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RIGIDITY OF MAXIMAL HOLOMORPHIC REPRESENTATIONS

OF KÄHLER GROUPS.

MARCO SPINACI

Abstract. We investigate representations of Kähler groups Γ “ π1pXq to a
semisimple non-compact Hermitian Lie group G that are deformable to a rep-
resentation admitting an (anti)-holomorphic equivariant map. Such represen-
tations obey a Milnor–Wood inequality similar to those found by Burger–Iozzi
and Koziarz–Maubon. Thanks to the study of the case of equality in Royden’s
version of the Ahlfors–Schwarz Lemma, we can completely describe the case
of maximal holomorphic representations. If dimC X ě 2, these appear if and
only if X is a ball quotient, and essentially reduce to the diagonal embed-
ding Γ ă SUpn, 1q Ñ SUpnq, qq ãÑ SUpp, qq. If X is a Riemann surface, most
representations are deformable to a holomorphic one. In that case, we give a
complete classification of the maximal holomorphic representations, that thus
appear as preferred elements of the respective maximal connected components.

1. Introduction

Consider the character variety of representations of a finitely presented group Γ
to a Lie group G:

M “ HompΓ, Gqss{G,

where ss stands for semisimple, that is, representations ρ : Γ Ñ G such that the
Zariski closure of the image ρpΓq is reductive. When studying the topology of M,
the most basic step is being able to distinguish different connected components; to
that aim, one is naturally led to look for characteristic numbers, invariant under
continuous deformations of a representation. When Γ “ π1pXq is the fundamental
group of a Kähler manifold pX,ωXq and G is of Hermitian type, i.e. Y “ G{K has
a G-invariant Kähler form ωY , a natural candidate is the Toledo invariant, which
is defined as

(1) τpρq “
1

n!

ż

X

f˚ωY ^ ωn´1
X .

This has been widely studied in the case dimCpXq “ 1, i.e., for surface groups.
In the case G “ SLp2,Rq, this is equivalent to considering the Euler class, and it
satisfies the Milnor–Wood inequality, see [Mil58] and [Woo71]. The study of the
case of equality in this inequality is due to Goldman, [Gol80]. The generalizations
of these results for more general Hermitian Lie groups G have formed a very active
field of study in the last 30 years: The relevant Milnor–Wood type inequality
is due to Domic and Toledo [DT87] for most classical groups G, and to Clerc
and Orsted in general [CO03]. The study of the maximal case has experienced a
longer history: Toledo [Tol89] has analyzed G “ SUpp, 1q, Hernández [Her91] G “
SUpp, 2q and Bradlow, Garćıa-Prada and Gothen [BGPG03] G “ Upp, qq, where
they computed the number of the maximal connected components. They completed
the same program considering in a series of consecutive works the other classical
groups, see [BGPG06] for a survey. More recently, Burger, Iozzi and Wienhard
[BIW10] completed the picture with very general results about geometric properties
of maximal representations; in particular they proved that maximal representations
are faithful, discrete, semisimple and fix a “tube type” subdomain.
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When n “ dimC X ě 2, the results are much more partial. The Milnor–Wood
type inequality has been proved by Burger and Iozzi [BI07] in the case where X

is locally symmetric, i.e. the universal cover X̃ “ G1{K 1 is itself a Hermitian
symmetric space, using bounded cohomology techniques. In that case, the Milnor–
Wood inequality reads:

(2)
ˇ

ˇτpρq
ˇ

ˇ ď
rkpGq

rkpG1q
VolpXq.

In this symmetric case, the study of maximal representations is especially interest-
ing for G1 “ SUpn, 1q, since in higher rank Mostow’s superrigidity applies. Because
of that, a maximal representation of a higher rank lattice is induced by a “tight
homomorphism” of G1 to G, and those have been completely classified (see for ex-
ample [Ham12]). In the case of rank one, maximal representations are expected to
be extremely special, too. Indeed, there is the following conjecture:

Conjecture 1.1. Let Γ ă SUpn, 1q be a cocompact complex hyperbolic lattice, n ą
1. Suppose that ρ : Γ Ñ G is a maximal representation to a simple Lie group of
Hermitian type G, i.e. τpρq “ rkpGqVolpΓ\Bnq. Then in fact G “ SUpp, qq with
p ě nq and ρ is a “trivial deformation” of the standard diagonal embedding

(3) ρstd : Γ ă SUpn, 1q ãÑ SUpnq, qq ãÑ SUpp, qq,

i.e. ρpγq “ χpγqρstdpγq where χ : Γ Ñ ZG

`

ρstdpSUpn, 1qq
˘

.

Remark that in the conjecture we restrict without loss of generality to G simple
and τpρq ě 0. Indeed, the Toledo invariant is additive on the factors of a decom-
position into irreducible factors of Y , and exchanging the complex structure on
an irreducible Y changes the sign of τ , hence in fact this covers all the interest-
ing cases. At the present day, the conjecture is only known for rkpGq ď 2 (and
G ‰ SO˚p10q), thanks to Koziarz and Maubon [KM08], who used Higgs bundles
techniques to reprove (2) in this case and to study the equality case. Very recently
Pozzetti [Poz14] proved the conjecture (without the cocompactness hypotheses) for
representations ρ such that the Zariski closure of ρpΓq does not contain any factor
of the form SUpk, kq.

For more general Kähler manifolds, not even a Milnor–Wood inequality is avail-
able. The most relevant work here is again due to Koziarz and Maubon [KM10],
who considered a slight variation of the Toledo invariant for complex varieties of
general type, and were able to replicate the results in [KM08] in this broader set-
ting. In this paper we prove that both the inequality and the study of the case of
equality can be proved if one knows beforehand that the representation admits a
ρ-equivariant holomorphic (or anti-holomorphic) map:

Theorem 1.2. Let X be a compact Kähler manifold, n “ dimC X, Γ “ π1pXq
its fundamental group and ρ : Γ Ñ G a representation to a noncompact Hermitian
Lie group, such that ρ can be deformed to one admitting an (anti)-holomorphic
equivariant map. Let k ď 0 be a real number such that the Ricci curvature of X is
bounded below by k. Then the following Milnor–Wood inequality holds:

(4)
ˇ

ˇτpρq
ˇ

ˇ ď τmax “
´2k

n ` 1
rkpGqVolpXq.

If, furthermore, ρ is maximal, i.e. equality holds in (4), n ą 1 and G is a simple
linear group, then X is a ball quotient, G “ SUpp, qq with p ě nq and ρ is a trivial
deformation of ρstd.

The inequality (4) follows directly from a result by Royden (see [Roy80], Theorem
1). The study of the case of equality descends from the study of equality in its
inequality, together with a careful study of the geometry of the classical Lie groups
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of Hermitian type. The techniques are not new: They have been used by Koziarz
and Maubon in [KM08], in the case where X̃ “ Bn and G “ SUpp, qq, where an
easier version of Royden’s theorem applies (see loc. cit. Theorem 2). For manifolds
endowed with a Kähler-Einstein metric, the inequality (4) is compatible with the
one in [KM10], but not as strict as (2) (indeed, the identity morphism for higher
rank groups realizes the equality in (2), but that is clearly not true in (4)). Also
remark that some of the results of this theorem are reminiscent of the ones obtained
by Eyssidieux in [Eys99], pages 84 ff., studying the case of equality in Arakelov
inequalities. Also remark that this theorem gives a different proof of a part of the
statements in [Ham11]: In particular, together with [Ham12], this gives

Corollary 1.3. Let Γ ă SUpn, 1q, n ą 1, be a complex hyperbolic cocompact lattice.
Every maximal representation that can be deformed to one that factors through a
representation of SUpn, 1q,

ρ : Γ ãÑ SUpn, 1q Ñ G

is a trivial deformation of the standard one (3).

The above techniques also give non-trivial results when n “ 1. In this case,
thanks to the series of works by Bradlow, Garćıa-Prada and Gothen (see [BGPG06]
and the references therein), we know that being deformable to an (anti)-holomorphic
representation is not very restrictive: For G “ SUpp, qq or SO˚p2nq or SO0pn, 2q,
with n ě 4, this is always the case; for G “ Spp2n,Rq, n ě 3, this is true unless
ρ is in the “Hitchin component”. Since (anti)-holomorphic representations can be
characterized as minimizers of the Morse function (see Proposition 2.7 for the pre-
cise statement), these are always the minima in each connected components. In the
Hitchin case for Spp2n,Rq, such minima are represented by Fuchsian representa-
tions, see [GPGMiR13]. The authors have used such results to compute the number
of maximal connected components. Using the same techniques as in Theorem 1.2,
and making use of the above holomorphicity result for the minima in these con-
nected components, we give an alternative way to compute such a number, together
with an explicit classification of the representations realizing those minima.

