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HARMOMIC FUNCTIONS ON MULTIPLICATIVE GRAPHS AND

INVERSE PITMAN TRANSFORM ON INFINITE RANDOM PATHS

CÉDRIC LECOUVEY, EMMANUEL LESIGNE AND MARC PEIGNÉ

Abstract. We introduce central probability distributions on Littelmann paths and show they
coincide with the distributions on such paths already appearing in our previous works. Next
we establish a law of large numbers and a central limit theorem for the generalized Pitmann
transform. We then study harmonic functions on multiplicative graphs defined from the tensor
powers of finite-dimensional Lie algebras representations. Finally, we show there exists an
inverse of the generalized Pitman transform defined almost surely on the set of infinite paths
remaining in the Weyl chamber.

1. Introduction

The present paper is a sequel of our previous works [7], [8] and [9] where we study the
random Littelmann path defined from a simple module V of a Kac-Moody algebra g and use the
generalized Pitmann transform P introduced by Biane, Bougerol and O’Connell [1] to obtain its
conditioning to stay in the dominant Weyl chamber of g. Roughly speaking, this random path
is obtained by concatenation of elementary paths randomly chosen among the vertices of the
crystal graph B associated to V following a distribution depending on the graph structure of B.
It is worth noticing that for g = sl2, this random path reduces to the random walk on Z with
steps {±1} and the transform P is the usual Pitman transform [16]. Also when V is the defining
representation of g = sln+1, the vertices of B are simply the paths linking 0 to each vector of
the standard basis of Rn+1 and we notably recover some results by O’Connell exposed in [14].

We will assume here that g is a simple (finite-dimensional) Lie algebra over C of rank n.
The irreducible finite-dimensional representations of g are then parametrized by the dominant
weights of g which are the elements of the set P+ = P ∩ C where P and C are the weight lattice
and the dominant Weyl chamber of g, respectively. The random path W we considered in [9] is
defined from the crystal B(κ) of the irreducible g-module V (κ) with highest weight κ ∈ P+ (κ
is fixed for each W). The crystal B(κ) is an oriented graph graded by the weights of g whose
vertices are Littelmann paths of length 1. The vertices and the arrows of B(κ) are obtained by
simple combinatorial rules from a path πκ connecting 0 to κ and remaining in C (highest weight
path). We endowed it with a probability distribution p compatible with the weight graduation
defined from the choice of a n-tuple τ of positive reals (a positive real for each simple root of g).
The probability distribution considered on the successive tensor powers B(κ)⊗ℓ is the product
distribution p⊗ℓ. It has the crucial property to be central: two paths in B(κ)⊗ℓ with the same
ends have the same probability. We can then define, following the classical construction of a
Bernoulli process, a random path W with underlying probability space (B(κ)⊗Z≥0 , p⊗Z≥0) as
the direct limit of the spaces (B(κ)⊗ℓ, p⊗ℓ). The trajectories of W are the concatenations of
the Littelmann paths appearing in B(κ). It makes sense to consider the image of W by the
generalized Pitman transform P. This yields a Markov process H = P(W) whose trajectories
are the concatenations of the paths appearing in B(κ) which remain in the dominant Weyl
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chamber C. When the drift of W belongs to the interior of C, we establish in [9] that the law of
H coincides with the law of W conditioned to stay in C.

The processes W and H are continuous in time. By considering their values at integer times
t = ℓ, ℓ ∈ Z≥0, we obtain a random walk W on P and a Markov chain H on P+, respectively.
Alternatively, we can consider H as a Markov chain on the multiplicative graph G with vertices

the pairs (λ, ℓ) ∈ P+×Z≥0 and weighted arrows (λ, ℓ)
mΛ

λ,κ→ (Λ, ℓ+1) wheremΛ
λ,κ is the multiplicity

of the representation V (Λ) in the tensor product V (λ)⊗V (κ). This yields an harmonic function
on G associating to each vertex (λ, ℓ), the probability of the cylinder starting at (λ, ℓ) (i.e. the
probability that H starting at λ remains in C).

When g = sln+1, the elements of P+ can be regarded as the partitions λ = (λ1 ≥ · · · ≥ λn ≥
0) ∈ Zn. Moreover, if we choose V (κ) = V , the defining representation of g = sln+1, we have
mΛ

λ,κ 6= 0 if and only if the Young diagram of Λ is obtained by adding one box to that of Λ.

The connected component of G obtained from (∅, 0) thus coincides with the Young lattice on
partitions with at most n parts (one can obtain the whole Young lattice by working with g = sl∞
for which the result of [14] can easily be extended).

It was also observed by Kerov and Vershik (see [6]) that, conversely to the previous construc-
tion where we obtain an harmonic function on G defined from H (thus from the conditioning of
W), each harmonic function on a multiplicative graph G completely determines a Markov chain
on the vertices of G. In the case of the Young lattice, they showed that these harmonic functions
have nice expressions in terms of generalized Schur functions.

It was established in [16] that the usual (one-dimensional) Pitman transform is almost surely
invertible on infinite trajectories (i.e. reversible on a space of trajectories of probability 1). It
is then a natural question to ask wether its generalized version P shares the same invertibility
property. Observe that in the case of the defining representation of sln+1 (or sl∞), the general-
ized Pitmann transform can be expressed in terms of a Robinson-Schensted-Knuth (RSK) type
correspondence. Such an invertibility property was obtained by O’Connell in [14] (usual RSK
related to ordinary Schur functions) and very recently extended by Sniady [17] to the gener-
alized version of RSK used by Kerov and Vershik (related to the generalized Schur functions).
Our result shows that this invertibility property survives beyond type A and for random paths
constructed from any irreducible representation.

In what follows, we first prove that the probability distributions p on B(κ) we introduced in
[7], [8] and [9] are precisely all the possible distributions yielding central distributions on B(κ)⊗ℓ.
We believe this will make the restriction we did in these papers more natural. We also establish
a law of large numbers and a central limit theorem for the Markov process H. Here we need our
assumption that g is finite-dimensional since in this case P has a particular simple expression as
a composition of (ordinary) Pitman transforms. Then we determine the harmonic functions on
the multiplicative graph G for which the associated Markov chain verifies a law of large numbers.
We establish in fact that these Markov chains are exactly the processes H defined in [7] and have
simple expressions in terms of the Weyl characters of g. This can be regarded as an analogue
of the result of Kerov and Vershik determining the harmonic functions on the Young lattice.
Finally, we prove that the generalized Pitman transform P is almost surely invertible and explain
how the inverse P−1 can be computed. Here we will extend the approach developed by Sniady in
[17] for the generalized RSK to our context. In particular, P−1 is defined by using the dynamical
system on the trajectories that remain in C defined as the shift of the first elementary path of
the trajectory (i.e. its deletion) composed with the transform P. Nevertheless, we cannot use
the stabilization property of Jeu de Taquin trajectories which is central in [17] because it is only
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relevant for the combinatorics of tableaux. Instead, we prove a stabilization phenomenon for
the composition of the Pitman transform with a convenient involution on crystal defined from
the Lusztig involution.

The paper is organized as follows. In Section 2, we recall some background on continuous
time Markov processes. Section 3 is a recollection of results on representation theory of Lie
algebras and the Littelmann path model. We state in Section 4 the main results of [9] and
prove that the probability distributions p introduced in [7] are in fact the only possible yielding
central measures on trajectories. The law of large numbers and the central limit theorem for
H are established in Section 5. We study the harmonic functions of the graphs G in Section
6. In Section 7 we show that the spaces of trajectories for W and H both have the structure
of dynamical systems coming from the shift operation. We then prove that these dynamical
systems are intertwined by P. Finally, we establish the existence of P−1 in Section 7 by using a
natural involution on the crystals B(κ)⊗ℓ, a stabilization property of the transformation P and
the previous dynamical system on the trajectories that remain in C.

MSC classification: 05E05, 05E10, 60G50, 60J10, 60J22.

2. Random paths

2.1. Background on Markov chains. Consider a probability space (Ω,F ,P) and a countable
set M . A sequence Y = (Yℓ)ℓ≥0 of random variables defined on Ω with values in M is a Markov
chain when

P(Yℓ+1 = µℓ+1 | Yℓ = µℓ, . . . , Y0 = µ0) = P(Yℓ+1 = µℓ+1 | Yℓ = µℓ)

for any any ℓ ≥ 0 and any µ0, . . . , µℓ, µℓ+1 ∈ M . The Markov chains considered in the sequel
will also be assumed time homogeneous, that is P(Yℓ+1 = λ | Yℓ = µ) = P(Yℓ = λ | Yℓ−1 = µ)
for any ℓ ≥ 1 and µ, λ ∈ M . For all µ, λ in M , the transition probability from µ to λ is then
defined by

Π(µ, λ) = P(Yℓ+1 = λ | Yℓ = µ)

and we refer to Π as the transition matrix of the Markov chain Y . The distribution of Y0 is
called the initial distribution of the chain Y .

A continuous time Markov process Y = (Y(t))t≥0 on (Ω,F ,P) with values in Rn is a measur-
able family of random variables defined on (Ω,F ,P) such that, for any integer k ≥ 1 and any

0 ≤ t1 < · · · < tk+1 the conditional distribution (1) of Y(tk+1) given (Y(t1), · · · ,Y(tk)) is equal
to the conditional distribution of Y(tk+1) given Y(tk); in other words, for almost all (y1, · · · , yk)
with respect to the distribution of the random vector (Y(t1), · · · ,Y(tk)) and for all Borelian set
B ⊂ Rn

P(Y(tk+1) ∈ B | Y(t1) = y1, · · · ,Y(tk) = yk) = P(Y(tk+1) ∈ B | Y(tk) = yk).

We refer to the book [3], chapter 3, for a description of such processes.

1Let us recall briefly the definition of the conditional distribution of a random variable given another one. Let
X and Y be random variables defined on some probability space (Ω,F ,P) with values respectively in Rn and
Rm, n,m ≥ 1. Denote by µX the distribution of X, it is a probability measure on Rn. The conditional distribution
of Y given X is defined by the following “disintegration” formula: for any Borelian sets A ⊂ Rn and B ⊂ Rm

P

(

(X ∈ A) ∩ (Y ∈ B)
)

=

∫

A

P(Y ∈ B | X = x) dµX(x).

Notice that the function x 7→ P(Y ∈ B | X = x) is a Radon-Nicodym derivative with respect to µX and is
thus just defined modulo the measure µX . The measure B 7→ P(Y ∈ B | X = x) is called the conditional
distribution of Y given X = x.
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From now on, we consider a Rn-valued Markov process (Y(t))t≥0 defined on (Ω,F ,P) and we
assume the following conditions:

(i) M ⊂ Rn

(ii) for any integer ℓ ≥ 0

(1) Yℓ := Y(ℓ) ∈M P−almost surely.

It readily follows that the sequence Y = (Yℓ)ℓ≥0 is a M -valued Markov chain.
(iii) for any integer ℓ ≥ 0, the conditional distribution of (Y(t))t≥ℓ given Yℓ is equal to the

one of (Y(t))t≥0 given Y0; in other words, for any Borel set B ⊂ (Rn)⊗[0,+∞[ and any
λ ∈M , one gets

P((Y(t))t≥ℓ ∈ B | Yℓ = λ) = P((Y(t))t≥0 ∈ B | Y0 = λ).

In the following, we will assume that the initial distribution of the Markov process (Y(t))t≥0

has full support, i.e. P(Y(0) = λ) > 0 for any λ ∈M .

2.2. Elementary random paths. Consider a Z-lattice P ⊂ Rn with rank n. An elementary
Littelmann path is a piecewise continuous linear map π : [0, 1] → PR such that π(0) = 0 and
π(1) ∈ P . Two paths which coincide up to reparametrization are considered as identical.

