Parsimonious Gaussian Process Models for the Classification of Multivariate Remote Sensing Images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Parsimonious Gaussian Process Models for the Classification of Multivariate Remote Sensing Images

Résumé

A family of parsimonious Gaussian process models is presented. They allow to construct a Gaussian mixture model in a kernel feature space by assuming that the data of each class live in a specific subspace. The proposed models are used to build a kernel Markov random field (pGPMRF), which is applied to classify the pixels of a real multivariate remotely sensed image. In terms of classification accuracy, some of the proposed models perform equivalently to a SVM but they perform better than another kernel Gaussian mixture model previously defined in the literature. The pGPMRF provides the best classification accuracy thanks to the spatial regularization.
Fichier principal
Vignette du fichier
fauvel_icassp14.pdf (1.45 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01062378 , version 1 (09-09-2014)

Identifiants

Citer

Mathieu Fauvel, Charles Bouveyron, Stéphane Girard. Parsimonious Gaussian Process Models for the Classification of Multivariate Remote Sensing Images. ICASSP 2014 - IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2014, Florence, Italy. pp.2913-2916, ⟨10.1109/ICASSP.2014.6854133⟩. ⟨hal-01062378⟩
871 Consultations
246 Téléchargements

Altmetric

Partager

More