Theorem 1.4. Let Γg “ π1pΣgq be a surface group of genus g ě 2. Let ρ : Γ Ñ G be
a maximal representation, where G is either SUpp, qq, SO˚p2nq or SO0pn, 2q, n ě 4.
Then ρ can be deformed to one of the holomorphic representations ρtot in Table 1
or to one of its “trivial deformations”. These differ from ρtot by multiplication
for a χ : Γg Ñ Z, where Z is the centralizer of ρtotpSL2pRqq as in Table 2. If
G “ Spp2n,Rq, n ě 3, either the above is true, or ρ is in the Hitchin component,
hence it can be deformed to a Fuchsian representation.

We remark here that the “Cayley correspondence” discovered by Bradlow, Garćıa-
Prada and Gothen, relating representations (or Higgs bundles) in the symplectic
or orthogonal group (see, for example, [BGPG13]) is reflected in Table 2 by the
centralizers of these representations.

Finally, remark that Theorem 1.2 seems to suggest that τpρq should always vanish
if the Ricci curvature of X is non-negative. This is indeed the case, as it follows
from a recent theorem of Biswas and Florentino [BF14] (together with the fact,
due to Milnor [Mil58], that non-negative Ricci curvature implies virtually nilpotent
fundamental group):

Proposition 1.5. Let X be a compact Kähler manifold such that RicpXq ě 0 or,
more generally, such that π1pXq is virtually nilpotent. Then for every Hermitian
Lie group G and any ρ : Γ Ñ G, τpρq “ 0.
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Table 1. Canonical representatives of maximal holomorphic rep-
resentations (convention: a, b, c, d, are real, α, β are complex; the
use SL2pRq or SUp1, 1q is deduced from the notation).

G f˚ : sl2pRq – sup1, 1q Ñ g ρtot : SL2pRq – SUp1, 1q Ñ G

SUpp, qq,
p ě q

ˆ

ia β

β̄ ´ia

˙

ÞÑ

¨

˝

iaIq 0 βIq
0 Ip´q 0

β̄Iq 0 ´iaIq

˛

‚

ˆ

α β

β̄ ᾱ

˙

ÞÑ

¨

˝

αIq 0 βIq
0 Ip´q 0

β̄Iq 0 ᾱIq

˛

‚

Spp2n,Rq,
n ě 3

ˆ

a b

c ´a

˙

ÞÑ

ˆ

aIn bIn
cIn ´aIn

˙ ˆ

a b

c d

˙

ÞÑ

ˆ

aIn bIn
cIn dIn

˙

SO0pn, 2q,
n ě 4

ˆ

ia b ´ ic

b ` ic ´ia

˙

ÞÑ

¨

˚

˚

˚

˚

˚

˝

0 0 . . . 2b 2c
0 0 . . . 0 0
...

...
. . .

...
...

2b 0 . . . 0 2a
2c 0 . . . ´2a 0

˛

‹

‹

‹

‹

‹

‚

ˆ

α β

β̄ ᾱ

˙

ÞÑ
¨

˚

˚

˝

2|β|2 ` 1 0 2Repαβ̄q 2Impαβ̄q
0 In´1 0 0

2Repαβq 0 Repα2 ` β2q Impα2 ` β2q
´2Impαβq 0 ´Impα2 ` β2q Repα2 ´ β2q

˛

‹

‹

‚

SO˚p2nq

ˆ

ia b ´ ic

b ` ic ´ia

˙

ÞÑ

ˆ

ibJ aIn ` icJ

´aIn ` icJ ´ibJ

˙

,

J “

ˆ

0 In
´In 0

˙

Table 2. Centralizers and number of connected components

G ZGpρtotpSL2pRqqq Number of
connected
components

SUpp, pq

#

ˆ

U 0
0 U

˙

: U P Uppq,detpUq “ ˘1

+

– Uppq ¸ Z{2Z 22g

SUpp, qq,
p ą q

#

¨

˝

U 0 0
0 F 0
0 0 U

˛

‚:
U P Upqq, F P Upp ´ qq,
detpUq2 detF “ 1

+

1

Spp2n,Rq,
n ě 3

#

ˆ

Q 0
0 Q

˙

: Q P Opnq

+ 22g`1(plus 22g

Hitchin ones
[BGPG06])

SO0pn, 2q,
n ě 4

#

¨

˚

˚

˝

detP
P

detP
detP

˛

‹

‹

‚

: P P Opn ´ 1q

+

22g`1

SO˚p2nq Sppnq Ă Upnq Ă SO˚p2nq 1

An immediate corollary of this fact (plus a Theorem of Delzant [Del10]) is that
no cocompact lattice of a Hermitian Lie group is solvable. This fact is trivial in
rank 1 (in that case, Γ is hyperbolic), and it follows from the Margulis Normal
Subgroup in higher rank.

1.1. Organization of the paper. We give different definitions of the Toledo in-
variant τpρq, using the Higgs bundles formalism, in Section 2, together with its rela-
tion to the energy Epρq and to the existence of an (anti)-holomorphic ρ-equivariant
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map. Section 3 is devoted to the statement of Royden’s version of the Ahlfors-
Schwarz-Pick Lemma, and to the study of the case of equality. The geometric part
of the proof of Theorem 1.2 occupies Section 4, while all the technical part involving
matrix computations is postponed to Section 5. The proof of Theorem 1.4 occupies
Section 6. Finally, in Section 7 we prove Proposition 1.5, and discuss some future
directions aiming to prove deformability to holomorphic representations.

1.2. Acknowledgements. I would like to thank Beatrice Pozzetti, Vincent Koziarz
and Julien Maubon for some fruitful exchanges by email as well as Oskar Hamlet
for explaining his results to me.

2. Definitions and generalities

Let pX,ωXq be an n-dimensional compact Kähler manifold, Γ “ π1pX, x0q its
fundamental group and G a connected semisimple Lie group of non-compact Her-
mitian type. Denote by K a maximal compact subgroup of G and by pY, ωY q the
associated symmetric space, together with the standard Kähler form.

Definition 2.1. The Toledo invariant of ρ is defined as

(5) τpρq “
1

n!

ż

X

f˚ωY ^ ωn´1
X ,

where f : X̃ Ñ Y is any ρ-equivariant continuous map from the universal cover X̃
of X to Y .

Such maps always exist (and can indeed be taken smooth), since Y is con-
tractible. For the same reason, any two of them are homotopic, and this implies
that the Toledo invariant is independent of the chosen f .

Lemma 2.2. τ defined as in (5) invariant under deformation of the representation
ρ and under conjugation.

Proof. The proof of this Lemma is classical. If ρ̃ “ Adgρ, for some g P G, and

if f is ρ-equivariant, then f̃ “ g ¨ f is ρ̃ equivariant, and f̃˚ωY “ f˚ωY by left
invariance of ωY . To prove invariance under deformation, remark that the only
term depending on ρ in the definition of τpρq is f˚ωY . Suppose now that Y is
irreducible. Then, there is an integer cY such that:

(6) ωY “
4π

cY
c1pKY̌ q,

where KY̌ is the restriction to Y of the canonical bundle of the compact dual Y̌ of
Y (for the explicit values of cY , see the table in [KM10], which is taken from [Hel78]
and [Liu06]). In particular, f˚c1pKY̌ q is an integral cohomology 2-class. Since this
varies continuously with ρ, it must actually be constant on connected components
of HompΓ, Gq. As a consequence, the cup product with the fixed 2n´2 cohomology
class rωn´1

X s must be constant, as well. The general case follows from additivity of
τ with respect to the decomposition of Y into irreducible factors. �

The immediate consequence of this lemma is that τ is constant on every con-
nected component of the quotient space HompΓ, Gq{G, where G acts on HompΓ, Gq
by conjugation. In order to work on a separated space, we will actually consider
the GIT quotient

M “ HompΓ, Gq{{G – HompΓ, Gqss{G,

which goes under the name of “G-character variety” or “Betti moduli space”. Its
points are in bijection with the orbits of semisimple representations ρ (i.e. repre-
sentations such that the Zariski closure of ρpΓq is a reductive subgroup of G).
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Definition 2.3. The energy of a representation ρ : Γ Ñ G is defined as

(7) Epρq “ inf

"

1

2

ż

X

›

›df
›

›

2ωn
X

n!