The set F of continuous functions from [0, 1] to Rn is equipped with the norm ‖·‖∞ of uniform
convergence : for any π ∈ F , on has ‖π‖∞ := supt∈[0,1] ‖π(t)‖ where ‖·‖ denotes the euclidean
norm on P ⊂ Rn. Let B be a finite set of elementary paths and fix a probability distribution
p = (pπ)π∈B on B such that pπ > 0 for any π ∈ B. Let X be a random variable with
values in B defined on a probability space (Ω,F ,P) and with distribution p (in other words
P(X = π) = pπ for any π ∈ B). The variable X admits a moment of order 1 defined by

m := E(X) =
∑

π∈B

pππ.

The concatenation π1 ∗ π2 of two elementary paths π1 and π2 is defined by

π1 ∗ π2(t) =
{
π1(2t) for t ∈ [0, 12 ],
π1(1) + π2(2t− 1) for t ∈ [12 , 1].

In the sequel, C is a closed convex cone in P ⊂ Rn.

Let B be a set of elementary paths and (Xℓ)ℓ≥1 a sequence of i.i.d. random variables with
same law as X where X is the random variable with values in B introduced just above. We
define a random process W as follows: for any ℓ ∈ Z>0 and t ∈ [ℓ, ℓ+ 1]

W(t) := X1(1) +X2(1) + · · ·+Xℓ−1(1) +Xℓ(t− ℓ).

The sequence of random variables W = (Wℓ)ℓ∈Z≥0
:= (W(ℓ))ℓ≥0 is a random walk with set of

increments I := {π(1) | π ∈ B}.

3. Littelmann paths

3.1. Background on representation theory of Lie algebras. Let g be a simple finite-
dimensional Lie algebra over C of rank n and g = g+ ⊕ h⊕ g− a triangular decomposition. We
shall follow the notation and convention of [2]. According to the Cartan-Killing classification, g
is characterized (up to isomorphism) by its root system R. This root system is determined by
the previous triangular decomposition and realized in the euclidean space Rn. We denote by
∆+ = {αi | i ∈ I} the set of simple roots of g, by R+ the (finite) set of positive roots. We then
have n = card(∆+) and R = R+ ∪ R− with R− = −R+. The root lattice of g is the integral
lattice Q =

⊕n
i=1 Zαi. Write ωi, i = 1, . . . , n for the fundamental weights associated to g. The
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weight lattice associated to g is the integral lattice P =
⊕n

i=1 Zωi. It can be regarded as an
integral sublattice of h∗R (the real form of the dual h∗ of h). We have dim(P ) = dim(Q) = n and
Q ⊂ P .

The cone of dominant weights for g is obtained by considering the positive integral linear
combinations of the fundamental weights, that is P+ =

⊕n
i=1 Z≥0ωi. The corresponding open

Weyl chamber is the cone C̊ =
⊕n

i=1 R>0ωi. We also introduce its closure C =
⊕n

i=1 R≥0ωi.
In type A, we shall use the weight lattice of gln rather than that of sln for simplicity. We also
introduce the Weyl group W of g which is the group generated by the orthogonal reflections si
through the hyperplanes perpendicular to the simple root αi, i = 1, . . . , n. Each w ∈ W may
be decomposed as a product of the si, i = 1, . . . , n. All the minimal length decompositions of w
have the same length l(w). The group W contains a unique element w0 of maximal length l(w0)
equal to the number of positive roots of g, this w0 is an involution and if si1 · · · sir is a minimal
length decomposition of w0, we have

(2) R+ = {αi1 , si1 · · · sia(αia+1) with a = 1, . . . , r − 1}.

Example 3.1. The root system of g = sp4 has rank 2. In the standard basis (e1, e2) of the
euclidean space R2, we have ω1 = (1, 0) and ω2 = (1, 1). So P = Z2 and C = {(x1, x2) ∈
R2 | x1 ≥ x2 ≥ 0}. The simple roots are α1 = e1 − e2 and α2 = 2e2. We also have R+ =
{α1, α2, α1 + α2, 2α1 + α2}. The Weyl group W is the octahedral group with 8 elements. It acts
on R2 by permuting the coordinates of the vectors and flipping their sign. More precisely, for
any β = (β1, β2) ∈ R2, we have s1(β) = (β2, β1) and s2(β) = (β1,−β2). The longest element is
w0 = −id = s1s2s1s2. On easily verifies we indeed have

R+ = {α1, s1s2s1(α2) = α2, s1s2(α1) = α1 + α2, s1(α2) = 2α1 + α2}.

We now summarize some properties of the action of W on the weight lattice P . For any
weight β, the orbit W · β of β under the action of W intersects P+ in a unique point. We define
a partial order on P by setting µ ≤ λ if λ− µ belongs to Q+ =

⊕n
i=1 Z≥0αi.

Let U(g) be the enveloping algebra associated to g. Each finite dimensional g (or U(g))-module
M admits a decomposition in weight spaces M =

⊕
µ∈P Mµ where

Mµ := {v ∈M | h(v) = µ(h)v for any h ∈ h and some µ(h) ∈ C}.
This means that the action of any h ∈ h on the weight space Mµ is diagonal with eigenvalue
µ(h). In particular, (M ⊕M ′)µ = Mµ ⊕M ′

µ. The Weyl group W acts on the weights of M and
for any σ ∈ W, we have dimMµ = dimMσ·µ. For any γ ∈ P , let eγ be the generator of the

group algebra C[P ] associated to γ. By definition, we have eγeγ
′

= eγ+γ′

for any γ, γ′ ∈ P and

the group W acts on C[P ] as follows: w(eγ) = ew(γ) for any w ∈ W and any γ ∈ P .
The character of M is the Laurent polynomial in C[P ] char(M)(x) :=

∑
µ∈P dim(Mµ)e

µ

where dim(Mµ) is the dimension of the weight space Mµ.
The irreducible finite dimensional representations of g are labelled by the dominant weights.

For each dominant weight λ ∈ P+, let V (λ) be the irreducible representation of g associated to
λ. The category C of finite dimensional representations of g over C is semisimple: each module
decomposes into irreducible components. The category C is equivariant to the (semisimple)
category of finite dimensional U(g)-modules (over C). Roughly speaking, this means that the
representation theory of g is essentially identical to the representation theory of the associative
algebra U(g). Any finite dimensional U(g)-module M decomposes as a direct sum of irreducible
M =

⊕
λ∈P+

V (λ)⊕mM,λ where mM,λ is the multiplicity of V (λ) in M . Here we slightly abuse

the notation and also denote by V (λ) the irreducible f.d. U(g)-module associated to λ.
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When M = V (λ) is irreducible, we set sλ := char(M) =
∑

µ∈P Kλ,µe
µ with dim(Mµ) = Kλ,µ.

Then Kλ,µ 6= 0 only if µ ≤ λ. Recall also that the characters can be computed from the Weyl
character formula but we do not need this approach in the sequel.

Given κ, µ in P+ and a nonnegative integer ℓ, we define the tensor multiplicities f ℓλ/µ,κ by

(3) V (µ)⊗ V (κ)⊗ℓ ≃
⊕

λ∈P+

V (λ)
⊕fℓ

λ/µ,κ .

For µ = 0, we set f ℓλ,κ = f ℓλ/0,κ. When there is no risk of confusion, we write simply f ℓλ/µ (resp.

f ℓλ) instead of f ℓλ/µ,κ (resp. f ℓλ,κ). We also define the multiplicities mλ
µ,κ by

(4) V (µ)⊗ V (κ) ≃
⊕

µ λ

V (λ)⊕mλ
µ,κ

where the notation µ  λ means that λ ∈ P+ and V (λ) appears as an irreducible component
of V (µ)⊗ V (κ). We have in particular mλ

µ,κ = f1λ/µ,κ.

3.2. Littelmann path model. We now give a brief overview of the Littelmann path model.
We refer to [11], [12], [13] and [5] for examples and a detailed exposition. Consider a Lie algebra
g and its root system realized in the euclidean space PR = Rn. We fix a scalar product 〈·, ·〉 on
PR invariant under W. For any root α, we set α∨ = 2α

〈α,α〉 . We define the notion of elementary

continuous piecewise linear paths in PR as we did in § 2.2. Let L be the set of elementary paths
having only rational turning points (i.e. whose inflexion points have rational coordinates) and
ending in P i.e. such that π(1) ∈ P . We then define the weight of the path π by wt(π) = π(1).

Littelmann associated to each simple root αi, i = 1, . . . , n, some root operators ẽi and f̃i
acting on L∪{0}. We do not need their complete definition in the sequel and refer to the above

mentioned papers for a complete review. Recall nevertheless that roots operators ẽi and f̃i
essentially act on a path η by applying the symmetry sα on parts of η. It therefore preserve the
length of the paths since the elements of W are isometries. Also if f̃i(η) = η′ 6= 0, we have

(5) ẽi(η
′) = η and wt(f̃i(η)) = wt(η)− αi.

By drawing an arrow η
i→ η′ between the two paths η, η′ of L as soon as f̃i(η) = η′ (or equivalently

η = ẽi(η
′)), we obtain a Kashiwara crystal graph with set of vertices L. By abuse of notation, we

yet denote it by L which so becomes a colored oriented graph. For any η ∈ L, we denote by B(η)
the connected component of η i.e. the subgraph of L generated by η by applying operators ẽi
and f̃i, i = 1, . . . , n. For any path η ∈ L and i = 1, . . . , n, set εi(η) = max{k ∈ Z≥0 | ẽki (η) = 0}
and ϕi(η) = max{k ∈ Z≥0 | f̃ki (η) = 0}.

The set LminZ of integral paths is the set of paths η such that mη(i) = mint∈[0,1]{〈η(t), α∨
i 〉}

belongs to Z for any i = 1, . . . , n. We also recall that we have

C = {x ∈ h∗R | 〈x, α∨
i 〉 ≥ 0} and C̊ = {x ∈ h∗R | 〈x, α∨

i 〉 > 0}.
Any path η such that Im η ⊂ C verifies mη(i) = 0 so belongs to LminZ. One gets the

Proposition 3.2. Let η and π two paths in LminZ. Then

(i) the concatenation π ∗ η belongs to LminZ,
(ii) for any i = 1, . . . , n we have

(6) ẽi(η ∗ π) =
{
η ∗ ẽi(π) if εi(π) > ϕi(η)
ẽi(η) ∗ π otherwise,

and f̃i(η ∗ π) =
{
f̃i(η) ∗ π if ϕi(η) > εi(π)

η ∗ f̃i(π) otherwise.
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In particular, ẽi(η∗π) = 0 if and only if ẽi(η) = 0 and εi(π) ≤ ϕi(η) for any i = 1, . . . , n.
(iii) ẽi(η) = 0 for any i = 1, . . . , n if and only if Im η is contained in C.

The following theorem summarizes crucial results by Littelmann (see [11], [12] and [13]).

Theorem 3.3. Consider λ, µ and κ dominant weights and choose arbitrarily elementary paths
ηλ, ηµ and ηκ in L such that Im ηλ ⊂ C, Im ηµ ⊂ C and Im ηκ ⊂ C and joining respectively 0 to
λ, 0 to µ and 0 to κ.

(i) We have B(ηλ) := {f̃i1 · · · f̃ikηλ | k ∈Z≥0 and 1 ≤ i1, · · · , ik ≤ n} \ {0}.
In particular wt(η)− wt(ηλ) ∈ Q+ for any η ∈ B(ηλ).

(ii) All the paths in B(ηλ) have the same length than ηλ.
(iii) The paths on B(ηλ) belong to LminZ.
(iv) If η′λ is another elementary path from 0 to λ such that Im η′λ is contained in C, then B(ηλ)

and B(η′λ) are isomorphic as oriented graphs i.e. there exists a bijection θ : B(ηλ) →
B(η′λ) which commutes with the action of the operators ẽi and f̃i, i = 1, . . . , n.

(v) We have

(7) sλ =
∑

η∈B(ηλ)

eη(1).

(vi) For any b ∈ B(ηλ) we have wt(b) =
∑n

i=1(ϕi(b)− εi(b))ωi.
(vii) For any i = 1, . . . , n and any b ∈ B(ηλ), let si(b) be the unique path in B(ηλ) such that

ϕi(si(b)) = εi(b) and εi(si(b)) = ϕi(b)

(in other words, si acts on each i-chain Ci as the symmetry with respect to the center of
Ci). The actions of the si’s extend to an action of W on L which stabilizes B(ηλ). In
particular, for any w ∈ W and any b ∈ B(ηλ), we have w(b) ∈ B(ηλ) and wt(w(b)) =
w(wt(b)).

