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ABSTRACT

A family of parsimonious Gaussian process models is presented.

They allow to construct a Gaussian mixture model in a kernel fea-

ture space by assuming that the data of each class live in a specific

subspace. The proposed models are used to build a kernel Markov

random field (pGPMRF), which is applied to classify the pixels of

a real multivariate remotely sensed image. In terms of classification

accuracy, some of the proposed models perform equivalently to a

SVM but they perform better than another kernel Gaussian mixture

model previously defined in the literature. The pGPMRF provides

the best classification accuracy thanks to the spatial regularization.

Index Terms— Kernel, remote sensing images, Gaussian pro-

cess, parsimony, hyperspectral.

1. INTRODUCTION

In a multivariate remote sensing images, a pixel is represented by a

vector x ∈ R
d for which each component is a measurement corre-

sponding to specific wavelengths [1]. The classification of such im-

ages requires algorithms that are robust to the number d of spectral

wavelengths and that are able to include additional spatial informa-

tion in the classification process [2].

Kernel methods, such as SVM, have shown good abilities in

classifying images with a large number of spectral bands [3]. The

use of a kernel function that defines a measure of similarity between

two samples, here two pixel-vectors, make them robust to the spec-

tral dimension. However, including spatial information in the clas-

sification process is not easy, and the resulting algorithms usually

involve a separate step for the extraction/inclusion of the spatial in-

formation [2].

On the contrary, conventional statistical method such as Markov

random fields (MRF) model the spatial relationship between adja-

cent pixels in a proper way by using a local energy function

U(yi|xi,Ni) = − ln
(
p(xi|yi)

)
+ ρE(Ni) (1)

where yi is the label, p(xi|yi) the conditional probability of having

xi given yi, E is an energy term that characterizes the local context of

the pixel, Ni represents the neighborhood of xi in the spatial domain

and ρ is a positive parameter. The statistical modeling in the spec-

tral domain usually suffers from the increase of the dimension. With

the conventional Gaussian assumption, p(xi|yi = c) ∼ N (µc,Σc),
the number of parameters of the model scales with the square of the

number of spectral variables, which makes difficult reliable estima-

tions.

Several approaches have been proposed to combine MRF and

kernel methods. The main problem is to compute properly the con-

ditional probability in the MRF energy function. Indeed with kernel

functions, the samples x are implicitly mapped to φ(x) that live on a

feature space. For the commonly used Gaussian kernel function, the

dimension of the feature space is infinite, and probability functions

cannot be defined. Several strategies were proposed to overcome this

difficulty. In [4], it was proposed to use SVM to estimate the con-

ditional probability p
(
φ(xi)|yi

)
in the MRF energy function. How-

ever, the estimated probability is not a true probability, but a scaled

version of the SVM output [5]. In [6], the authors defined theoreti-

cally the conditional probability in the kernel feature space, but they

assumed that the covariance matrices were common to the differ-

ent classes in the feature space. A similar assumption regarding the

covariance matrix was done in [7]. Although the performances of

the above mentioned method were good, such assumption about the

covariance matrix could limit the effectiveness of the methods.

In this paper, a family of parsimonious Gaussian process models

is proposed to compute p
(
φ(xi)|yi

)
in eq. (1). These models allow

to build from a finite set of training samples, a Gaussian mixture

model in the kernel feature space, even in the infinite dimensional

case. They assume that the data of each class live in a specific sub-

space of the kernel feature space [8].

The remainder of the paper is organized as follows. Section 2

presents the family of parsimonious Gaussian process models. Sec-

tion 3 focuses on the experimental results on one real hyperspectral

images. Finally, conclusions and perspectives are discussed in Sec-

tion 4.

2. CLASSIFICATION WITH PARSIMONIOUS GAUSSIAN

PROCESS MODELS

2.1. Gaussian process in the kernel feature space

Let S =
{
(xi, yi)

}n

i=1
be a set of training samples, where xi ∈ J ,

J ⊂ R
d, is a pixel and yi ∈ {1, . . . , C} its class, and C the number

of classes. For short, in the following − ln
(

p
(
φ(xi)|yi

))

will be

referred to Ω(φ(xi), yi).
In this work, the conventional Gaussian kernel function

k(xi,xj) = exp

(

− ‖xi − xj‖2Rd

2σ2

)