ˇ

ˇ

ˇ
f is smooth and ρ-equivariant

*

.

Here, df is seen as a section of the bundle T ˚X̃ b f˚TY , endowed with the metric
induced by the Riemannian metrics on X and Y . Since G acts by isometries, the
norm of df actually descends to a function on X .

Recall that a map f realizing the minimum in (7) is called harmonic. By Cor-
lette’s theorem [Cor88, JY91], such a map exists if and only if ρ is semisimple.
Given a harmonic ρ-equivariant map f and a faithful linear representation of G,
one can interpret f as a metric on the flat complex bundle corresponding to ρ. In
that way, to a given semi-simple representation ρ, one can associate a Higgs bundle
pE ,Φq as in [Sim92]. This correspondence is well defined and, under a suitable
notion of stability and up to some isomorphisms, bijective. Under this mapping,
Φ is essentially the projection of df to the holomorphic tangent bundle T 1,0X̃. In
particular, one finds:

(8) Epρq “
›

›Φ
›

›

2

L2
.

Lemma 2.4. Let ρ : Γ Ñ G be a semisimple representation to a simple Lie group of
non-compact Hermitian type G. Denote by Z the generator of the center of the Lie
algebra k of K having eigenvalues ˘i, so that J “ adpZq gives the complex structure
on Y . Let x¨, ¨y be the G-invariant metric on the Lie algebra g of G inducing the
chosen metric on Y and extend it to a Hermitian metric on gC, still denoted by
x¨, ¨y. Then:

(9) τpρq “
1

n

ż

X

@

Φ, rΦ, iZs
Dωn

X

n!
.

Proof. Since ρ is semisimple, we can, and will, fix a harmonic ρ-equivariant map f .
First observe that ˚ωX “ 1

pn´1q!ω
n´1
X , hence

τpρq “
1

n!

ż

X

f˚ωY ^ ωn´1
X “

1

n

ż

X

xf˚ωY , ωXy
ωn
X

n!
“

1

n

ÿ

j

ż

X

ωN

` Bf

Bxj

,
Bf

Byj

˘ωn
X

n!
,

where, abusing notation, we are denoting by B
Bxj

, B
Byj

a local orthonormal frame

on X compatible with the complex structure J , i.e. Jp B
Bxj

q “ B
Byj

. Denote by βY

the g-valued 1-form on Y giving the usual inclusion of vector bundles TY Ă Y ˆ g,
that is a right inverse to the projection Y ˆ g Q py, ξq ÞÑ B

Bt

`

expptξq ¨ y
˘ˇ

ˇ

t“0
. Then:

τpρq “
1

n

ÿ

j

ż

X

A

“

Z, βY p
Bf

Bxj

q
‰

, βY p
Bf

Byj
q
Eωn

X

n!

“
1

n

ÿ

j

ż

X

A

“

Z,ΦpBjq ` Φ˚pB̄jq
‰

, i
`

ΦpBjq ´ Φ˚pB̄jq
˘

E

,

where we have used that f˚βY “ Φ`Φ˚ and denoted by Bj “ 1
2

B
Bxj

´ i
2

B
Byj

. Now Z

is skew-adjoint; extending x¨, ¨y to a Hermitian form, and since Φ˚pB̄jq is the adjoint
of ΦpBq, we have

@

rZ,ΦpBqs, iΦ˚pB̄q
D

“
@

ΦpBq, r´Z, iΦ˚pB̄qs
D

“
@

r´iΦpBq, Zs,Φ˚pB̄q
D

“
@

rΦpBq, Zs, iΦ˚pB̄q
D

,

hence this vanishes. Furthermore,
@

rZ,Φ˚pB̄qs,´iΦ˚pB̄q
D

“
@

iΦpBq, rΦpBq,´Zs
D

“
@

r´iZ,ΦpBqs,ΦpBq
D

“
@

rZ,ΦpBqs, iΦpBq
D

.
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We thus obtain the wished result:

τpρq “
2

m

ÿ

j

ż

X

@

rZ,ΦpBjqs, iΦpBjq
Dωn

X

n!
“

1

n

ż

X

@

rZ,Φs, iΦ
Dωn

X

n!
.

�

Given any ρ, one can define its semi-simplification ρss as any element in the
unique closed orbit contained in the closure of the orbit of ρ. Recall the following:

Lemma 2.5 ([Spi14], Lemma 3.4). Let ρ : Γ Ñ G be a representation. Then
Epρq “ Epρssq.

We give one last definition:

Definition 2.6. A semisimple representation ρ : Γ Ñ Gwill be called ˘-holomorphic
if one (hence, any) harmonic ρ-equivariant map f is (anti)-holomorphic.

We are ready to state the result linking the different definitions given so far:

Proposition 2.7. For every representation ρ : Γ Ñ G, we have Epρq ě n|τpρq|.
Furthermore, ρ is ˘-holomorphic if and only if it is semisimple and equality holds.

Proof. Since Epρq “ Epρssq and τpρq “ τpρssq (as ρ may be deformed to ρss by
definition), and since ˘-holomorphic representations are semisimple by definition,
we will assume that ρ is semisimple. Then, using the Higgs bundles formalism in
equation (8) and Lemma 2.4, we have

Epρq “

ż

X

›

›Φ
›

›

2ωn
X

n!
, τpρq “

1

n

ż

X

´

›

›Φ`
›

›

2
´

›

›Φ´
›

›

2
¯ωn

X

n!
,

where Φ “ Φ` ` Φ´ is the decomposition into ˘i-eigenspaces of Z. Since this
decomposition is orthogonal,

Epρq “

ż

X

´

›

›Φ`
›

›

2
`

›

›Φ´
›

›

2
¯ωn

X

n!
,

and the the conclusion follows. �

Remark 2.8. One can always assume that τpρq ě 0. Indeed, the representations
with negative τ are obtained by exchanging the complex structure on Y (explicitely,
for matrix groups, by ρ ÞÑ pρtq´1). Accordingly, one would simply speak about
“holomorphic ρ” instead of “˘-holomorphic ρ.

3. Royden’s Ahlfors-Schwarz Lemma

The main technical instrument in our proof is the following theorem by Royden:

Theorem 3.1 ([Roy80], Theorem 1). Let pX̃, gq, pY, hq be Kähler manifolds, such

that X̃ is complete and with Ricci curvature bounded from below by k ď 0 and Y

has holomorphic sectional curvature bounded from above by K ă 0. Then, for every
holomorphic map f : X̃ Ñ Y of (holomorphic) rank ď ν, we have

(10) epfq “
›

›df
›

›

2
ď

2ν

ν ` 1

k

K
,

where epfq “ }df}2 is the energy density of f , given by the norm of df as in
Definition 2.3.

This theorem easily allows to prove the Milnor-Wood inequality for ˘-holomorphic
representations (see Section 4). We will need, however, a closer inspection of the
equality case. To do so, we adopt notations similar to Royden’s: Let B

Bzα (resp.
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B
Bwj ) be local normal coordinates on X̃ at a point x̃0 (resp. Y at fpx̃0q), chosen in
such a way that

Bf j

Bzα
“ λαδ

j
α

B

Bwj
, λα ‰ 0 ðñ α ď ν.

With these notations, we have:

Lemma 3.2. Suppose that f : X̃ Ñ Y is as in Royden’s Theorem 3.1 and that
equality holds generically in (10). Then in fact it holds everywhere, and the rank
of df is constantly ν. Then, using the coordinates chosen above, we have

(1) λ1 “ ¨ ¨ ¨ “ λν , that is,
›

›

Bf
Bz1

›

›

2
“ ¨ ¨ ¨ “

›

›

Bf
Bzν

›

›

2
; in particular, if ν “ n, then

f is a local isometry, up to a constant, hence, totally geodesic;
(2) For all α “ 1, . . . , ν, Bf

Bzα belongs to the subspace of T 1,0Y where the maxi-
mum K of the holomorphic sectional curvature is realized.

Proof. First of all, remark that epfq “ }df}2 is a continuous function, thus if
equality holds generically in Theorem 3.1 it holds everywhere. In particular, the
rank cannot jump down, because of Royden’s inequality.