(viii) Given any integer ℓ ≥ 0, set

(8) B(ηµ)∗B(ηκ)
∗ℓ = {π = η∗η1∗· · ·∗ηℓ ∈ L | η ∈ B(ηµ) and ηk ∈ B(ηκ) for any k = 1, . . . , ℓ}.

The graph B(ηµ) ∗B(ηκ)
∗ℓ is contained in LminZ.

(ix) The multiplicity mλ
µ,κ defined in (4) is equal to the number of paths of the form µ ∗ η

with η ∈ B(ηκ) contained in C.
(x) The multiplicity f ℓλ/µ defined in (3) is equal to cardinality of the set

Hℓ
λ/µ := {π ∈ B(ηµ) ∗B(ηκ)

∗ℓ | ẽi(π) = 0 for any i = 1, . . . , n and π(1) = λ}.

Each path π = η ∗ η1 ∗ · · · ∗ ηℓ ∈ Hℓ
λ/µ verifies Imπ ⊂ C and η = ηµ.

Remarks 3.4. (i) Combining (5) with assertions (i) and (v) of Theorem 3.3, one may
check that the function e−λsλ is in fact a polynomial in the variables Ti = e−αi , namely

(9) sλ = eλSλ(T1, . . . , Tn)

where Sλ ∈ C[X1, . . . ,Xn].
(ii) Using assertion (i) of Theorem 3.3, we obtain mλ

µ,κ 6= 0 only if µ + κ − λ ∈ Q+.

Similarly, when fκ,ℓλ/µ 6= 0 one necessarily has µ+ ℓκ− λ ∈ Q+.
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4. Random paths from Littelmann paths

In this Section we recall some results of [9]. We also introduce the notion of central probability
distribution on elementary Littelmann paths and show these distributions coincide with those
used in the seminal works [1], [14] and also in our previous papers [7], [8],[9].

4.1. Central probability measure on trajectories. Consider κ ∈ P+ and a path πκ ∈ L
from 0 to κ such that Imπκ is contained in C. Let B(πκ) be the connected component of L
containing πκ. Assume that {π1, . . . , πℓ} is a family of elementary paths in B(πκ); the path
π1 ⊗ · · · ⊗ πℓ of length ℓ is defined by: for all k ∈ {1, . . . , ℓ− 1} and t ∈ [k, k + 1]

(10) π1 ⊗ · · · ⊗ πℓ(t) = π1(1) + · · ·+ πk(1) + πk+1(t− k).

Let B(πκ)
⊗ℓ be the set of paths of the form b = π1 ⊗ · · · ⊗ πℓ where π1, . . . , πℓ are elementary

paths in B(πκ); there exists a bijection ∆ between B(πκ)
⊗ℓ and the set B∗ℓ(πκ) of paths in L

obtained by concatenations of ℓ paths of B(πκ):

(11) ∆ :

{
B(πκ)

⊗ℓ −→ B(πκ)
∗ℓ

π1 ⊗ · · · ⊗ πℓ 7−→ π1 ∗ · · · ∗ πℓ .

In fact π1⊗· · ·⊗πℓ and π1 ∗ · · · ∗πℓ coincide up to a reparametrization and we define the weight
of b = π1 ⊗ · · · ⊗ πℓ setting

wt(b) := wt(π1) + · · ·+wt(πℓ) = π1(1) + · · ·+ πℓ(1).

Consider p a probability distribution on B(πκ) such that pπ > 0 for any π ∈ B(πκ). For any
integer ℓ ≥ 1, we endow B(πκ)

⊗ℓ with the product density p⊗ℓ. That is we set p⊗ℓ
π = pπ1×· · ·×pπℓ

for any π = π1 ⊗ · · · ⊗ πℓ ∈ B(πκ)
⊗ℓ. Here, we follow the classical construction of a Bernoulli

process. Write Πℓ : B(πκ)
⊗ℓ → B(πκ)

⊗ℓ−1 the projection defined by Πℓ(π1 ⊗ · · · ⊗ πℓ−1 ⊗ πℓ) =
π1 ⊗ · · · ⊗ πℓ−1; the sequence (B(πκ)

⊗ℓ,Πℓ, p
⊗ℓ)ℓ≥1 is a projective system of probability spaces.

We denote by Ω = (B(πκ)
⊗Z≥0 , p⊗Z≥0) its projective limit. The elements of B(πκ)

⊗Z≥0 are
infinite sequences ω = (πℓ)ℓ≥1 we call trajectories. By a slight abuse of notation, we will write

Πℓ(ω) = π1 ⊗ · · · ⊗ πℓ. We also write P = p⊗Z≥0 for short. For any b ∈ B(πκ)
⊗ℓ, we denote by

Ub = {ω ∈ Ω | Πℓ(ω) = b} the cylinder defined by π in Ω.

Definition 4.1. The probability distribution P = p⊗Z≥0 is central on Ω when for any ℓ ≥ 1 and
any vertices b and b′ in B(πκ)

⊗ℓ such that wt(b) = wt(b′) we have P(Ub) = P(Ub′).

Remark 4.2. The probability distribution P is central when for any integer ℓ ≥ 1 and any
vertices b, b′ in B(πκ)

⊗ℓ such that wt(b) = wt(b′), we have p⊗ℓ
b = p⊗ℓ

b′ . We indeed have Ub = b⊗Ω

and Ub′ = b⊗ Ω. Hence P(Ub) = p⊗ℓ
b and P(Ub′) = p⊗ℓ

b′ .

The following proposition shows that P can only be central when the probability distribution
p on B(πκ) is compatible with the graduation of B(πκ) by the set of simple roots. This justifies
the restriction we did in [7] and [9] on the probability distributions we have considered on B(πκ).
This restriction will also be relevant in the remaining of this paper.

Proposition 4.3. The following assertions are equivalent

(i) The probability distribution P is central.

(ii) There exists an n-tuple τ = (τ1, . . . , τn) ∈]0,+∞[n such that for each arrow π
i→ π′ in

B(πκ), we have the relation pπ′ = pπ × τi.
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Proof. Assume probability distribution P is central. For any path π ∈ B(πκ), we define the depth
d(π) as the number of simple roots appearing in the decomposition of κ−wt(π) on the basis of
simple roots (see assertion (i) of Theorem 3.3). This is also the length of any path joining πκ to π
in the crystal graph B(πκ). We have to prove that

pπ′

pπ
is a constant depending only on i as soon

as we have an arrow π
i→ π′ in B(πκ). For any k ≥ 1, we set B(πκ)k = {π ∈ B(πκ) | d(π) ≤ k}.

We will proceed by induction and prove that
pπ′

pπ
is a constant depending only on i as soon as

there is an arrow π
i→ π′ in B(πκ)k. This is clearly true in B(πκ)1 since there is at most one arrow

i starting from πκ. Assume, the property is true in B(πκ)k with k ≥ 1. Consider π′ in B(πκ)k+1

and an arrow π
i→ π′ in B(πκ)k+1. We must have π ∈ B(πκ)k. If B(πκ)k does not contains any

arrow
i→, there is nothing to verify. So assume there is at least an arrow π1

i→ π2 in B(πκ)k. In
B(πκ)

⊗2, we have wt(π1⊗π′) = wt(π1)+wt(π)−αi since wt(π
′) = wt(π)−αi. Similarly, we have

wt(π2 ⊗ π) = wt(π1)− αi +wt(π) since wt(π2) = wt(π1)− αi. Thus wt(π1 ⊗ π′) = wt(π2 ⊗ π).
Since P is central, we deduce from the above remark the equality p⊗2(π1 ⊗ π′) = p⊗2(π2 ⊗ π).
This yields pπ1pπ′ = pπ2pπ. Hence

pπ′

pπ
=

pπ2
pπ1

. So by our induction hypothesis,
pπ′

pπ
is equal to a

constant which only depends on i.
Conversely, assume there exists an n-tuple τ = (τ1, . . . , τn) ∈]0,+∞[n such that for each arrow

π
i→ π′ in B(πκ), we have the relation pπ′ = pπ × τi. Consider vertices b, b

′ in B(πκ)
⊗ℓ such that

wt(b) = wt(b′). Since b and b′ have the same weight, we derive from (5) that the paths from

πκ to b and the paths from πκ to b′ contain the same number (says ai) of arrows
i→ for any

i = 1, . . . , n. We therefore have pb = pb′ = pπκτ
a1
1 · · · τann and the probability distribution P is

central. �

4.2. Central probability distribution on elementary paths. In the remaining of the paper,
we fix the n-tuple τ = (τ1, . . . , τn) ∈]0,+∞[n and assume that P is a central distribution on Ω
defined from τ (in the sense of Definition 4.1. For any u = u1α1 + · · · + unαn ∈ Q, we set
τu = τu1

1 · · · τun
n . Since the root and weight lattices have both rank n, any weight β ∈ P also

decomposes on the form β = β1α1 + · · · + βnαn with possibly non integral coordinates βi. The
transition matrix between the bases {ωi, i = 1, . . . , n} and {αi, i = 1, . . . , n} (regarded as bases
of PR) being the Cartan matrix of g whose entries are integers, the coordinates βi are rational.

We will also set τβ = τβ1
1 · · · τβn

n .
Let π ∈ B(πκ): by assertion (i) of Theorem 3.3, one gets

π(1) = wt(π) = κ−
n∑

i=1

ui(π)αi

where ui(π) ∈Z≥0 for any i = 1, . . . , n. We define Sκ(τ) := Sκ(τ1, . . . , τn) =
∑

π∈B(πκ)
τκ−wt(π).

Definition 4.4. We define the probability distribution p = (pπ)π∈B(πκ) on B(πκ) associated to

τ by setting pπ =
τκ−wt(π)

Sκ(τ)
.

Remark 4.5. By assertion (iii) of Theorem 3.3, for π′κ another elementary path from 0 to κ
such that Imπ′κ is contained in C, there exists an isomorphism Θ between the crystals B(πκ) and
B(π′κ). For p

′ the central probability distribution defined from τ on B(π′κ), one gets pπ = p′Θ(π) for

any π ∈ B(πκ). Therefore, the probability distributions we use on the graph B(πκ) are invariant
by crystal isomorphisms and also the probabilistic results we will establish in the paper.
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The following proposition gathers results of [7] (Lemma 7.2.1) and [9] (Proposition 5.4) .
Recall that m =

∑
π∈B(πκ)

pππ. We set m = m(1).

Proposition 4.6.

(i) We have m ∈ C̊ if and only if τi ∈]0, 1[ for any i = 1, . . . , n.
(ii) Denote by L the common length of the paths in B(πκ). Then, the length of m is less or

equal to L.

Set Mκ = {m | τ = (τ1, . . . , τn) ∈]0,+∞[} be the set of all vectors m obtained from the
central distributions defined on B(πκ). Observe that Mκ only depends on κ and not of the
choice of the highest path πκ. This is the set of possible mean obtained from central probability
distributions defined on B(πκ). We will also need the set

(12) Dκ = Mκ ∩ C̊ = {m ∈ Mκ | τi ∈]0, 1[, i = 1, . . . , n}
of drifts in C̊.
Example 4.7. We resume Example 3.1 and consider the Lie algebra g = sp4 of type C2 for
which P = Z2 and C = {(x1, x2) ∈ R2 | x1 ≥ x2 ≥ 0}.

For κ = ω1 and πκ the line between 0 and ε1, we get B(πκ) = {π1, π2, π2, π1} where each πa is
the line between 0 and εa (with the convention ε2 = −ε2 and ε1 = −ε1). The underlying crystal
graph is

π1
1→ π2

2→ π2
1→ π1.