, σ > 0, (2)

is used. Its associated feature space is F and the mapping function

is φ : Rd → F . From the Mercer theorem, we have k(xi,xj) =
〈φ(xi), φ(xj)〉F and the kernel evaluation can be written as (the

series converges absolutely and uniformly for almost all (xi,xj)) [9]:

k(xi,xj) =

dF∑

m=1

emvm(xi)vm(xj) (3)



where dF = dim(F), {em, m = 1, 2, . . .} is the sequence of

positive eigenvalues in decreasing order of the integral operator Tk,

(Tkf)(z) =
∫

J
k(z,x)f(x)dx, associated to k and {vm : Rd →

R, m = 1, 2, . . .} is the sequence of corresponding normalized

eigenfunctions. From eq.(3), φ can be defined as

φ : x 7→ √
emvm(x), m = 1, 2, . . . (4)

For the Gaussian kernel dF = +∞ [9]. Therefore the conventional

multivariate normal distribution cannot be defined.

To overcome this, let us assume that φ(x), conditionally on

y = c, is a Gaussian process with mean µc and covariance func-

tion Σc. Hence, for all r ≥ 1, random vectors on R
r defined by

[φ(x)1, . . . , φ(x)r] are, conditionally on y = c, a multivariate nor-

mal vectors. Therefore, it is possible to write for yi = c

Ω(φ(xi), yi) =
r∑

j=1

[

〈φ(xi)− µc,qcj〉2
2λcj

+
ln(λcj)

2

]

+ γ (5)

where λcj is the j th eigenvalue of Σc in decreasing order, qcj its

associated eigenvector and γ a constant term that does not depend

on c. If the Gaussian process is not degenerated (i.e., λcj 6= 0, ∀j), r
has to be large to get a good approximation of the Gaussian process.

Unfortunately, only a part of the above equation can be computed

from a finite training sample set:

Ω(φ(xi), yi) =

rc∑

j=1

[

〈φ(xi)− µc,qcj〉2
2λcj

+
ln(λcj)

2

]

︸ ︷︷ ︸

computable quantity

+
r∑

j=rc+1

[

〈φ(xi)− µc,qcj〉2
2λcj

+
ln(λcj)

2

]

︸ ︷︷ ︸

non computable quantity

(6)

where rc = min(nc, r) and nc is the number of training samples of

class c.

2.2. Parsimonious Gaussian process

To make the above computational problem tractable, it is proposed

to use a parsimonious Gaussian process model in the feature space

for each class.

Definition 1 (Parsimonious Gaussian process) A parsimonious

Gaussian process is a Gaussian process φ(x) for which, condition-

ally to y=c, the eigen-decomposition of its covariance operator Σc

is such that

A1. It exists a dimension r < +∞ such that λcj = 0 for j ≥ r
and for all c = 1, . . . , C.

A2. It exists a dimension pc < min(r, nc) such that λcj = λ for

pc < j < r and for all c = 1, . . . , C.

The assumption A1 is motivated by the quick decay of the eigen-

values for a Gaussian kernel [10]. Hence, it is possible to find r <
+∞ such as λcr ≈ 0. The assumption A2 expresses that the data

of each class live in a specific subspace of size pc, the signal sub-

space, of the feature space. The variance in the signal subspace for

the class c is modeled by the parameters λc1, . . . , λcpc and the vari-

ance in the noise subspace, common to all the classes, is modeled by

λ. This model is referred to by pGP0.

Table 1. List of the sub-models of the parsimonious Gaussian pro-

cess model. Fc refers to the signal subspace of the considered class.

Model Variance inside Fc qcj pc

pGP0 Free Free Free
pGP1 Free Free Common
pGP2 Common within groups Free Free
pGP3 Common within groups Free Common
pGP4 Common between groups Free Common
pGP5 Common within and between groups Free Free
pGP6 Common within and between groups Free Common

From this model, it is possible to derive several sub-models. Ta-

ble 1 lists the different models that can be built from pGP0. For the

model pGP1, it is additionally assumed that the data of each class

share the same intrinsic dimension, i.e., pc = p, ∀c ∈ {1, . . . , C}.

In the model pGP2, the variance of Fc is assumed to be equal for

all eigenvectors, i.e., λcj = λc, ∀j ∈ {1, . . . , pc}. For the model

pGP4, it is assumed that the intrinsic dimension is common to ev-

ery class and the variance is common between them, i.e., λcj =
λc′j , ∀j ∈ {1, . . . , p} and c, c′ ∈ {1, . . . , C}. In term of par-

simony, pGP0 is the least parsimonious model while pGP8 is the

most parsimonious of the proposed models.