We now need to retrace Royden’s proof to impose equality at all steps. The
relevant ones for us are the following: For brevity of notations, denote by Sα,β̄,γ,δ̄

the quantity S
`

Bf
Bzα ,

Bf
Bzβ ,

Bf
Bzγ ,

Bf
Bzδ

˘

, where S is the Riemann curvature tensor of Y .
Then:

(i) ∆ log epfq ě 2k ´ 2
epfq

ř

α,γ Sα,ᾱ,γ,γ̄ ě 2k ´ epfqν`1
ν

K ([Roy80], Proposition

4);
(ii)

ř

α Sα,ᾱ,α,ᾱ`2
ř

α‰γ Sα,ᾱ,γ,γ̄ ď K ¨epfq2 ([Roy80], proof of the main Lemma);

(iii) Sα,ᾱ,α,ᾱ ď K} Bf
Bzα }4 (hypothesis on the curvature).

Remark also that the last inequality in (i) is obtained by summing (ii) to

(iii’)
ř

α Sα,ᾱ,α,ᾱ ď K
ν
epfq2,

which is just the sum over all α of (iii) plus an application of the Cauchy-Schwarz
inequality (recalling that K ď 0).

Now we impose epfq “ 2 ν
ν`1

k
K
. Then the first and last terms in (i) vanish; in

particular, equality must hold everywhere. The conclusion is now straightforward,
since by Cauchy-Schwarz p Bf

Bz1 , . . . ,
Bf

Bzν q must be a constant multiple of p1, . . . , 1q.
�

4. Proof of Theorem 1.2 and Corollary 1.3

We will split the proof into several intermediate results.

Proposition 4.1. Let X be a compact Kähler manifold of dimension n ą 1,
Γ “ π1pXq its fundamental group, ρ : Γ Ñ G a representation to a Lie group of
non-compact Hermitian type. Suppose that ρ is deformable to a ˘-holomorphic
representation. Then it satisfies a Milnor-Wood inequality:

(11) |τpρq| ď τmax “
´2k

n ` 1
rkpGqVolpXq.

Proof. Since the Toledo invariant does not change under deformation, we can as-
sume that ρ is ˘-holomorphic itself (or, indeed, holomorphic, see Remark 2.8).
Then, just combine Royden’s inequality with Lemma 2.4, to obtain:

ˇ

ˇτpρq
ˇ

ˇ ď
1

n
Epρq “

1

m

ż

X

epfq
ωn
X

n!
ď

´2k

n
rkpGq

ν

ν ` 1
VolpXq.

Since ν ď n implies ν
ν`1

ď n
n`1

, the result is proved. �
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From now on, we shall focus on the study of the case of equality, that is, maximal
representations. Since every semisimple group G splits as product of almost simple
pieces, which are all Hermitian if and only if G is, and since the Toledo invariant
is additive under such a splitting, we shall suppose from now on that G is simple.
Also, thanks to Remark 2.8, we will simply speak about holomorphic maps or
representations. Thanks to our discussion on the case of equality in Royden’s
Theorem, we immediately have:

Lemma 4.2. Let ρ : Γ Ñ G be a maximal holomorphic representation of a Kähler
group to a non-compact Lie group of Hermitian type G. Then the holomorphic
ρ-equivariant map f : X̃ Ñ Y gives an isometric and biholomorphic embedding (up

to rescaling the metric on X̃) with its image.

Proof. From the proof of Proposition 4.1 it is clear that if equality holds then ν “ n,
that is, f is a generic immersion. As in the proof of Lemma 3.2 one passes easily
from generic immersion to a genuine immersion. Applying this same lemma, then,
f is proven to be a local isometry with its image (possibly after rescaling the metric

on X̃). But then, Y is uniquely geodesic, thus a local isometry must be injective,
as well. An injective holomorphic immersion is a biholomorphism with the image,
concluding the proof. �

We need to fix some notation for the following. Let ρ : Γ Ñ SUpp, qq be a
semisimple representation and pE ,Φq be the Higgs bundles associated to this rep-
resentation and some harmonic metric f . Split Φ “ Φ` ` Φ´, according to the
decomposition into ˘i-eigenspaces of the almost complex structure Z on Yp,q “
SUpp, qq{SpUppq ˆ Upqqq. Then there is a holomorphic splitting E “ V ‘ W , such
that Φ` maps W to V bΩ1

X and Φ´ maps V to W bΩ1
X . Write β : W bT 1,0X Ñ V

for the composition of Φ` with the contraction of holomorphic vector fields with
holomorphic 1-forms (and γ : V b T 1,0X Ñ W for the analogous construction with
Φ´). We have the following Lie algebra result:

Lemma 4.3. Let G be a classical Lie group of non-compact Hermitian type and
Y its associated symmetric space, which we normalize so as to have holomorphic
sectional curvature pinched between ´1 and ´ 1

rkpGq . Suppose that at a point y P Y

there is a complex n-subspace of the holomorphic tangent bundle TyY , with n ě
2, entirely contained in the locus L of maximal holomorphic sectional curvature
´ 1

rkpGq . Then necessarily G “ SUpp, qq, with p ě nq (or q ě np). If f : X̃ Ñ Yp,q

is an immersion such that dfpT 1,0X̃q Ď L, then β is injective.

The proof of this lemma is a rather long matrix computation and will be post-
poned until the next section. As an immediate consequence of Lemmas 4.2 and 4.3,
if ρ is maximal and (deformable to) holomorphic, then G is necessarily SUpp, qq, so
from now on we will stick to this situation, and assume p ě q.

We now state the main point that allows us to extend our results from a holo-
morphic representation ρ to all the other representations in the same connected
component of M. This is the crucial point where the hypothesis n ą 1 is used.

Lemma 4.4. Suppose that Γ “ π1pX, xq is the fundamental group of a compact
Kähler manifold of dimension n ą 1. Suppose that ρ : Γ Ñ SUpp, qq is a maximal ˘-
holomorphic representation. Then every semisimple representation ρ1 in the same
connected component as ρ is ˘-holomorphic, as well.

Proof. This follows from a crucial remark in [KM10], which is as follows:

(12) If β : W b T 1,0X Ñ V is injective, n ě 2 ùñ f is holomorphic, i.e. γ “ 0.
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They prove this remark by taking, at a given point x P X , two linearly independent
tangent vectors ξ, η P T 1,0

x X , and exploiting the Higgs bundles relation Φ ^ Φ “ 0,
that is, for every v P Vx, βpξqγpηqv “ βpηqγpξqv. Then by injectivity of β one may
conclude that γ vanishes at x. This fact, together with Lemma 4.3, gives in fact
an equivalence of the two notions of holomorphicity of f and injectiveness of β (for
maximal ρ).

Now remark that the condition of β being injective is open in the set of semisim-
ple representations, since the maps associating a Higgs bundle pE ,Φq to a semisim-
ple representation is continuous and β not being injective is a minor vanishing
condition on Φ. On the other hand, by Proposition 2.7, under the hypothesis
τpρq “ τmax “ q

n
VolpXq, a representation ρ is holomorphic ðñ Epρq “ τmax.

Since the energy is a proper map onM (this is a standard application of Uhlenbeck’s
compactness criterion; see, for example, [DDW98], Proposition 2.1), the conjugacy
classes of holomorphic representations form a compact subset thereof, hence the
preimage in HompΓ, SUpp, qqqss is a closed subset. Being open, as well, it must
consist of connected components. �

We now want to exclude non-semisimple representations. For n ě 2, this can
be proved explicitly as follows: Let ρ be a non-semisimple representation with
Epρq “ |τpρq| (so that, in particular, its semisimplification ρss is holomorphic,
and inequality (11) holds). Suppose that ρ is maximal, and denote by f a ρss-
equivariant holomorphic map and by y8 a point at infinity in Yp,q fixed by ρpΓq.
One can see that if x̃0 is a base point, denoting by o “ fpx̃0q and letting χ P g

represent a vector pointing from o to y8, then rdfx̃0
pξq, χs “ 0 for every ξ P Tx̃0

X̃ .
But it is easy to see from the proof of Lemma 4.3 that the special form dfx̃0

pξq
must have implies that no χ can centralize both dfx̃0

pξq and dfx̃0
pηq if ξ and η are

any two linearly independent vectors in Tx̃0
X̃ . However, there is a shorter proof

that gives a stronger result (and that works in the n “ 1 case, as well). This is
essentially due to Burger–Iozzi [BI07]; I thank Beatrice Pozzetti for pointing this
out to me.