For (τ1, τ2) ∈]0,+∞[2, we obtain the probability distribution on B(πκ)

pπ1 =
1

1 + τ1 + τ1τ2 + τ21 τ2
, pπ2 =

τ1
1 + τ1 + τ1τ2 + τ21 τ2

,

pπ2
=

τ1τ2
1 + τ1 + τ1τ2 + τ21 τ2

and pπ2
=

τ21 τ2
1 + τ1 + τ1τ2 + τ21 τ2

.

So we have

m =
1

1 + τ1 + τ1τ2 + τ21 τ2
((1− τ21 τ2)ε1 + (τ1 − τ1τ2)ε2).

When the pair (τ1, τ2) runs over ]0, 1[2, one verifies by a direct computation that Dκ coincide
with the interior of the triangle with vertices 0, ε1, ε2.

Remark 4.8. In the previous example, it is easy to show by a direct calculation that the ad-
herence Mκ of Mκ is the convex hull of the weight {±ε1,±ε2} of the representation V (ω1)
considered (i.e. the interior of the square with vertices {±ε1,±ε2}). In general, one can show
that Mκ is contained in the convex hull of the weights of V (κ). The problem of determining,
for any dominant weight κ, wether or not both sets coincide seems to us interesting and not
immediate.

4.3. Random paths of arbitrary length. With the previous convention, the product prob-
ability measure p⊗ℓ on B(πκ)

⊗ℓ satisfies

(13) p⊗ℓ(π1 ⊗ · · · ⊗ πℓ) = p(π1) · · · p(πℓ) =
τ ℓκ−(π1(1)+···+πℓ(1))

Sκ(τ)ℓ
=
τ ℓκ−wt(b)

Sκ(τ)ℓ
.

Let (Xℓ)ℓ≥1 be a sequence of i.i.d. random variables with values in B(πκ) and law p =
(pπ)π∈B(πκ); for any ℓ ≥ 1 we thus gets

(14) P(Xℓ = π) = pπ for any π ∈ B(πκ).
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Consider µ ∈ P . The random path W starting at µ is defined from the probability space Ω with
values in PR by

W(t) := Πℓ(W)(t) = µ+ (X1 ⊗ · · · ⊗Xℓ−1 ⊗Xℓ)(t) for t ∈ [ℓ− 1, ℓ].

For any integer ℓ ≥ 1, we set Wℓ = W(ℓ). The sequence W = (Wℓ)ℓ≥1 defines a random walk
starting at W0 = µ whose increments are the weights of the representation V (κ). The following
proposition was established in [9] (see Proposition 4.6).

Proposition 4.9.

(i) For any β, η ∈ P , one gets

P(Wℓ+1 = β |Wℓ = η) = Kκ,β−η
τκ+η−β

Sκ(τ)
.

(ii) Consider λ, µ ∈ P+ we have

P(Wℓ = λ,W0 = µ,W(t) ∈ C for any t ∈ [0, ℓ]) = f ℓλ/µ
τ ℓκ+µ−λ

Sκ(τ)ℓ
.

In particular

P(Wℓ+1 = λ,Wℓ = µ,W(t) ∈ C for any t ∈ [ℓ, ℓ+ 1]) = mλ
µ,κ
τκ+µ−λ

Sκ(τ)
.

4.4. The generalized Pitman transform. By assertion (viii) of Theorem 3.3, we know that
B(πκ)

⊗ℓ is contained in LminZ. Therefore, if we consider a path η ∈ B(πκ)
⊗ℓ, its connected

component B(η) is contained in LminZ. Now, if ηh ∈ B(b) is such that ẽi(η
h) = 0 for any

i = 1, . . . , n, we should have Im ηh ⊂ C by assertion (iii) of Proposition 3.2. Assertion (iii) of
Theorem 3.3 thus implies that ηh is the unique path in B(η) = B(ηh) such that ẽi(η

h) = 0 for
any i = 1, . . . , n. This permits to define the generalized Pitman transform on B(πκ)

⊗ℓ as the
map P which associates to any η ∈ B(πκ)

⊗ℓ the unique path P(η) ∈ B(η) such that ẽi(P(η)) = 0
for any i = 1, . . . , n. By definition, we have ImP(η) ⊂ C and P(η)(ℓ) ∈ P+.

As observed in [1] the path transformation P can be made more explicit (recall we have as-
sumed that g is finite-dimensional). Consider a simple reflection α. The Pitman transformation
Pα : B(πκ)

⊗ℓ → B(πκ)
⊗ℓ associated to α is defined by

Pα(η)(t) = η(t) − 2 inf
s∈[0,t]

〈η(s), α

‖α‖2
〉α = η(t)− inf

s∈[0,t]
〈η(s), α∨〉α

for any η ∈ B(πκ)
⊗ℓ and any t ∈ [0, ℓ]. Let w0 be the maximal length element of W and fix a

decomposition w0 = si1 · · · sir of w0 as a product a reflections associated to simple roots.

Proposition 4.10 ([1]). For any path η ∈ B(πκ)
⊗ℓ, we have

(15) P(η) = Pαi1
· · · Pαir

(η).

Remarks 4.11. (i) Since P(η) corresponds to the highest weight vertex of the crystal B(η),
we have P2(η) =P(η).

(ii) One easily verifies that each transformation Pα is continuous for the topology of uniform
convergence on the space of continuous maps from [0, ℓ] to R. Hence P is also continuous
for this topology.

(iii) It is also proved in [1] that P does not depend on the reduced decomposition of w0 used
in (15).
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(iv) Assume η ∈ B(ηλ) ⊂ B(πκ)
⊗ℓ where ηλ is the highest weight path of B(ηλ). Consider

ηλ = w0(ηλ) the lowest weight path in B(ηλ). In this particular case, one can show
that Pia+1 · · · Pir(η

λ) = sia+1 · · · sir(ηλ) for any a = 1, . . . , r − 1. Moreover each path

sia+1 · · · sir(ηλ) is extremal (i.e. sia+1 · · · sir(ηλ) is located at one end of any i-chain
which contains it). So the successive applications of the transforms Pα used to define P
on lowest weight paths essentially reduce to the action of the generators sα of W.

Let W be the random path of § 4.3. We define the random process H setting

(16) H(t) = P(Πℓ(W))(t) for any t ∈ [ℓ− 1, ℓ].

We will write for short H = P(W) in the sequel. For any ℓ ≥ 1, we set Hℓ := H(ℓ). The following
Theorem was established in [9].

Theorem 4.12. (i) The random sequence H := (Hℓ)ℓ≥1 is a Markov chain with transition
matrix

(17) Π(µ, λ) =
Sλ(τ)

Sκ(τ)Sµ(τ)
τκ+µ−λmλ

µ,κ

where λ, µ ∈ P+.
(ii) Assume η ∈ B(πκ)

⊗ℓ is a highest weight path of weight λ. Then

P(Wℓ = η) =
τ ℓκ−λSλ(τ)

Sκ(τ)ℓ

We shall also need the asymptotic behavior of the tensor product multiplicities established in
[9].

Theorem 4.13. Assume m ∈ Dκ (see (12)). For any µ ∈ P and any sequence of dominant

weights of the form λ(ℓ) = ℓm+ o(ℓ), we have

(i) lim
ℓ→+∞

fℓ

λ(ℓ)−γ

fℓ

λ(ℓ)

= τ−γ for any γ ∈ P .

(ii) lim
ℓ→+∞

fℓ

λ(ℓ)/µ

fℓ

λ(ℓ)

= τ−µSµ(τ).

Corollary 4.14. Under the assumptions of the previous theorem, we also have

lim
ℓ→+∞

f ℓ−ℓ0
λ(ℓ)

f ℓ
λ(ℓ)

=
1

τ−ℓ0κSℓ0
κ (τ)

for any nonnegative integer ℓ0.

Proof. We first consider the case where ℓ0 = 1. By definition of the tensor product multiplicities
in (3) we have sℓκ =

∑
λ∈P+

f ℓλsλ but also sℓκ = sκ × sℓ−1
κ =

∑
λ∈P+

f ℓ−1
λ/κ sλ. Therefore f

ℓ
λ = f ℓ−1

λ/κ

for any ℓ ≥ 1 and any λ ∈ P+. We get

(18) lim
ℓ→+∞

f ℓ−1
λ(ℓ)

f ℓ
λ(ℓ)

= lim
ℓ→+∞

f ℓ−1
λ(ℓ)

f ℓ−1
λ(ℓ)/κ

=
1

τ−κSκ(τ)

by assertion (ii) of Theorem. Now observe that for any ℓ0 ≥ 1 we have

f ℓ−ℓ0
λ(ℓ)

f ℓ
λ(ℓ)

=
f ℓ−ℓ0
λ(ℓ)

f ℓ−ℓ0+1
λ(ℓ)

× · · · ×
f ℓ−1
λ(ℓ)

f ℓ
λ(ℓ)

.

By using (18) each component of the previous product tends to 1
τ−κSκ(τ)

when ℓ tends to infinity

which gives the desired limit. �
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The previous theorem also implies that the drift m determines the probability distribution
on B(πκ). More precisely, consider p and p′ two probability distributions defined on B(πκ) from
τ ∈]0, 1[n and τ ′ ∈]0, 1[n, respectively. Set m =

∑
π∈B(πκ)

pππ and m′ =
∑

π∈B(πκ)
p′ππ.

Proposition 4.15. We have m = m′ if and only if τ = τ ′. Therefore, the map which associates
to any τ ∈]0, 1[n the drift m ∈ Dκ is a one-to-one correspondence.

Proof. Assume m = m′. By applying assertion (i) of Theorem 4.13, we get τγ = (τ ′)γ for any
γ ∈ P . Consider i ∈ {1, . . . , n}. For γ = αi, we obtain τi = τ ′i . Therefore τ = τ ′. �

5. Some Limit theorems for the Pitman process

5.1. The law of large numbers and the central limit theorem for W. We start by
establishing two classical limit theorems for W, deduced from the law of large numbers and the
central limit theorem for the random walk W = (Wℓ)ℓ≥1 = (X1 + · · · + Xℓ)ℓ≥1. Recall that
m =

∑
π∈B(πκ)

pππ and m = m(1). Write m⊗∞ for the random path such that

m⊗∞(t) = ℓm+m(t− ℓ) for any t > 0

where ℓ = ⌊t⌋ .
Let Γ = (Γi,j)1≤i,j≤n = tXℓ ·Xℓ be the common covariance matrix of each random variable

Xℓ.

Theorem 5.1. Let W be a random path defined on (B(πκ)
⊗Z≥0 , p⊗Z≥0) with drift path m. Then,

we have

lim
ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥∥W(t)−m⊗∞(t)
∥∥ = 0 almost surely.

Furthermore, the family of random variables

(W(t)−m⊗∞(t)√
t

)

t>0

converges in law as t→ +∞

towards a centered Gaussian law N (0,Γ).

More precisely, setting W(ℓ)(t) :=
W(ℓt)−m⊗∞(ℓt)√

ℓ
for any 0 ≤ t ≤ 1 and ℓ ≥ 1, the sequence

of random processes (W(ℓ)(t))ℓ≥1 converges to a n-dimensional Brownian motion (BΓ(t))0≤t≤1

with covariance matrix Γ.

Proof. Fix ℓ ≥ 1 and observe that

sup
t∈[0,ℓ]

∥∥W(t)−m⊗∞(t)
∥∥ = sup

0≤k≤ℓ−1
sup

t∈[k,k+1]
‖W(t)− km−m(t− k)‖ .

For any 0 ≤ k ≤ ℓ and t ∈ [k, k + 1], we have W(t) =Wk +Xk+1(t− k) so that

(19) W(t)−m⊗∞(t) =Wk − km +
(
Xk+1(t− k)−m(t− k)

)

with sup
t∈[k,k+1]

‖Xk+1(t− k)−m(t− k)‖ = sup
t∈[0,1]

‖Xk+1(t)−m(t)‖ ≤ +2L, since both paths in

B(κ) and m have length L, by Proposition 4.6. It readily follows that

(20) sup
t∈[0,ℓ]

∥∥W(t)−m⊗∞(t)
∥∥ ≤ sup

0≤k≤ℓ
‖Wk − km‖+ 2L.
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By the law of large number for the random walkW = (Wk)k≥1, one gets lim
k→+∞

1
k ‖Wk − km‖ = 0

almost surely; this readily implies lim
ℓ→+∞

1
ℓ sup
1≤k≤ℓ

‖Wk − km‖ = 0 almost surely, so that, by (20),

lim
ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥∥W(t)−m⊗∞(t)
∥∥ = 0 almost surely.

