Harmomic functions on multiplicative graphs and inverse Pitman transform on infinite random paths - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Harmomic functions on multiplicative graphs and inverse Pitman transform on infinite random paths

Résumé

We introduce central probability distributions on Littelmann paths and show they coincide with the distributions on such paths already appearing in our previous works. Next we establish a law of large numbers and a central limit theorem for the generalized Pitmann transform. We then study harmonic functions on multiplicative graphs defined from the tensor powers of finite-dimensional Lie algebras representations. Finally, we show there exists an inverse of the generalized Pitman transform defined almost surely on the set of infinite paths remaining in the Weyl chamber.
Fichier principal
Vignette du fichier
PitmanLN07_09_14.pdf (339.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01061664 , version 1 (08-09-2014)
hal-01061664 , version 2 (01-10-2014)
hal-01061664 , version 3 (24-02-2015)

Identifiants

Citer

Cédric Lecouvey, Emmanuel Lesigne, Marc Peigné. Harmomic functions on multiplicative graphs and inverse Pitman transform on infinite random paths. 2014. ⟨hal-01061664v1⟩
246 Consultations
190 Téléchargements

Altmetric

Partager

More