Lemma 4.5. Let X be any Kähler manifold, ρ : Γ “ π1pXq Ñ G a representation
to a Lie group of Hermitian type. Suppose that the Milnor–Wood inequality (11)

holds for ρ (for example, that X̃ “ Bn or that ρ is deformable to a ˘-holomorphic

representation). Then, if ρ is maximal, the Zariski closure G0 “ ρpΓq is a Lie
group of Hermitian symmetric type. In particular, ρ is semisimple.

Proof. Let K0 “ G0 X K be a maximal compact subgroup of G0, and write Y0 “

G0{K0 “ Y
p1q
0 ˆ ¨ ¨ ¨ ˆ Y

pkq
0 for the decomposition into irreducible pieces. Then

the Milnor–Wood inequality also holds for the projection of ρ to any of the groups

IsompY
piq
0 q, and ρ is maximal if and only if each of these projections is. We may

thus assume that Y0 is irreducible itself.
As in [BI07], §5, one has:

H2
cbpG0,Rq – H2

c pG0,Rq – H2pA‚pY0qG0q,

where the first is the isomorphism between the bounded cohomology of G0 and
its continuous cohomology, and the last is the van Est isomorphism relating these
spaces to the de Rham cohomology ofG0-invariant differential forms. Then, H2

cbpG0,Rq
is either isomorphic to R if G0 is of Hermitian type, or 0 otherwise. Because of
this, denoting by i : Y0 ãÑ Y , we have that i˚ωY vanishes in cohomology if G0

is not Hermitian, i.e. i˚ωY “ dη for some G0-invariant 1-form η on Y0. Letting
f0 : X̃ Ñ Y0 be any ρ-equivariant smooth map, we have

τpρq “
1

n!

ż

X

f˚
0 i

˚ωY ^ ωn´1
X “

1

n!

ż

X

df˚
0 η ^ ωn´1

X “ 0,
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using dωX “ 0 and Stokes theorem. �

Finally, let us explain how Corollary 1.3 follows from Theorem 1.2 and [Ham12].

Proof of Corollary 1.3. Under the hypothesis that ρ extends to SUpn, 1q, the equi-
variant harmonic map is just the totally geodesic map on the associated symmetric
spaces f : Bn Ñ Y . Hamlet [Ham12] proves that every totally geodesic tight map is
(anti)-holomorphic. Thus we need only to see that a maximal representation fac-
toring through SUpn, 1q necessarily induces a tight map. The argument for doing
that is standard and is taken essentially from [BIW10].

Recall that by the Van Est isomorphism, the bounded Kähler class κb
Bn essentially

coincides with the Kähler form ωX (and similarly on Y ). Since H2
cbpSUpn, 1q,Rq –

R, there is a λ such that f˚κb
Y “ λκb

Bn . One sees easily as in [BIW10] that f is
tight if, and only if, λ “ rkpGq. But then the Toledo invariant is

τpρq “
1

n!

ż

X

λωn
X “ λVolpXq.

Using Burger–Iozzi Theorem (2), it follows that any ρ factoring through SUpn, 1q
is maximal if and only if f is tight. �

5. Proof of Lemma 4.3

In order to prove Lemma 4.3, we need to recall briefly the structure of the simple
Lie groups of Hermitian type and the definition of Hermitian sectional curvature.

Definition 5.1. Let Y be a Kähler manifold, and, in a local holomorphic frame
t B

Bzi u, write gij̄ for the metric tensor and Rij̄kℓ̄ for the Riemann curvature tensor.

The Hermitian sectional curvature along a holomorphic tangent vector ξ “ ξj B
Bzj P

T 1,0Y is defined by

KHpξ, ξq “
Rij̄kℓ̄ξ

iξ̄jξk ξ̄ℓ

`

gij̄ξ
iξ̄j

˘2

In the case where Y is a Hermitian symmetric space associated to a matrix Lie
group, we can endow it with the invariant metric

gpA,Bq “ trace
`

AB˚
˘

(beware that in general, this differs from both the one induced by the Killing form
and the one having minimal holomorphic sectional curvature ´1 by some constants,
but we will stick to this definition for the ease of computations). With this form,
the holomorphic sectional curvature of a classical Hermitian symmetric space is
given by

KHpM,Mq “ ´
trace

`

rM,M˚s2
˘

`

tracepMM˚q
˘2

, M P p1,0 Ă gC.

We will now distinguish between the four different classes of the classical Lie group
of Hermitian type to identify the locus maximizing the holomorphic sectional cur-
vature (the bounds on this quantity are classic, but for completeness they will be
proved in Lemma 5.2, as well).

‚ G “ SUpp, qq: In this case, p1,0 consists of matrices of the form M “
ˆ

0 A

0 0

˙

, with A a complex valued p ˆ q matrix. In particular, }M}2 “

tracepM˚Mq “ tracepA˚Aq and trace
`

rM,M˚s2
˘

“ 2trace
`

pA˚Aq2
˘

. Thus
the holomorphic sectional curvature along M satisfies:

´2 ď KHpM,M˚q ď ´
2

minpp, qq
.
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‚ G “ Spp2n,Rq: A matrixM is in p1,0 if it is of the form

ˆ

A iA

iA ´A

˙

, with A

an nˆn complex matrix such that At “ A. In particular, trace
`

rM,M˚s2
˘

“

32trace
`

pA˚Aq2
˘

and tracepM˚Mq “ 4tracepA˚Aq. This implies

´2 ď KHpM,M˚q ď ´
2

n
.

‚ G “ SOpp, 2q: Here, p1,0 is made of matrices M “

ˆ

0 A

At 0

˙

where A is a

p ˆ 2 matrix whose two vector columns are of the form v and iv for some
vector v P Cp. Then we have trace

`

rM,M˚s2
˘

“ 16}v}4 ´ 8|xv, v̄y|2 and

tracepM˚Mq “ 4}v}2. Thus

´1 ď KHpM,M˚q ď ´
1

2
.

‚ G “ SO˚p2nq: In this case p1,0 contains the matrices M of the form
ˆ

iA ´A

´A ´iA

˙

, with A a complex n ˆ n matrix such that At “ ´A. Simi-

lar computations as in the case of Spp2n,Rq show that trace
`

rM,M˚s2
˘

“

32trace
`

pA˚Aq2
˘

and that tracepM˚Mq “ 4tracepA˚Aq. However, in this
case A is skew-symmetric, and one has the stricter inequalities:

´1 ď KHpM,M˚q ď ´
1

tn{2u
.

With these preliminaries, Lemma 4.3 is deduced from the following:

Lemma 5.2. (1) Let A be a non-zero pˆ q complex-valued matrix with p ě q.
Then

(13)
1

q
ď

trace
`

pA˚Aq2
˘

`

tracepA˚Aq
˘2

ď 1.

The upper bound is reached by all matrices of rank 1, the lower one by those
satisfying A˚A “ λIq, for some λ ą 0. The maximal dimension of a linear
space L Ă MpˆqpCq such that every A P L realizes this minimum is

X

p
q

\

.

More precisely, if A1, . . . , Ak are linearly independent matrices in such a
L, then necessarily pA1, . . . , Akq gives an immersion Ckq ãÑ Cp.

(2) Let v P Cp be a vector with p ě 2. Then

0 ď }v}4 ´
ˇ

ˇ

@

v, v̄
Dˇ

ˇ

2
ď }v}4.

The upper bound is reached by vectors v “ pz1, . . . , zpq such that
ř

z2j “
0, and the lower bound by those such that v P Up1q ¨ Rn. The maximal
dimension of a C-linear subspace L Ă Cp such that every v P L realizes the
minimum is 1.

(3) Let A be a non-zero n ˆ n complex-valued skew-symmetric matrix (that is,
At “ ´A). Then

(14)
1

2tn
2

u
ď

trace
`

pA˚Aq2
˘

`

tracepA˚Aq
˘2

ď
1

2
.

The upper bound is reached by rank 2 matrices; if n is even, the lower bound
is realized by the matrices satisfying A˚A “ λIn. If n is odd by those such
that A˚A has a (strictly) positive eigenvalue of multiplicity n ´ 1. Finally,
the maximal dimension of a linear space L such that every A P L realizes
this minimum is 1 for n ě 4.
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Proof. 1. The inequalities are classical: A˚A being Hermitian and positive definite,
it has positive eigenvalues λ1, . . . , λq. We are then stating that

1

q

´

ÿ

j

λj

¯2

ď
ÿ

j

λ2
j ď

´

ÿ

j

λj

¯2

,

which is clear. The equality on the right hand side holds if there is only one non-
zero λ1, and the one on the left if all the λj “ λ are equal, hence A˚A “ λIq. Let
m “ t p

q
u. Define A1, . . . , Am as follows:

(15) A1 “

¨

˚

˚

˚

˝

Iq
0q
0q
...