Let us now prove the central limit theorem; for any t > 0, set kt := ⌊t⌋ and notice that
decomposition (19) yields to

(21)
W(t)−m⊗∞(t)√

t
=

√
kt
t
× Wkt − ktm√

kt
+

Xkt+1(t− kt)−m(t− kt)√
t

By the central limit theorem in Rn, one knows that the sequence of random variables

(
Wk − km√

k

)

k≥1

converges in law as k → +∞ towards a centered Gaussian law N (0,Γ); on the other hand, one

gets lim
t→+∞

√
kt
t

= 1 and lim sup
t→+∞

∥∥∥Xkt+1(t− kt)−m(t− kt)√
t

∥∥∥ ≤ lim sup
t→+∞

2L√
t
= 0, so one may

conclude using Slutsky theorem.
The convergence of the sequence (Wℓ(t))ℓ≥1 towards a Brownian motion goes along the same

line. Consider first for any ℓ ≥ 1 the piecewise affine and continuous process (W (ℓ)(t))1≤t≤1 with

value Wk/
√
ℓ at point t = k/ℓ for any1 ≤ k ≤ ℓ and defined by:

for all ℓ ≥ 1 and 0 ≤ t ≤ 1 W (ℓ)(t) :=
W⌊ℓt⌋ + (ℓt− ⌊ℓt⌋)X⌊ℓt⌋+1(1)− ℓtm√

ℓ
.

By the invariance principle, one knows that the sequence (W (ℓ))ℓ≥1 converges in distribution
towards the Brownian motion BΓ. One concludes noticing that

∥∥∥W(ℓ)(t)−W (ℓ)(t)
∥∥∥ =

∥∥∥
W⌊ℓt⌋ − ⌊ℓt⌋m√

ℓ
+
X⌊ℓt⌋+1(ℓt− ⌊ℓt⌋)−m(ℓt− ⌊ℓt⌋)√

ℓ

−
W⌊ℓt⌋ − ⌊ℓt⌋m+ (ℓt− ⌊ℓt⌋)

(
X⌊ℓt⌋+1(1)−m

)

√
ℓ

∥∥∥

≤ 2√
ℓ
(‖m‖∞ + ‖X⌊nt⌋+1‖∞)

and using again Slutsky lemma. �

5.2. The law of large numbers and the central limit theorem for H. To prove the law
of large numbers and the central limit theorem for H, we need the two following preparatory
lemmas. Consider a simple root α and a trajectory η ∈ Ω such that 1

ℓ 〈η(ℓ), α∨〉 converges to a
positive limit when ℓ tends to infinity.

Lemma 5.2. There exists a nonnegative integer ℓ0 such that for any ℓ ≥ ℓ0

inf
t∈[0,ℓ]

〈η(t), α∨〉 = inf
t∈[0,ℓ0]

〈η(t), α∨〉.

Proof. Since 1
ℓ 〈η(ℓ), α∨〉 converges to a positive limit, we have in particular that lim

ℓ→+∞
〈η(ℓ), α∨〉 =

+∞. Consider t > 0 and set ℓ = ⌊t⌋. We can write by definition of η ∈ Ω, η(t) = η(ℓ) + π(t− ℓ)
where π is a path of B(πκ). So 〈η(t), α∨〉 = 〈η(ℓ), α∨〉+ 〈π(t− ℓ), α∨〉. Since π ∈ B(πκ), we have

‖π(t− ℓ)‖ ≤ L
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where L is the common length of the paths in B(πκ). So the possible values of 〈π(t − ℓ), α∨〉
are bounded. Since lim

ℓ→+∞
〈η(ℓ), α∨〉 = +∞, we also get limt→+∞〈η(t), α∨〉 = +∞. Recall that

η(0) = 0. Therefore inft∈[0,ℓ]〈η(t), α∨〉 ≤ 0. Since limt→+∞〈η(t), α∨〉 = +∞ and the path η is
continuous, there should exist an integer ℓ0 such that inft∈[0,ℓ0]〈η(t), α∨〉 = inft∈[0,ℓ0]〈η(t), α∨〉
for any ℓ ≥ ℓ0. �

Lemma 5.3.

(i) Consider a simple root α and a trajectory η ∈ Ω such that 1
ℓ 〈η(ℓ), α∨〉 converges to a

positive limit when ℓ tends to infinity. We have for any simple root α

sup
t∈[0,+∞[

‖Pα(η)(t)− η(t)‖ < +∞

in particular, 1
ℓ 〈Pα(η)(ℓ), α

∨〉 also converges to a positive limit.
(ii) More generally, let αi1 , · · · , αir , r ≥ 1, be simple roots of g and η a path in Ω satisfying

lim
t→+∞

〈η(t), α∨
ij 〉 = +∞ for 1 ≤ j ≤ r. One gets

sup
t∈[0,+∞[

‖Pαi1
· · · Pαir

(η)(t)− η(t)‖ < +∞.

Proof. (i) By definition of the transform Pα, we have ‖Pα(η)(t) − η(t)‖ =
∣∣inft∈[0,t]〈η(s), α∨〉

∣∣ ‖α∨‖
for any t ≥ 0. By the previous lemma, there exists an integer ℓ0 such that for any t ≥ ℓ0,
‖Pα(η)(t) − η(t)‖ =

∣∣infs∈[0,t]〈η(s), α∨〉
∣∣ ‖α∨‖ =

∣∣infs∈[0,ℓ0]〈η(s), α∨〉
∣∣ ‖α∨‖. Since the infimum

infs∈[0,ℓ0]〈η(s), α∨〉 does not depend on ℓ, we are done. Now 1
ℓ 〈Pα(η(ℓ)), α

∨〉 and 1
ℓ 〈η(ℓ), α∨〉

admit the same limit.
(ii) Consider a ∈ {2, . . . , r − 1} and assume by induction that we have

(22) sup
t∈[0,+∞[

∥∥Pαia
· · · Pαir

(η)(t)−m⊗∞(t)
∥∥ < +∞.

We then deduce

(23) lim
ℓ→+∞

1

ℓ
〈Pαia

· · · Pαir
(η)(ℓ), α∨

ia−1
〉 = 〈m,α∨

ia−1
〉 > 0.

This permits to apply Lemma 5.3 with η′ =Pαia
· · · Pαir

(η) and α = αia−1 . We get

sup
t∈[0,+∞[

∥∥∥Pαia−1
· · · Pαir

(η)(t)− Pαia
· · · Pαir

(η)(t)
∥∥∥ < +∞.

By using (22), this gives

(24) sup
t∈[0,+∞[

∥∥∥Pαia−1
· · · Pαir

(η)(t) −m⊗∞(t)
∥∥∥ < +∞.

We thus have proved by induction that (24) holds for any a = 2, . . . , r − 1. �

Theorem 5.4. Let W be a random path defined on Ω = (B(πκ)
⊗Z≥0 , p⊗Z≥0) with drift path m

and let H = P(W) be its Pitman transform. Assume m ∈ Dκ. Then, we have

lim
ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥∥H(t)−m⊗∞(t)
∥∥ = 0 almost surely.

Furthermore, the family of random variables

(H(t)−m⊗∞(t)√
t

)

t>0

converges in law as t→ +∞
towards a centered Gaussian law N (0,Γ).
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Proof. Recall we have P=Pαi1
· · · Pαir

by Proposition ([1]). Consequently, by Theorem 5.1 and

Lemma 5.3, the random variable H−W = P(W) −W is finite almost surely. It follows that

lim sup
ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥∥∥H(t)−m⊗l(t)
∥∥∥ ≤ lim sup

ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥∥∥W(t)−m⊗l(t)
∥∥∥+lim sup

ℓ→+∞

1

ℓ
sup
t≥0

‖H(t)−W(t)‖ = 0

almost surely. To get the central limit theorem for the process H(t), we write similarly

H(t)−m⊗l(t)√
t

=
W(t)−m⊗l(t)√

t
+

H(t)−W(t)√
t

.

By Theorem 5.1, the first term in this decomposition satisfies the central limit theorem; on the
other hand the second one tends to 0 almost surely and one concludes using Slutsky theorem �

The following Lemma will be useful in Section 7. Consider π ∈ B(πκ) and η ∈ Ω such that
1
ℓ 〈η(ℓ), α∨

i 〉 converges to a positive limit for any positive root αi, i = 1, . . . n. For any ℓ, set

Πℓ(η) = ηℓ so that we have ηℓ ∈ B(πκ)
⊗ℓ. Since π ∈ B(πκ), the path ηℓ ⊗ π is defined on

[0, ℓ+ 1]. More precisely, we have ηℓ ⊗ π(t) = ηℓ(t) for t ∈ [0, ℓ[ and ηℓ ⊗ π(t) = ηℓ(ℓ) + π(t− ℓ)
for t ∈ [ℓ, ℓ+ 1].

Lemma 5.5. With the previous notation, we have

P(ηℓ ⊗ π) = P(ηℓ)⊗ π

for ℓ sufficiently large.

Proof. Recall that P=Pαi1
· · · Pαir

. We prove by induction that for any s = 1, . . . , r, there
exists a nonnegative integer ℓs such that

Pαis
· · · Pαir

(ηℓ ⊗ π) = Pαis
· · · Pαir

(ηℓ)⊗ π

for any ℓ > ℓs and lim
ℓ→+∞

1
ℓ 〈Pαis

· · · Pαir
(ηℓ), α

∨〉 = +∞ for any simple root α.

Since lim
ℓ→+∞

〈ηℓ ⊗π, α∨
i1
〉 = +∞, there exists by Lemma 5.2 a nonnegative integer ℓr such that

for any ℓ > ℓr infs∈[0,ℓ]〈ηℓ ⊗ π(s), α∨〉 = infs∈[0,ℓr]〈ηℓ ⊗ π(s), α∨〉 = infs∈[0,ℓr]〈ηℓ(s), α∨〉. Here the
last equality follows from the equality ηℓ⊗π(s) = ηℓ(s) for s ∈ [0, ℓr]. Then for any t ∈ [0, ℓ+1],
we have

(25) Pαir
(ηℓ ⊗ π)(t) =





ηℓ(t)− infs∈[0,t]〈ηℓ(s), α∨〉α∨ for t ∈ [0, ℓr[,
ηℓ(t)− infs∈[0,ℓr]〈ηℓ(s), α∨〉α∨ for t ∈ [ℓr, ℓ[,
ηℓ(ℓ) + π(ℓ− t)− infs∈[0,ℓr]〈η(s)⊗ π, α∨〉α∨ for t ∈ [ℓ, ℓ+ 1].

Since infs∈[0,ℓ]〈ηℓ(s), α∨〉 = infs∈[0,ℓr]〈ηℓ(s), α∨〉, we can write for any t ∈ [0, ℓ]

(26) Pαir
(ηℓ)(t) =

{
ηℓ(t)− infs∈[0,t]〈ηℓ(s), α∨〉α∨ for t ∈ [0, ℓr[,
ηℓ(t)− infs∈[0,ℓr]〈ηℓ(s), α∨〉α∨ for t ∈ [ℓr, ℓ[.

We then deduce from (25) that Pαir
(ηℓ ⊗ π) =Pαir

(ηℓ)⊗ π. The equalities (26) also show that

lim
ℓ→+∞

1
ℓ 〈Pαir

(ηℓ), α
∨
i 〉 = +∞ for any simple root αi.

