(nq,q) \hookrightarrow \SU(p,q)$. If $X$ is a Riemann surface, most representations are deformable to a holomorphic one. In that case, we give a complete classification of the maximal holomorphic representations, that thus appear as preferred elements of the respective maximal connected components.
Fichier principal
Vignette du fichier
maximal_holomorphic_representations.pdf (294.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01062402 , version 1 (09-09-2014)

Identifiants

Citer

Marco Spinaci. Rigidity of maximal holomorphic representations of Kähler groups. 2014. ⟨hal-01062402⟩
71 Consultations
102 Téléchargements

Altmetric

Partager

More