˛

‹

‹

‹

‚

, A2 “

¨

˚

˚

˚

˝

0q
Iq
0q
...

˛

‹

‹

‹

‚

, A3 “

¨

˚

˚

˚

˝

0q
0q
Iq
...

˛

‹

‹

‹

‚

, . . .

where 0q is the zero qˆ q matrix (and, if p ą mq, each matrix Ai is completed with
zeros, as well). Then it is clear that for every t0, . . . , tm´1 we have

pt1A1 ` ¨ ¨ ¨ ` tmAmq˚pt1A1 ` ¨ ¨ ¨ ` tmAmq “
ÿ

j

|tj |2Iq .

We need to prove that there can be no pm ` 1q-dimensional complex linear space
with this property. To that aim, we prove that any k-tuple of linearly independent
matrices A1, . . . , Ak such that every non-zero linear combination

ř

j tjAj realizes

the minimum in (13) can be modified to another such k-tuple so that, moreover,
every pair of column vector of any of these matrices are mutually orthogonal.
This will clearly imply that kq ď p and also the claim about the injectivity of
pA1, . . . , Akq. For brevity’s sake, we will only consider two matrices A, B such that
ptA ` sBq˚ptA ` sBq “ λt,sIq and modify them to such an “orthonormal pair”,
leaving the straightforward adaptations for the general case to the reader. First
of all, rescale them to get A˚A “ B˚B “ Iq, so that, letting v1, . . . , vq be the
column vectors of A, w1, . . . , wq those of B, each set consists of q orthonormal
vectors. Write wj “

řq
i“1 aijvi ` w1, with w1 orthogonal to each of the vi’s. By

hypothesis, there exist positive reals λ, µ such that pA ` Bq˚pA ` Bq “ λIq and
pA ` iBq˚pA ` iBq “ µIq. Writing down these conditions explicitly, one finds

(16) aij “
´λ ´ 2

2
` i ¨

2 ´ µ

2

¯

δij 1 ď i, j ď q.

Thus, either B´ 1
2

`

λ´2`ip2´µq
˘

A has the required property, or it is zero, forcing
A and B to be linearly dependent in the first place.

2. One can repeat computations similar to the ones above; however, one can
easily be more precise: The locus realizing the minimum }v}4 “ |xv, v̄y|2 consist of
the vectors v such that v “ eiθ v̄. All real vectors v P Rp are in this locus, and in
fact if v P Cp is in there, then e´iθ{2v is real. Thus L Ă Up1q ¨ Rp has at most
dimension 1.

3. In this case, we make use of the Youla decomposition of complex skew-sym-
metric matrices (cfr. [You61]) to infer that, up to multiplying by a unitary matrix
U on the left and by U t on the right, any skew-symmetric matrix A can be reduced
to a block diagonal matrix with only 2ˆ 2 skew-symmetric blocks with real entries
(plus one zero if n is odd). This forces the non-zero eigenvalues of A˚A to appear
in pairs. Writing λ1, λ1, . . . , λk, λk for the non-zero eigenvalues of A˚A, so that
2k ď n, (14) follows from the obvious

1

2k

´

ÿ

j

2λj

¯2

ď 2
ÿ

j

λ2
j ď

1

2

´

ÿ

j

2λj

¯2

.
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Equalities hold if there is only one pair k “ 1 or the maximal possible number
k “ tn

2
u. When n is even, the latter reduces to A˚A “ λIn, so the assertion about

the maximal dimension of L follows from the first case with p “ q “ n. When n is
odd, however, we can only infer that A˚A is unitary conjugate to diagpλ, . . . , λ, 0q,
so some other argument is needed.

Suppose first that n ě 9. By contradiction, suppose that A, B are n ˆ n

skew-symmetric matrices with n ě 9 odd, such that for every t, s P C the matrix
ptA` sBq˚ptA` sBq has one positive eigenvalue of multiplicity n´ 1 (which again
we take to be 1 for pt, sq “ p1, 0q or p0, 1q). In particular, for every t, s there is
a subspace Vs,t Ă Cn of codimension 1 where ptA ` sBq˚ptA ` sBq|Vs,t

“ λIVs,t
.

Let W be the intersection V1,0 X V0,1 X V1,1 X V1,i, which has at most codimension
4. Extend an orthonormal basis of W to one of Cn, and write v1, . . . , vn (resp.
w1, . . . , wn) for the column vectors of A (resp. B). By assumption, v1, . . . , vn´4 are
orthonormal, and the same is true for w1, . . . , wn´4. We can repeat the steps as in
(16) to modify A and B; since we cannot get to v1, . . . , vn´4, w1, . . . , wn´4 forming
a p2n ´ 8q-tuple of orthogonal vectors, this forces w1 “ eiθv1, . . . , wn´4 “ eiθvn´4.
But then eiθA´B has at most rank 4, hence so does peiθA´Bq˚peiθA ´Bq; since
this can only have rank n´ 1 or 0, it must be 0, hence eiθA “ B, and we are done.

The lower dimensional cases must be treated separately. Suppose for example
that n “ 5. The locus of maximal holomorphic sectional curvature is given by

V “
!

A P SS5pCq – C10 : F pAq :“
`

tracepA˚Aq
˘2

´ 4trace
`

pA˚Aq2
˘

“ 0
)

.

The isomorphism between the 5ˆ5 skew symmetric complex matrices and C10 can
be given, for example, by the following ordering:

(17) SS5pCq Q A “

¨

˚

˚

˚

˚

˝

0 a1 a2 a3 a4
´a1 0 a5 a6 a7
´a2 ´a5 0 a8 a9
´a3 ´a6 ´a8 0 a10
´a4 ´a7 ´a9 ´a10 0

˛

‹

‹

‹

‹

‚

.

Remark that U P SUp5q acts on A P V by A ÞÑ U tAU ; this action is linear on V , so
it descends to an action on the set of complex lines PV . By Youla’s decomposition,
this action is transitive. To prove that no complex plane is contained in V , we can
thus choose work locally around any preferred point. Our choice will be A0 whose
parametrization as in (17) has a1 “ a8 “ 1 and 0 elsewhere. Since V is defined by
F “ 0, any direction of a plane L Ă V through A0 must make the Levi form vanish,
i.e. pBB̄F qpξq “ 0 for all ξ P TA0

L. Let us compute the quadratic form Q “ BB̄F .
Since tracepA˚Aq “ 2

ř

j |aj |2,

B

Bak

B

Bāj

`

tracepA˚Aq
˘2

“

#

8ākaj if j ‰ k

8|aj|2 ` 4tracepA˚Aq if j “ k,

B

Bak

B

Bāj

`

tracepA˚AA˚Aq
˘

“ ´16trace
´ BA

Bāj

BA

Bak
A˚A

¯

,

where in the last equality we have used that all the matrices involved are skew-
symmetric. Specializing at A “ A0, the first line gives 8 for j ‰ k P t1, 8u, and 0 for
other j ‰ k, 24 for j “ k P t1, 8u and 16 otherwise. The second line give 0 whenever
j ‰ k, 16 for j “ k P t4, 7, 9, 10u and 32 otherwise: Indeed, A˚

0A0 “ diagp1, 1, 1, 1, 0q
and BAajBAak has no non-zero terms on the diagonal unless j “ k. In this case, it
has exactly two ´1 on the diagonal, of which one is in position p5, 5q if and only if
j “ k P t4, 7, 9, 10u.

The quadratic form Q is the difference of the two quadratic forms above, and a
straightforward computation proves that it is negative semi-definite with 5-dimensional
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kernel generated by xe4, e7, e9, e10, e1 ` e8y, where ei corresponds to the i-th ele-
ment of the canonical basis of C10. The direction e1 ` e8 is the “trivial one”, along
multiples of A0. It is thus enough to prove that there is no other line passing by A0

on which F vanishes. This follows from the straightforward computation giving:
For all a, b, c, d P C,

F pA0 ` ae4 ` be7 ` ce9 ` de10q “ ´4
`

|a|2 ` |b|2 ` |c|2 ` |d|2
˘

.

The case n “ 7 is essentially identical: in that case, V is defined by the two
equations

V “
!