Now assume we have a nonnegative integer ℓs+1 such that

Pαis+1 · · · Pαir
(ηℓ ⊗ π) = Pαis+1 · · · Pαir

(ηℓ)⊗ π

for any ℓ > ℓs+1 and lim
ℓ→+∞

1
ℓ 〈Pαis+1

· · · Pαir
(ηℓ), α

∨
i 〉 = +∞ for any simple root αi. Set

η′ℓ =Pαis+1
· · · Pαir

(ηℓ). We can then apply the previous arguments to η′ℓ (instead of ηℓ) and

αis (instead of αir). We obtain a nonnegative integer ℓs ≥ ℓs+1 such that Pαis
· · · Pαir

(ηℓ ⊗
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π) =Pαis
· · · Pαir

(ηℓ)⊗π for any ℓ > ℓs and lim
ℓ→+∞

1
ℓ 〈Pαis

· · · Pαir
(ηℓ), α

∨
i 〉 = +∞ for any simple

root αi. This proves the desired property by induction, thus also the lemma by considering
s = 1. �

6. Harmonic functions on multiplicative graphs associated to a central

measure

Harmonic functions on the Young lattice are the key ingredients in the study of the asymptotic
representation theory of the symmetric group. In fact, it was shown by Kerov and Vershik that
these harmonic functions completely determine the asymptotic characters of the symmetric
groups. We refer the reader to [6] for a detailed review. The Young lattice is an oriented graph
with set of vertices the set of all partitions (each partition is conveniently identified its Young
diagram). We have an arrow λ → Λ between the partitions λ and Λ when Λ can be obtained
by adding a box to λ. The Young lattice is an example of branching graph in the sense that its
structure reflects the branching rules between the representations theory of the groups Sℓ and
Sℓ+1 with ℓ > 0. One can also consider harmonic functions on other interesting graphs.

Here we focus on graphs defined from the weight lattice of g. These graphs depend on a fixed
κ ∈ P+ and are multiplicative in the sense that a positive integer, equal to a tensor product
multiplicity, is associated to each arrow. We call them the multiplicative tensor graphs. We are
going to associate a Markov chain to each multiplicative tensor graph G. The aim of this section
is to determine the harmonic functions on G when this associated Markov chain is assumed to
have a drift. We will show this is equivalent to determine the central probability measure on
the subset ΩC containing all the trajectories which remains in C. When g = sln+1 and κ = ω1

(that is V (κ) = Cn+1 is the defining representation of sln+1), G is the subgraph of the Young
lattice obtained by considering only the partitions with at most n+ 1 parts and we recover the
harmonic functions obtained by Kerov and Vershik from specializations of Schur polynomials.

6.1. Multiplicative tensor graphs, harmonic functions and central measures. So as-
sume κ ∈ P+ is fixed. We denote by G the oriented graph with set of vertices the pairs
(λ, ℓ) ∈ P+ × Z≥0 and arrow

(λ, ℓ)
mΛ

λ,κ→ (Λ, ℓ+ 1)

with multiplicity mΛ
λ,κ when mΛ

λ,κ > 0. In particular there is no arrows between (λ, ℓ) and

(Λ, ℓ+ 1) when mΛ
κ,κ = 0.

Example 6.1. Consider g = sp2n. Then P = Zn and P+ can be identified with the set of
partitions with at most n parts. For κ = ω1 the graph G is such that (λ, ℓ) → (Λ, ℓ + 1) with
mΛ

λ,κ = 1 if and only of the Young diagram of Λ is obtained from that of λ by adding or deleting

one box. We have drawn below the connected component of ( ∅, 0 ) up to ℓ ≤ 3.
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(

, 3
) (

, 3
) (

, 3

) 
 , 3




...
...

...
...

Observe that in the case g = sln+1 and κ = ω1, we have mΛ
λ,κ = 1 if and only if of the Young

diagram of Λ is obtained by adding one box to that of λ and mΛ
λ,κ = 0 otherwise. So in this very

particular case, it is not useful to keep the second component ℓ since it is equal to the rank of
the partition λ. The vertices of G are simply the partitions with at most n parts (i.e. whose
Young diagram has at most n rows).

Now return to the general case. Our aim is now to relate the harmonic functions on G and
the central probability distributions on the set ΩC of infinite trajectories with steps in B(πκ)
which remain in C. We will identify the elements of P+ ×Z≥0 as elements of the R-vector space
PR × R (recall PR = Rn). For any ℓ ≥ 0, set Hℓ = {π ∈ B(πκ)

⊗ℓ | Imπ ⊂ C}. Also if λ ∈ P+,
set Hℓ

λ = {π ∈ Hℓ | wt(π) = λ}. Given π ∈ Hℓ, we denote by

Cπ = {ω ∈ ΩC | Πℓ(ω) = π}
the cylinder defined by π. We have C∅ = ΩC . Each probability distributionQ on ΩC is determined
by its values on the cylinders and we must have

∑

π∈Hℓ

Q(Cπ) = 1

for any ℓ ≥ 0.

Definition 6.2. A central probability distribution on ΩC is a probability distribution Q on ΩC

such that Q(Cπ) = Q(Cπ′) provided that wt(π) = wt(π′) and π, π′ have the same length.

Consider a central probability distribution Q on ΩC . We have
∑

π∈Hℓ Q(Cπ) = 1, so it is

possible to define a probability distribution q on Hℓ by setting qπ = Q(Cπ) for any π ∈ Hℓ.
Since Q is central, we can also define the function

(27) ϕ :

{
G → [0, 1]

(λ, ℓ) 7−→ Q(Cπ)

where π is any path of Hℓ. Now observe that we have

Cπ =
⊔

η∈B(πκ)|Im(π⊗η)⊂C

Cπ⊗η
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by considering the possible elementary paths η appearing as (ℓ+ 1)-steps of paths in Cπ. This
gives

(28) Q(Cπ) =
∑

η∈B(πκ)|Im(π⊗η)⊂C

Q(Cπ⊗η).

Assume π ∈ Hℓ
λ. The cardinality of the set {η ∈ B(πκ) | Im(π ⊗ η) ⊂ C and wt(π ⊗ η) = Λ} is

then equal to mΛ
λ,κ by Theorem 3.3. Therefore, we get

(29) ϕ(λ, ℓ) =
∑

Λ

mΛ
λ,κϕ(Λ, ℓ+ 1).

This means that the function ϕ is harmonic on the multiplicative graph G.
Conversely, if ϕ′ is harmonic on the multiplicative graph G, for any cylinder Cπ in ΩC with

π ∈ Hℓ
λ, we set Q′(Cπ) = ϕ′(λ, ℓ). Then Q′ is a probability distribution on ΩC since it verifies

(28) and is clearly central. Therefore, a central probability distribution on ΩC is characterized
by its associated harmonic function defined by (27).

6.2. Harmonic function on a multiplicative tensor graph. Let Q a central probability
distribution on ΩC . Consider π = π1 ⊗ · · · ⊗ πℓ ∈ Hℓ

λ and π# = π1 ⊗ · · · ⊗ πℓ ⊗ πℓ+1 ∈ Hℓ+1
Λ .

Since we have the inclusion of events Cπ# ⊂ Cπ, we get

Q(Cπ# | Cπ) =
Q(Cπ# , Cπ)

Q(Cπ)
=

Q(Cπ#)

Q(Cπ)
=
ϕ(Λ, ℓ + 1)

ϕ(λ, ℓ)
.

We then define a Markov chain Z = (Zℓ)ℓ≥0 from (ΩC ,Q) with values in G and starting from
Z0 = (µ, ℓ0) ∈ G by

Zℓ(π) = (wt(Πℓ(ω)), ℓ).

Its transition probabilities are given by

ΠZ((λ, ℓ), (Λ, ℓ + 1)) =
∑

π#

Q(Cπ# | Cπ)

where π ∈ Hℓ
λ is fixed and the sum runs over all the paths π# ∈ Hℓ+1

Λ such that π# = π⊗πℓ+1.

Since there are mΛ
λ,κ such pairs, we get

(30) ΠZ((λ, ℓ), (Λ, ℓ + 1)) =
mΛ

λ,κϕ(Λ, ℓ + 1)

ϕ(λ, ℓ)

and by (29) Z = (Zℓ)ℓ≥0 is indeed a Markov chain. We then write Q(µ,ℓ0)(Zℓ = (λ, ℓ)) for the
probability that Zℓ = (λ, ℓ) when the initial value is Z0 = (µ, ℓ0). When Z0 = (0, 0), we simply
write Q(Zℓ = (λ, ℓ)) = Q(0,0)(Zℓ = (λ, ℓ)).

Lemma 6.3. For any µ, λ ∈ P+ and any integer ℓ0 ≥ 1, we have

Q(µ,ℓ0)(Zℓ−ℓ0 = (λ, ℓ)) = f
(ℓ−ℓ0)
λ/µ

ϕ(λ, ℓ)

ϕ(µ, ℓ0)
for any ℓ ≥ ℓ0.

Proof. By (30), the probability Q(µ,ℓ0)(Zℓ−ℓ0 = (λ, ℓ)) is equal to the quotient ϕ(λ,ℓ)
ϕ(µ,ℓ0)

times the

number of paths in C of length ℓ − ℓ0 starting at µ and ending at λ. The lemma thus follows

from the fact that this number is equal to f
(ℓ−ℓ0)
λ/µ by Theorem 3.3. �
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We will say that the family of Markov chains Z with transition probabilities given by (30)
and initial distributions of the form Z0 = (µ, ℓ0) ∈ G admits a drift m ∈ PR when

lim
ℓ→+∞

Zℓ

ℓ
= (m, 1) Q-almost surely

for any initial distributions Z0 = (µ, ℓ0) ∈ G.
Theorem 6.4. Let Q be a central probability distribution on ΩC such that Z admits the drift
m ∈ Dκ (see (12)).

(i) The associated harmonic function ϕ on G verifies ϕ(µ, ℓ0) =
τ−µSµ(τ)

τ−ℓ0κS
ℓ0
κ (τ)

for any µ ∈ P+

and any ℓ0 ≥ 0 where τ is determined by m as prescribed by Proposition 4.15.
(ii) The probability transitions (30) do not depend on ℓ.

(iii) For any π ∈ Hℓ0
µ , we have Q(Cπ) =

τ−µSµ(τ)

τ−ℓ0κS
ℓ0
κ (τ)

. In particular, Q is the unique central

probability distribution on ΩC such that Z admits the drift m. We will denote it by Qm.

Proof. (i). Consider a sequence of random dominant weights of the form λ(ℓ) = ℓm+ o(ℓ). We
have by using Lemma 6.3

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ)

λ(ℓ)

× 1

ϕ(µ, ℓ0)
= f

(ℓ−ℓ0)

λ(ℓ)/µ
× ϕ(λ(ℓ), ℓ)

ϕ(µ, ℓ0)
× [f

(ℓ)

λ(ℓ) × ϕ(λ(ℓ), ℓ)]−1

=
Q(µ,ℓ0)(Zℓ−ℓ0 = (λ(ℓ), ℓ))

Q(Zℓ = (λ(ℓ), ℓ))
=

Q(µ,ℓ0)(
Zℓ−ℓ0
ℓ−ℓ0

= ( λ(ℓ)

ℓ−ℓ0
, ℓ
ℓ−ℓ0

))

Q(Zℓ
ℓ = (λ

(ℓ)

ℓ , 1))
.

Since Z admits the drift m, we have

lim
ℓ→+∞

Q(µ,ℓ0)(
Zℓ−ℓ0
ℓ−ℓ0

= ( λ(ℓ)

ℓ−ℓ0
, ℓ
ℓ−ℓ0

))

Q(Zℓ
ℓ = (λ

(ℓ)

ℓ , 1))
=

1

1
= 1 and lim

ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ)

λ(ℓ)

× 1

ϕ(µ, ℓ0)
= 1.

This means that

ϕ(µ, ℓ0) = lim
ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ)

λ(ℓ)

.

Now by Theorem 4.13 and since m ∈ Dκ we can write

lim
ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ)

λ(ℓ)

= lim
ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ−ℓ0)

λ(ℓ)

× lim
ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)

f
(ℓ)

λ(ℓ)

=
τ−µSµ(τ)

τ−ℓ0κSℓ0
κ (τ)

where τ ∈]0, 1[n is determined by the drift m as prescribed by Proposition 4.15. We thus obtain

ϕ(µ, ℓ0) =
τ−µSµ(τ)

τ−ℓ0κS
ℓ0
κ (τ)

.