In the following, only the model pGP0 is discussed. Similar

results can be obtained for the other models.

Proposition 1 Letting pM = max(p1, . . . , pC), eq. (5) can be writ-

ten for pGP0 as

Ω(φ(xi), yi) =

pc∑

j=1

(
1

λcj

− 1

λ

) 〈φ(xi)− µc,qcj〉2
2

+
1

2λ
‖φ(x)− µc‖2 +

pc∑

j=1

ln(λcj)

2

+ (pM − pc)
ln(λ)

2
+ γ′

(7)

where γ′ is a constant term that does not depend on the index c of

the class.

The computation of eq. (7) is now possible since pc < nc, ∀c ∈
{1, . . . , C}. In the following, it is shown that the estimation of the

parameters and the computation of eq. (7) can be done using only

the kernel evaluation, as in standard kernel methods.

2.3. Model inference

Let us define the centered Gaussian kernel function according to

class c as:

k̄c(xi,xj) = k(xi,xj) +
1

n2
c

nc∑

l,l′=1

yl,y
′

l=c

k(xl,xl′)

− 1

nc

nc∑

l=1
yl=c

(
k(xi,xl) + k(xj ,xl)

)
.

(8)

The associated normalized kernel matrix Kc of size nc × nc is de-

fined by

(Kc)l,l′ =
k̄c(xl,xl′)

nc

. (9)

With these notations, the following result holds for pGP0.



Ω(φ(xi), yi) =
1

2nc

p̂c∑

j=1

1

λ̂cj

(
1

λ̂cj

− 1

λ̂

)( nc∑

l=1
yl=c

βcjlk̄c(xi,xl)

)2

+
1

2λ̂
k̄c(xi,xi) +

p̂c∑

j=1

ln(λ̂cj)

2
+ (p̂M − p̂c)

ln(λ̂)

2
(10)

Table 2. Information classes for the University Area data set and

classification accuracy. SVM refers to the support vectors machine,

GMM refers to the Gaussian Mixture Model, KGMM refers to the

kernel GMM proposed in [7]and OA refers to overall accuracy.

(a). Information classes

Class Samples

Asphalt 6631
Meadow 18649
Gravel 2099
Tree 3064

Metal Sheet 1345
Bare Soil 5029
Bitumen 1330

Brick 3682
Shadow 1947

Total 42776

(b). Classification accuracy

Method OA

pGP0 83.5

pGP1 84.2

pGP2 62.7
pGP3 69.6
pGP4 73.4
pGP5 61.1
pGP6 69.9
SVM 84.5

GMM 77.7
KGMM 80.4

pGPMRF 91.2

Proposition 2 For c = 1, . . . , C and the model pGP0, eq. (7) can

be computed with eq. (10), where βcjl is the lth component of the

normalized eigenvector βcj associated to jth largest eigenvalue λ̂cj

of Kc and

λ̂ =
1

∑C

c=1
π̂c(rc − p̂c)

C∑

c=1

π̂
(
trace(Kc)−

p̂c∑

j=1

λ̂cj

)
(11)

and π̂c = nc/n. See [8] for the proof.

The estimation of pc is done by looking at the cumulative vari-

ance for the sub-models pGP0,2,5. In practice, pc is estimated such

as the percentage of the cumulative variance is higher than a given

threshold th:

∑p̂c
j=1

λ̂cj

∑nc

j=1
λ̂cj

> th. (12)

For the other sub-models, p̂ is a fixed parameter given by the user.

3. EXPERIMENTAL RESULTS

In this section, results obtained on one real data set are presented.

The data set is the University Area of Pavia, Italy, acquired with the

ROSIS-03 sensor. The image has 103 spectral bands (d = 103)

and is 610×340 pixels, see Figure 1.(a). Nine classes have been de-

fined by a photo-interpret for a total of 42776 referenced pixels, see

Table 2.(a). 50 pixels for each class have been randomly selected

from the samples for the training set, and the remaining set of pix-

els has been used for validation. The process has been repeated 50

times, each time a new training set has been generated and the vari-

ables have been scaled between -1 and 1. The mean result in terms

of overall accuracy (percentage of correctly classified pixels) are re-

ported.

Table 3. Grid search setting for the cross validation. th corresponds

to the threshold value on the cumulative variance, Cp is the regular-

ization term for the SVM and λr refers to the ridge regularization

term in KGMM.