A P SS7pCq – C21 : F pAq “
`

tracepA˚Aq
˘2

´ 6trace
`

pA˚Aq2
˘

“ 0,

`

tracepA˚Aq
˘3

´ 36trace
`

pA˚Aq3
˘

“ 0
)

,

but the same proof gives that no complex plane is contained in the bigger subspace
defined by F “ 0 only: Q is still negative semi-definite, with 7-dimensional ker-
nel composed by 1 “trivial” direction as above, plus 6 more along which F ă 0.
The same proof should also work in higher dimension, but we preferred to give a
different, shorter one to avoid introducing heavy notations. �

6. Proof of Theorem 1.4

The fact that for the stated G’s every minimum of the Morse function (in a con-
nected component) is holomorphic (or Fuchsian for G “ Spp2n,Rq) is due to Brad-
low, Garćıa-Prada and Gothen (see [BGPG06] and the references therein, where
also the numbers of maximal connected components are computed). We now dis-
cuss the classification of maximal holomorphic representations ρ : Γg Ñ G. Let

f : Σ̃ – H2
R

Ñ Y “ G{K be a ρ-equivariant holomorphic map. Fix a base point

x̃0 P Σ̃; up to conjugation of ρ, we can suppose that fpx̃0q “ eK. Thanks to Lemma
3.2, f is totally geodesic, so there exists a representation ρtot : SL2pRq Ñ G such
that fpx̃q “ fpgx̃0q “ ρtotpgq ¨ K. It is then easy to see that ρ : Γ Ñ G must be of
the form ρpγq “ χpγqρtotpγq, where χ : Γg Ñ ZGpρtotpSL2pRqqq Ă K takes values in
the centralizer of the image of ρtot, so that

@x̃ “ gx̃0 P Σ̃, ρpγqfpx̃q “ χpγqρtotpγgqK “ ρtotpγgq ¨ K “ fpγx̃q.

To conclude the proof, we will do the following in each of the possible cases for G:

(1) Describe, thanks to Lemma 5.2, the possible maps f˚ : Tx̃0
Σ̃ Ñ TeKY ,

corresponding to some Lie algebra homomorphism f˚ : sl2pRq Ñ g.
(2) Choose a preferred element between these possibilities, and compute the

corresponding Lie group homomorphism, as in Table 1.
(3) Describe the centralizer of the image of these homomorphism, in order to

complete table 2.
(4) To rule out the remaining ambiguities, we have to check that the maximal

compact subgroup K acts transitively on the possible choices compatible
with 1.

‚ G “ SUpp, qq, p ě q: In this case, the holomorphic tangent bundle p1,0 must

be sent to something of the form

ˆ

0 A

0 0

˙

, where A is a p ˆ q matrix such that

A˚A “ λIq. In this case, it is clear that K “ SpUppq ˆ Upqqq acts transitively

on the possible choices by A ÞÑ PAQ˚. One preferred choice is A “

ˆ

Iq
0

˙

. In

that case, the Lie algebra morphism is clearly the one shown in Table 1, which is
induced by the linear Lie groups homomorphism SUp1, 1q Ñ SUpp, qq shown in the
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same table. A straightforward check gives that the centralizer of its image is given
by

Z “ ZGpf˚psl2pRqqq “

#

¨

˝

U

F

U

˛

‚, U P Upqq, F P Upp´qq, detpUq2 detF “ 1

+

.

When p “ q, there is no F , hence this group is isomorphic to SUpqq ¸ Z{2Z.
When p ą q, the determinant of F is uniquely determined, so Z is isomorphic
to Upqq ˆ SUpp ´ qq. Because of that, and since HompΓg,GLpq,Cqq and hence
HompΓg, Upqqq are connected, HompΓg, Zq has 22g components in the former case,
and it is connected in the latter.

‚ G “ Spp2n,Rq, n ě 3: Again by Lemma 5.2, p1,0 ÞÑ W “
!

ˆ

A iA

iA ´A

˙

)

,

where A is complex symmetric such that A˚A “ ĀA “ λIn, for some λ ą 0. As a
preferred choice, we can take A “ In. This corresponds to the Lie algebra morphism
as in Table 1, which again corresponds trivially to a linear Lie group homomorphism
SL2pRq Ñ Spp2n,Rq. The centralizer of the image is readily computed to be of the

form

" ˆ

Q

Q

˙

, Q P Opnq

*

. Hence, to see that K acts transitively on the set of

complex lines in W , and since the Lie algebra is

k “

" ˆ

B C

´C A

˙

, Bt “ ´B,Ct “ C

*

,

it is enough to consider adjunction by elements of the form exp k where k “
ˆ

0 C

´C 0

˙

. The usual formula Adexp “ ead gives

Adexp k

ˆ

I iI

iI ´I

˙

“

ˆ

expp2iBq i expp2iBq
i expp2iBq ´ expp2iBq

˙

.

When B varies across all symmetric real matrices, expp2iBq gives all the unitary
symmetric ones, that proves the transitivity. Finally, the count of the connected
components follows from

ˇ

ˇHom
`

Γg, Opnq
˘ˇ

ˇ “ 22g`1.

‚ G “ SO0pn, 2q, n ě 4: In this case Lemma 5.2 gives p1,0 ÞÑ

"

¨

˝

0n v iv

vt 0 0
ivt 0 0

˛

‚

*

,

where v P Up1q ¨ Rn. It is clear in this case that the maximal compact acts tran-
sitively on the complex lines therein, since Opnq does on the real lines in Rn. A
preferred choice is v “ e1, the first vector of the canonical base of Rn. This corre-
sponds to the Lie algebra map f˚ in Table 1. A long but easy computation using
exp ˝f˚ “ ρtot ˝ exp gives the Lie group homomorphism

ˆ

α β

β̄ ᾱ

˙

ρtotÝÝÝÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

2|β|2 ` 1 0 ¨ ¨ ¨ 0 2Repαβ̄q 2Impαβ̄q

0 1 0
... 0 0

... 0
. . . 0

...
...

0 ¨ ¨ ¨ 0 1 0 0
2Repαβq 0 ¨ ¨ ¨ 0 Repα2 ` β2q Impα2 ` β2q

´2Impαβq 0 ¨ ¨ ¨ 0 ´Impα2 ` β2q Repα2 ´ β2q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The centralizer of its image is Z “
!

diag
`

detP, P, detP, detP
˘

, P P Opn ´ 1q
)

.

Again, this implies that HompΓg, Zq has 22g`1 connected components.

‚ SO˚p2nq: Here p1,0 ÞÑ W 1 “
!

ˆ

A iA

iA ´A

˙

)

, where this time A is complex

skew-symmetric, such that A˚A “ ´ĀA “ λIn, if n is even, and has n ´ 1 equal
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eigenvalues otherwise. A preferred choice for even n is A “ J “

ˆ

0 In{2

´In{2 0

˙

,

and for odd n one adds one row and one column of zeros. The corresponding Lie
algebra morphism is the one shown in Table 1. In this case, the corresponding
Lie group homomorphism involves high degree polynomials, so we restrain from
writing it down, as it would not be very informative. The centralizer of its image is
isomorphic to the symplectic group Sppnq, and explicitly its Lie algebra is the first
factor in the following decomposition of k:

k “

#

¨

˚

˚

˝

B C D E

´C B E ´D

D ´E B C

´E D ´C B

˛

‹

‹

‚

,

Bt “ ´B,

Ct “ C,

Dt “ D,

Et “ E

+

‘

#

¨

˚

˚

˝

B C D E

C ´B ´E D

´D ´E B C

E ´D C ´B

˛

‹

‹

‚

,

Bt “ ´B,

Ct “ ´C,

Dt “ D,

Et “ ´E

+

.

As in the case of Spp2n,Rq, using the formula Adpexpq “ ead for element in the
second factors only, and applying it to J as above, a long computation proves that
the action is transitive. Furthermore, the space HompΓg, Sppnqq is connected, since
HompΓg, Sppn,Cqq is (see [Ram75], Proposition 4.2). The analysis for odd n is more
cumbersome but it follows the same ideas, so it will be omitted.