(ii). We have ΠZ((λ, ℓ), (Λ, ℓ + 1)) =
mΛ

λ,κϕ(Λ,ℓ+1)

ϕ(λ,ℓ) = SΛ(τ)
Sκ(τ)Sλ(τ)

τκ+λ−ΛmΛ
λ,κ which does not

depend on ℓ.
(iii). This follows from the fact that Q(Cπ) = ϕ(λ, ℓ) for any π ∈ Hℓ

λ. �

Consider m ∈ Dκ and write τ for the corresponding n-tuple in ]0, 1[n. Let W be the random
walk starting at 0 defined on P from κ and τ as in § 4.3.

Corollary 6.5. Let Q be a central probability distribution on ΩC such that Z admits the drift
m ∈ Dκ. Then, the processes (Zℓ)ℓ and ((P(Wℓ), ℓ))ℓ have the same law.
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Proof. By the previous theorem, the transitions of the Markov chain Z on G are given by

ΠZ((λ, ℓ), (Λ, ℓ + 1)) =
mΛ

λ,κϕ(Λ,ℓ+1)

ϕ(λ,ℓ) . By Theorem 4.12, the transition matrix ΠZ thus coincides

with the transition matrix of P(W ) as desired. �

Let Pm and Qm be the probability distributions associated to m (recall m determines τ ∈
]0, 1[n) defined on the spaces Ω and ΩC , respectively.

Corollary 6.6. The Pitman transform P is a homomorphism of probability spaces between
(Ω,Pm) and (ΩC ,Qm), that is we have

Qm(Cπ) = Pm(P−1(Cπ))

for any ℓ ≥ 1 and any π ∈ Hℓ.

Proof. Assume π ∈ Hℓ
λ. We have Qm(Cπ) = ϕ(λ, ℓ) = τ−λSλ(τ)

τ−ℓκSℓ
κ(τ)

. By definition of the generalized

Pitman transform P, P−1(Cπ) = {ω ∈ Ω | P(Πℓ(ω)) = π}, that is P−1(Cπ) is the set of
all trajectories in Ω which remains in the connected component B(π) ⊂ B(πκ)

⊗ℓ for any t ∈
[0, ℓ]. We thus have Pm(P−1(Cπ)) = p⊗ℓ(B(π)) = τ−λSλ(τ)

τ−ℓκSℓ
κ(τ)

by assertion (ii) of Theorem 4.12.

Therefore we get Pm(P−1(Cπ)) = Qm(Cπ) as desired. �

7. Some consequences

In this section, we first explain how the trajectories in Ω and ΩC can be equipped with natural
shifts S and J , respectively. We then prove that the generalized Pitman transform P intertwines
S and J . When g = sln+1 and κ = ω1, we recover in particular some analogue results of [17].
Next, we show that the ℓ-th elementary paths in W and H = P(W) almost surely coincide when

ℓ tends to infinity provided m ∈ Dκ (i.e. the drift of W belongs to C̊).

7.1. Isomorphism of dynamical systems. Let S : Ω → Ω be the shift operator on Ω defined
by

S(π) = S(π1 ⊗ π2 ⊗ π3 ⊗ · · · ) := (π2 ⊗ π3 ⊗ . . .)

for any trajectory π = π1 ⊗ π2 ⊗ π3 ⊗ · · · ∈ Ω. Observe that S is measure preserving for the
probability distribution Pm. We now introduce the map J : ΩC → ΩC defined by

J(π) = P ◦ S(π)
for any trajectory π ∈ ΩC . Observe that S(π) does not belong to ΩC in general so we need to
apply the Pitman transform P to ensure that J takes values in ΩC.

Theorem 7.1.

(i) The Pitman transform is a factor map of dynamical systems, i.e. the following diagram
commutes :

Ω
S→ Ω

P ↓ ↓ P
ΩC →

J
ΩC

(ii) For any m ∈ Dκ, the transformation J : ΩC → ΩC is measure preserving with respect to
the (unique) central probability distribution Qm with drift m.
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Proof. (i). To prove assertion (i), it suffices to establish that the above diagram commutes on
trajectories of any finite length ℓ > 0. So consider π = π1 ⊗ π2 ⊗ · · · ⊗ πℓ ∈ B(πκ)

⊗ℓ and set
P(π) = π+1 ⊗ π+2 ⊗ · · · ⊗ π+ℓ . We have to prove that

P(π2 ⊗ · · · ⊗ πℓ) = P(π+2 ⊗ · · · ⊗ π+ℓ )

which means that both vertices π2 ⊗ · · · ⊗ πℓ and π
+
2 ⊗ · · · ⊗ π+ℓ belong to the same connected

component of B(πκ)
⊗ℓ−1. We know that P(π) is the highest weight vertex of B(π). This implies

that there exists a sequence of root operators ẽi1 , . . . , ẽir such that

(31) π+1 ⊗ π+2 ⊗ · · · ⊗ π+ℓ = ẽi1 · · · ẽir(π1 ⊗ π2 ⊗ · · · ⊗ πℓ).

By (6), we can define a subset X := {k ∈ {1, . . . , r} such that ẽik acts on the first component of
the tensor product ẽik+1

· · · ẽir (π1 ⊗ π2 ⊗ · · · ⊗ πℓ)}. We thus obtain

π+2 ⊗ · · · ⊗ π+ℓ =
∏

k∈{1,...,r}\X

ẽik(π2 ⊗ · · · ⊗ πℓ)

which shows that π2 ⊗ · · · ⊗ πℓ and π
+
2 ⊗ · · · ⊗ π+ℓ belong to the same connected component of

B(πκ)
⊗ℓ−1. They thus have the same highest weight path as desired.

(ii). Let A ⊂ ΩC be a Q-measurable set. We have Q(J−1(A)) = P(P−1(J−1(A)) since
P is an homomorphism. Using the fact that previous diagram commutes and S preserves P,
we get Q(J−1(A)) = P(S−1(P−1(A))) = P(P), so that so Q(J−1(A)) = Q(A) since P is an
homomorphism. �

7.2. Asymptotic behavior in a fixed component. Consider m ∈ Dκ and the associated
distributions Pm and Qm defined on Ω and ΩC , respectively. We introduce the subsets of typical
trajectories in Ω and ΩC as

Ωtyp = {ω ∈ Ω | lim
ℓ→+∞

1

ℓ
〈π(ℓ), α∨

i 〉 = 〈m,α∨
i 〉 ∈ R>0 ∀i = 1, . . . , n}.

Ωtyp
C = {ω ∈ ΩC | lim

ℓ→+∞

1

ℓ
〈π(ℓ), α∨

i 〉 = 〈m,α∨
i 〉 ∈ R>0 ∀i = 1, . . . , n}.

By Theorems 5.1 and 5.4, we have

Pm(Ωtyp) = 1 and Qm(Ωtyp
C ) = 1.

Let H = (Hℓ)ℓ≥1 be a random process in ΩC ⊂ Ω with distribution Qm. Since H takes value in
Ω, we can write Hℓ = T1 ⊗ · · · ⊗ Tℓ for any ℓ ≥ 1, where the random variable Ti takes values in
B(πκ) for any i ≥ 1. By Corollary 6.6, there exists a random process W with values in Ω and
distribution Pm such that H and P(W) coincide Pm-almost surely. Notice that we also have
Wℓ = X1 ⊗ · · · ⊗Xℓ for any ℓ ≥ 1, where Xℓ is a random variable with values in B(πκ) with the
law defined in (14).

Proposition 7.2. Pm-almost surely, the random variables Tℓ and Xℓ coincide for any large
enough ℓ.

Proof. Consider a trajectory ω ∈ Ωtyp. For any ℓ ≥ 1 and set Πℓ(ω) = π1 ⊗ · · · ⊗ πℓ. We can
apply Lemma 5.5 to π1 ⊗ · · · ⊗ πℓ−1 ⊗ πℓ since we have ω ∈ Ωtyp. Hence, for ℓ sufficiently large,
we have

P(π1 ⊗ · · · ⊗ πℓ−1 ⊗ πℓ) = P(π1 ⊗ · · · ⊗ πℓ−1)⊗ πℓ.

We thus have limℓ→+∞(Tℓ −Xℓ) = 0 on Ωtyp. We are done since Pm(Ωtyp) = 1. �
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8. Dual random path and the inverse Pitman transform

It is well known (see [16]) that the Pitman transform on the line is reversible. Assume that
ω : [0,+∞[→ R is an infinite trajectory on the line such that ω(0) = 0. Its Pitman transform
P(ω) is then defined by

P(ω)(t) = ω(t)− 2 inf
s∈[0,t]

{ω(s)}

for any t ≥ 0. Now starting from an infinite trajectory ω+ on R≥0 such that limt→+∞ ω+(t) =
+∞, one can associate an infinite trajectory P−1(ω+) on R by setting

P−1(ω+)(t) = ω+ − 2 inf
s∈[t,+∞[

{ω+(s)}.

We have P ◦ P−1(ω+) = ω+ and P−1◦P(ω) = ω so that P−1 can be regarded as the inverse
transform of P.

The aim of this paragraph is to define an inverse Pitman transform for any Lie algebra g

and any dominant weight κ of g, that is to define an inverse P−1 for the generalized Pitman
transform. We assume in the remaining of the paper that m ∈ Dκ. This permits to define a
random walk W and a Markov chain H = P(W) as in Section 4. Since m is fixed, we will denote
for short by P and Q the probability distributions Pm and Qm, respectively. The transform P−1

will be defined on Ωtyp
C and we will show that P−1(H) is a random trajectory with drift w0(m)

where w0 is the longest elements of the Weyl group W. Observe that P−1 will only be defined
Q-almost surely since Q(Ωtyp

C ) = 1. The case g = sl2 and κ = ω1 corresponds to the Markov
chain H = (H)ℓ≥1 on Z≥0 with transitions ±1. We obtain a random walk P−1(H) on Z with
transitions ±1. Moreover, if limℓ→+∞

1
ℓHℓ = m, the random walk P−1(H) has drift −m, that

is limℓ→+∞
1
ℓP−1(H) = −m. Indeed the Weyl group W acts then on P = Z as W = {±id} and

we have w0 = −id.

8.1. The bar involution. Let us now review the Lusztig involution defined on any connected
crystal B(πλ) of highest path πλ. We refer the reader to [10] for a complete exposition. The
longest element w0 of the Weyl group W (which is an involution) induces an involution ∗ on
the set of simple roots defined by αi∗ = −w0(αi) for any i = 1, . . . , n. Write πlowλ for the lowest

weight vertex of B(πλ), that is π
low
λ is the unique vertex of B(πλ) such that f̃i(π

low
λ ) = 0 for any

i = 1, . . . , n. The Schützenberger involution ι is defined on the crystal B(πλ) by

ι(πλ) = πlowλ and ι(f̃i1 · · · f̃irπλ) = ẽi∗1 · · · ẽi∗r (π
low
k )

for any sequence of crystal operators f̃i1 , . . . , f̃ir with r > 0. This means that ι flips the ori-
entation of the arrows of B(πλ) and each label i is changed in i∗. In particular, we have
wt(ι(π)) = w0(wt(π)) for any π ∈ B(πλ). We extend ι by linearity on the linear combinations
of paths in B(πλ). In fact the involution ι can also be understood from the Weyl group W
action (see Theorem 3.3) on the vertices of B(πλ). One can indeed show that the involution ι
corresponds to the action of w0 as described in assertion (vii) of Theorem 3.3.