Method Parameter Range

pGP
σ2 {2−3, 2−2, . . . , 26}
th {0.900, 0.911, . . . , 0.999}
p̂ {5, 10, . . . , 45}

SVM
σ2 {2−3, 2−2, . . . , 24}
Cp {10−2, . . . , 104}

KGMM
σ2 {20, 21, . . . , 28}
τ {10−13, . . . , 10−6}

To assess the statistical significance of the observed differences

in terms of classification accuracy, a Wilcoxon rank-sum test has

been applied over the 50 repetitions. It tests if the data from two

populations are samples from distribution with equal medians. In

the experiments, it is used to test whether the 50 classification ac-

curacy are significantly different (not equal medians) or not (equal

medians).

Two sets of experiments have been conducted. First, the pro-

posed models have been compared to three others models: the

support vectors machines (SVM), a conventional Gaussian mixture

model (GMM) and a Kernel GMM defined in [7]. These models use

only the spectral information from the remote sensing image. Sec-

ond, the model pGP1 has been used to build a pGPMRF classifier

that uses both the spatial and the spectral information.

3.1. Comparison with others spectral classifier

In this section, the proposed models are compared to other classifiers

in terms of classification accuracy. The Gaussian kernel was used for

each kernel method. All the parameters have been selected by a five

fold cross-validation. The ranges of the tested values are reported in

Table 3. A small regularization term (τ = 10−5) has been added in

the GMM for the inversion of the covariance matrix.

Results are reported in Table 2.(b). The three best results in

terms of classification accuracy are obtained for pGP0, pGP1 and

SVM, in boldface in the table. The differences between them are

not significant according to the Wilcoxon test. All the other methods

provide results that are significantly worst in terms of classification

accuracy.

From the results, and for that experimental protocol (small train-

ing set and University area data set) the proposed models pGP0 and

pGP1 provides classification accuracies similar to those obtained

with SVM. They outperformed in terms of classification accuracy

the KGMM proposed in [7] and the conventional GMM.

3.2. Classification with the pGPMRF

In this section, the model pGP1 is used to compute the conditional

probability in eq.(1). For the spatial energy term in eq.(1), a conven-



(a) (b) (c)

Fig. 1. (a) RGB color composition for the University area, thematic map obtained with (b) pGP1 and (c) the pGPMRF.

tional Potts model is used [11]:

E(Ni) =
∑

xj∈Ni

δ(yi, yj) (13)

where δ is the delta function. A second order neighborhood is con-

sidered, i.e., Ni is the set of 8 surrounding pixels of pixel xi. For the

optimization, a Metropolis algorithm is used. It minimizes the global

energy, UG =
∑

i
U(yi|xi,Ni), by an iterative minimization of the

local energy (1). For details, see [11]. ρ was set to 16.

The thematic maps obtained for one repetition is reported in the

Figure 1 and the mean overall accuracy is reported in the Table 2.

Using the MRF modeling leads to an mean improvement of 8.3% in

terms of overall accuracy in comparison with the use of pGP1 alone.

The Wilcoxon test shows that the improvement is significant. The

Figure 1.(c) is much more homogeneous than Figure 1.(b), thanks to

the spatial regularization operated by the pGPMRF.

4. CONCLUSIONS AND PERSPECTIVES

A family of parsimonious Gaussian process models was presented

in this article. They make possible the computation of the Gaussian

mixture model when the original samples are mapped into an infinite

dimensional space, such as ones associated to the Gaussian kernel

function. By assuming that the data of each class are located in a

specific subspace of the kernel feature space, it was shown that all

the computations can be expressed with kernel evaluation.

Experimental results exhibit, for a small size of training set and

for the University area data set, that two models pGP0,1 provide

similar performances with SVM in terms of classification accuracy,

and outperformed another kernel GMM that were proposed in [7].

In order to take into account the spatial correlation in the image,

a pGPMRF was build using the conditional probability provided by

the model pGP1. The classification accuracy was increased by 8%.

Hence the proposed models associated to the MRF model are appro-

priated for the classification of multivariate remote sensing image, in

particular when the number of spectral bands is large.

Further analysis are required to better assess the performance

of the proposed models. The effect of the size of the training set

should be investigated. When nc grows, the size of the associated

feature spanned by each class is possibly larger. Therefore, models

that are more parsimonious, e.g. pGP4, may provide better results

than pGP0,1.

Regarding the pGPMRF, the Potts model is a very simple model

and more sophisticated models can be used [11]. Furthermore, the

selection of the parameter ρ in eq. (1) value can benefit of a dedicated

optimization algorithm.
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