7. Other Milnor–Wood inequalities

The study of the fundamental group of a Kähler (or projective) manifold is
generally carried through under some hypothesis of negative curvature, or, from
the algebraic point of view, positivity of the canonical bundle. Indeed, at least in
the algebraic case, one can always arrange things in order to work with a general
type variety (see, for example, the introduction of [KM10]). On the other hand,
non-negativity of the curvature is very special, as our proof of the Milnor–Wood
inequality underlines: By Proposition 4.1, if RicpXq ě 0 and ρ is ˘-holomorphic,
then τpρq “ Epρq “ 0, suggesting that the Toledo invariant should be trivial for
these Kähler groups. This is indeed the case: If one assumes further that X has
non-negative holomorphic sectional curvature, then one can deform any ρ to a C-
VHS (see [Sim92]), and apply Theorem 2 in [Roy80] to the period mapping (that
is holomorphic, with values in the period domain that has negative holomorphic
sectional curvature, but is non-Kähler) to obtain τ ” 0. However, under this
additional hypothesis, much stronger results are known on X and its fundamental
group, see [DPS94]. Using a recent result by Biswas and Florentino [BF14] one can
prove that the Toledo invariant is trivial for a class of Kähler manifolds containing
that of non-negative Ricci curvature:

Theorem 7.1 ([BF14]). Suppose that X is a compact Kähler manifold and that
Γ “ π1pXq is virtually nilpotent. Let Gc be a complex Lie group, and pE ,Φq be a
Gc-Higgs bundle. Then

lim
tÑ0

pE , tΦq “ pE , 0q.

This gives a homotopy retraction of MpX,Gcq to MpX,Hq, where H is the chosen
maximal compact subgroup of Gc.

With this result at hand, we can easily prove the following:

Proposition 7.2. Let X be a compact Kähler manifold such that RicpXq ě 0, or,
more generally, such that Γ “ π1pXq is nilpotent. Then, for every Hermitian Lie
group G and any ρ : Γ Ñ G, τpρq “ 0.

Proof. The fact that compact manifolds with non-negative Ricci curvature have
virtually nilpotent fundamental groups is due to Milnor, see [Mil58]. Given G,
the moduli space of representations MpX,Gq is a closed submanifold of the moduli
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space MpX,Gcq of representation in the complexification Gc of G. Furthermore,
this subspace is preserved by the C˚-action (see, for example, [Xia00], Proposition
3.1, for a proof of the case G “ Upp, qq and dimpXq “ 1, but the result is true
in general). As a consequence, every representation in this space is deformable
(through representations taking values in G) to a unitary one, that is, one such
that τpρq “ Epρq “ 0. �

Corollary 7.3. No cocompact lattice in a Hermitian Lie group Γ ă G1 is solvable.

Proof. By a Theorem of Delzant [Del10], a (virtually) solvable Kähler group is
virtually nilpotent, so the preceding corollary applies. The inclusion Γ Ñ G1, then,
gives a representation with Toledo invariant τ “ VolpΓ\G1{K 1q, a contradiction. �

We conclude this section with some discussion on the restrictiveness of the hy-
pothesis “being deformable to a ˘-holomorphic map”. In a series of papers (see
[BGPG06] for an overview), Bradlow, Garćıa-Prada and Gothen proved that for
most simple Hermitian Lie groups G every representation of a surface group can
be deformed to a ˘-holomorphic one (this is true for G “ Upp, qq, G “ SO˚p2nq
or G “ SOpn, 2q, if n ě 4). This motivated us to introduce the condition of be-
ing deformable to a ˘-holomorphic representation, as possibly not too restrictive.
They prove this result (see, for example, [BGPG03] for Upp, qq) by considering
a minimum of the energy functional E, which exists because of properness, and
proving, thanks to a formula by Hitchin (see [Hit92], §9) and Riemann-Roch, that
simple minima must be ˘-holomorphic. Properness and Hitchin’s formula hold in
higher dimension as well, the latter being proved in [Spi14], Theorem 7.6; however,
although the quest for similar topological results was part of our motivation in
proving that theorem, the proof by Bradlow–Garćıa-Prada–Gothen does not carry
through in higher dimension, the key point being that for manifolds of general type
χpOXq ă 0 if dimpXq “ 1 and χpOXq ą 0 if dimpXq ą 1. Remark that prov-
ing this result for stable Higgs bundles would suffice, since the general polystable
case would follow (the Toledo invariant is additive on direct sums, and maximality
implies that all signs must agree). Remark, however, that in higher dimension it
is not true that every representation may be deformed to a ˘-holomorphic one:
The example studied by Kim, Klingler and Pansu [KKP12] gives a locally rigid
representation Upn, 1q Ñ Up2n, 2q such that τpρq “ 0 but that is not unitary, hence
not ˘-holomorphic. However, this is the direct sum of something holomorphic and
something anti-holomorphic, and this phenomenon cannot happen for maximal rep-
resentation.

Finally, let us link the (deformability to) ˘-holomorphic representation to dimen-
sional reduction. Suppose that X is projective, and even that X is Kähler-Einstein,
so that the Kähler class is as in (6). Then, taking n´ 1 hyperplane sections in gen-
eral position, we obtain a smooth curve i : Σ Ă X . The inclusion is submersive on
fundamental groups, i˚ : π1pΣq ։ Γ “ π1pXq, and gives an embedding of repre-
sentation varieties. Up to some constants, our definition of the Toledo invariant of
ρ : Γ Ñ G is just the Toledo invariant of the induced representation i˚ρ : π1pΣq Ñ G.
The same is true for Epρq, so one might hope to restrict a minimum of E to obtain
a minimum on the bigger space Hompπ1pΣq, Gq (this is actually equivalent to our
thesis: If a minimum in HompΓ, Gq is holomorphic, then the restriction must be
holomorphic, hence a minimum in Hompπ1pΣq, Gq). The exact relations are:

τpρq “
1

n!

ˆ

4π

m ¨ cX

˙n´1

τpi˚ρq, Epρq “
1

pn ´ 1q!

ˆ

4π

m ¨ cX

˙n´1

Epi˚ρq.

Remark that in particular for an n-dimensional locally symmetric X (for which
cX is an integer), τpρq P Qπn (and since τpi˚ρq P 4Zπ, this can be used to study
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the divisibility of τpρq). Note also that a maximal representation of Γ will never
restrict to a maximal representation of π1pΣq. The short motivation for this is
that, by [BIW10], maximal representations are faithful and discrete, hence this
would imply that π1pΣq – Γ. But we can be more explicit: Suppose that X is a
compact quotient of the complex 2-ball B2, let ρ : Γ Ñ G be a representation, and
suppose that Σ Ă X is cut out by the very ample divisor KX . Then by Riemann–
Roch for surfaces, χpΣq “ ´K2

X “ ´ 9
8π2VolpXq (recall that cX “ 3 in this case).

The Milnor-Wood inequality of Proposition 4.1 (that in this case agrees with the
one by Burger-Iozzi) gives |τpρq| ď rkpGqVolpXq. However, applying the classical
Milnor-Wood inequality to i˚ρ, one obtains

ˇ

ˇτpρq
ˇ

ˇ “
2π

3
|τpi˚ρq| ď

8π2

3
rkpGq|χpΣq| “ 3rkpGqVolpXq.

In particular, maximal representations of Γ ă SUp2, 1q restrict to representations of
π1pΣq having Toledo invariant equal to one third of the maximal Toledo invariant
τmax “ 2πrkpGq|χpΣq|.
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[BGPG06] Steven B. Bradlow, Oscar Garćıa-Prada, and Peter B. Gothen. Maximal surface
group representations in isometry groups of classical Hermitian symmetric spaces.
Geom. Dedicata, 122:185–213, 2006.

[BGPG13] Steven B Bradlow, Oscar Garcia-Prada, and Peter B Gothen. Higgs bundles for the
non-compact dual of the special orthogonal group. arXiv preprint arXiv:1303.1058,
2013.

[BI07] Marc Burger and Alessandra Iozzi. Bounded differential forms, generalized Milnor-
Wood inequality and an application to deformation rigidity.Geom. Dedicata, 125:1–
23, 2007.

[BIW10] Marc Burger, Alessandra Iozzi, and Anna Wienhard. Surface group representations
with maximal Toledo invariant. Ann. of Math. (2), 172(1):517–566, 2010.

[CO03] Jean-Louis Clerc and Bent Orsted. The Gromov norm of the Kaehler class and the
Maslov index. Asian J. Math., 7(2):269–295, 2003.

[Cor88] Kevin Corlette. Flat G-bundles with canonical metrics. J. Differential Geom.,
28(3):361–382, 1988.

[DDW98] G Daskalopoulos, S Dostoglou, and R Wentworth. Character varieties and harmonic
maps to R-trees. Mathematical Research Letters, 5(4), 1998.

[Del10] Thomas Delzant. L’invariant de Bieri-Neumann-Strebel des groupes fondamentaux
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