Now consider κ ∈ P+. The involution ι can only be defined (connected) component-wise (here
we regard B(πκ)

⊗ℓ as the disjoint union of its connected components). In the following we need
in fact an involution on each B(πκ)

⊗ℓ, ℓ ≥ 1 which moreover reverses the order the elementary
paths in the tensor product. We define the bar involution on B(πκ)

⊗ℓ by setting

π1 ⊗ · · · ⊗ πℓ = ι(πℓ)⊗ · · · ⊗ ι(π1)



24 CÉDRIC LECOUVEY, EMMANUEL LESIGNE AND MARC PEIGNÉ

for any π1 ⊗ · · · ⊗ πℓ ∈ B(πκ)
⊗ℓ. It then follows from (6) that for any any i = 1, . . . , n we have

f̃i(π1 ⊗ · · · ⊗ πℓ) = ẽi∗(π1 ⊗ · · · ⊗ πℓ).

Thus the bar involution flips the lowest and highest weight paths and reverse the arrows. It
follows that, for any connected component B(η) of B(πκ)

⊗ℓ, the set B(η) is also a connected
component of B(πκ)

⊗ℓ. In addition, we have

wt(π1 ⊗ · · · ⊗ πℓ) = w0(wt(π1 ⊗ · · · ⊗ πℓ)).

Remark 8.1. Consider B(πλ) ⊂ B(πκ)
⊗ℓ a connected component with highest weight path πλ.

The connected components B(πλ) and B(πλ) do not coincide in general. So the restriction of
the bar involution on the connected component is not in general the Schützenberger involution
as soon as ℓ ≥ 2. Nevertheless, B(πλ) and B(πλ) are isomorphic since the highest weight path

of B(πλ) is ι(πλ) which has weight λ = w2
0(λ) (recall w0 is an involution).

Example 8.2. We resume Example 4.7 and consider g = sp4 and κ = ω1. In this case we get
w0 = −id. We then have ι(π1) = π1 and ι(π2) = π2. In the picture below we have drawn the
path η and η where

η = 1121112̄1̄2̄1112221̄2̄1112221112̄1̄22211,

η = 1̄1̄2̄2̄2̄121̄1̄1̄2̄2̄2̄1̄1̄1̄212̄2̄2̄1̄1̄1̄2121̄1̄1̄2̄1̄1̄.

Here we simply write a ∈ {2̄, 1̄, 1, 2} instead of πa and omitted for short the symbols ⊗.

The paths η (in red) and η (in dashed read)

8.2. Dual random path. Let us define the probability distribution pι on B(πκ) by setting

(32) pιπ = pι(π) =
τκ−w0wt(π)

Sκ(τ)
for any π ∈ B(πκ)

and consider a random variable Y defined on some probability space (Ω,T ,P) with values in
B(πκ) and probability distribution pι. Set mι = E(Y ), mι = mι(1) and Dι

κ = w0(Dκ).

Lemma 8.3. We have
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(i) mι = ι(m)
(ii) mι = w0(m). In particular, m ∈ Dκ if and only if mι ∈ Dι

κ.

Proof. By using that ι is an involution on B(πκ), we get

mι =
∑

π∈B(πκ)

pιππ =
∑

π∈B(πκ)

pι(π)π = ι


 ∑

π∈B(πκ)

pι(π)ι(π)


 = ι(m)

which proves assertion (i). In particular, if we set mι = mι(1), we have mι = w0(m) and
assertion 2 follows. �

Similarly, we may consider the probability measure (pι)⊗ℓ on B(πκ)
⊗ℓ defined by

(pι)⊗ℓ(π1 ⊗ · · · ⊗ πℓ) = pι(π1) · · · pι(πℓ) =
τ ℓκ−w0(π1(1)+···πℓ(1))

Sκ(τ)ℓ
=
τ ℓκ−w0(wt(b))

Sκ(τ)ℓ
. (2)

By the Kolmogorov extension theorem, the family of probability measure ((pι)⊗ℓ)ℓ admits a
unique extension Pι := (pι)⊗Z≥0 to the space B(πκ)

⊗Z≥0 . For any ℓ ≥ 1, let Yℓ : B(πκ)
⊗Z≥0 −→

B(πκ) be the canonical projection on the ℓth coordinate; by construction, the variables Y1, Y2, · · ·
are independent and identically distributed with the same law as Y . We denote by Wι the
random path defined by

Wι(t) := Y1(1) + Y2(1) + · · ·+ Yℓ−1(1) + Yℓ(t− ℓ+ 1) for t ∈ [ℓ− 1, ℓ].

Then Wι is defined on the probability space Ωι = (B(πκ)
⊗Z≥0 ,Pι); notice that the set of tra-

jectories of Ωι is the same as the one of Ω but that the probability Pι is defined from pι. We
also define the random walk W ι = (W ι

ℓ )ℓ≥1 such that W ι
ℓ = Wι(ℓ) for any ℓ ≥ 1. Let Hι be the

random process Hι =P(Wι) and define Hι = (Hι
ℓ)ℓ≥1 such that Hι

ℓ = Hι(ℓ) for any ℓ ≥ 1. We
then have (see Proposition 4.6 in [9])

Theorem 8.4.

(i) For any β, η ∈ P , one gets

Pι(W ι
ℓ+1 = β |W ι

ℓ = η) = Kκ,β−η,
τκ−w0(β−η)

Sκ(τ)
.

(ii) The random sequence Hι is a Markov chain with the same law as H, that is with tran-
sition matrix

Π(µ, λ) =
Sλ(τ)

Sκ(τ)Sµ(τ)
τκ+µ−λmλ

µ,κ

where λ, µ ∈ P+.
(iii) For any path π ∈ Hℓ

λ,we have

Pι(Hι = π) = P(H = π) =
τ ℓκ−λSλ(τ)

Sκ(τ)ℓ
.

2We now have two probability measures p⊗ℓ and (pι)⊗ℓ on B(πκ)
⊗ℓ. Observe that for any event E ⊂ B(πκ)

⊗ℓ,
we get

(33) (pι)⊗ℓ(E) = p
⊗ℓ(ι(E)).



26 CÉDRIC LECOUVEY, EMMANUEL LESIGNE AND MARC PEIGNÉ

8.3. The stabilization phenomenon. Recall the reduced decomposition w0 = si1 · · · sir of
the longest element of W. It is then easy to verify that w0 = si∗r · · · si∗1 is also a reduced

decomposition. Consider a trajectory ω ∈ Ωtyp
C (m ∈ Dκ by hypothesis), that is 1

ℓ 〈π(ℓ), α∨
i 〉

converges to a positive limit for any simple root αi. For any ℓ ≥ 1, the path Πℓ(ω) is then
a highest weight path of length ℓ. Also, for ℓ sufficiently large, the weight Πℓ(ω)(ℓ) of Πℓ(ω)

belongs to C̊. In particular, its orbit under the action of the Weyl group W has a trivial stabilizer.
This is therefore also true for the orbit of the path Πℓ(ω) under the action of W (W acts on the
paths as prescribed by assertion (vii) of Theorem 3.3).

We are going to prove that the last elementary path in P(Πℓ(ω)) stabilizes for ℓ suffi-

ciently large. Since Πℓ(ω) is a lowest weight path, we know that we have in fact P(Πℓ(ω)) =

si1 · · · sir(Πℓ(ω)) (see assertion (iii) of the remark following Proposition 4.10). Now, by definition
of the bar involution, we get

P(Πℓ(ω)) = si1 · · · sir(Πℓ(ω)) = si∗1 · · · si∗r (Πℓ(ω)).

This leads us to define the paths

(34) ω(r) = Πℓ(ω), ω(a) = si∗a+1
· · · si∗r (Πℓ(ω)) for a = 0, . . . , r − 1.

and
η(r) = ω(r), η(a) = ω(a) = sia+1 · · · sir(Πℓ(ω)) for a = 0, . . . , r − 1.

This indeed defines two families of r+1 distinct paths of length ℓ for ℓ sufficiently large because
the stabilizer of Πℓ(ω) under the action of W is then trivial. Observe also that we have η(0) =

P(Πℓ(ω)).

Lemma 8.5. For any a = 1, . . . , r, 1
ℓ 〈ω(a)(ℓ)), α∨

i∗a
〉 tends to a positive limit.

Proof. Since ω ∈ Ωtyp
C , we have that 〈ω(r)(ℓ)), α∨

i∗r
〉 tends to a positive limit. Now assume that

a = 1, . . . , r − 1, we have

〈ω(a)(ℓ)), α∨
i∗a
〉 = 2

〈αi∗a , αi∗a〉
〈si∗a+1

· · · si∗rω(a)(ℓ), α∨
ia〉 =

2

〈αi∗a , αi∗a〉
〈ω(a)(ℓ), si∗r · · · si∗a+1

(α∨
i∗a
)〉

because the elements of W preserve the scalar product 〈·, ·〉. Now si∗r · · · si∗1 is also a reduced
decomposition of w0. Hence we have as in (2)

R+ = {αi∗r , si∗r · · · si∗a+1
(αi∗a) with a = 1, . . . , r − 1}.

Then si∗r · · · si∗a+1
(αi∗a) = α with α ∈ R+. We can decompose it on the basis of simple root as

α = m1α1 + · · ·+mnαn where each mi is a nonnegative integer. We thus get

1

ℓ
〈ω(a)(ℓ)), α∨

i∗a
〉 =

n∑

i=1

mi〈αi, αi〉
〈αi∗a , αi∗a〉

× 1

ℓ
〈ω(a)(ℓ)), α∨

i 〉.

Now since at least one of the coordinates mi is nonzero and each 1
ℓ 〈ω(a)(ℓ)), α∨

i 〉 tends to a

positive limit, we obtain that 1
ℓ 〈ω(a)(ℓ)), α∨

i∗a
〉 also tends to a positive limit. �

Assume that for any ℓ ≥ 1, (ℓ)η̂ is a path of length ℓ. To prove the crucial Proposition 8.8, we
need the two following lemmas.

Lemma 8.6. Let αi be a simple root such that 1
ℓ 〈(ℓ)η̂(ℓ), α∨

i 〉 converges to a positive limit. For
any integer p ≥ 1, there exists an integer q ≥ p such that for any t ∈ [0, p] and any ℓ ≥ q, we
have mins∈[t,ℓ]〈(ℓ)η̂(s), α∨

i 〉 = mins∈[t,q]〈(ℓ)η̂(s), α∨
i 〉.
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Proof. Define the map f on [0,+∞[ by setting f(t) = 〈(ℓ)η̂(t), α∨
i 〉. Since the length of the

elementary paths in B(πκ) is fixed and limℓ→+∞ f(ℓ) = +∞, we also have lims→+∞ f(s) = +∞.
Let M(a) = supt∈[0,p] f(t). There exists an integer q ≥ p such that f(s) ≥ M(a) for any

s ∈ [q,+∞[. For any t ∈ [0, p] and any ℓ ≥ q, we have then mins∈[t,ℓ] f(s) = mins∈[t,q] f(s) since
f(s) ≥M(a) ≥ f(t) ≥ mins∈[t,ℓ] f(s) for any s ≥ q. �

Lemma 8.7. Let ω ∈ ΩC and αi be a simple root such that 1
ℓ 〈ω(ℓ), α∨

i∗〉 converges to a positive

limit. For any ℓ ≥ 1, set (ℓ)η = Πℓ(ω) and
(ℓ)η = η1⊗η2⊗· · ·⊗ηℓ its decomposition in elementary

paths3. For any integer p ≥ 1, there exists an integer q ≥ p such that for any ℓ ≥ q the p last
steps in the paths Pαi(

(ℓ)η) and Pαi(ηℓ−q ⊗ · · · ⊗ ηℓ) coincide.

Proof. Define the path (ℓ)η̂ on [0, ℓ] by

(35) η̂(t) =(ℓ) η(ℓ− t)−(ℓ) η(ℓ).

Hence (ℓ)η̂ is the reverse path of (ℓ)η translated by −(ℓ)η(ℓ). We obtain (ℓ)η̂(0) = 0 and (ℓ)η̂(ℓ) =

−(ℓ)η(ℓ) = −w0(ω(ℓ)) since
(ℓ)η̂ = Πℓ(ω). We have

1

ℓ
〈(ℓ)η̂(ℓ), α∨

i 〉 = −1

ℓ
〈w0(ω(ℓ))), α

∨
i 〉 =

1

ℓ
〈ω(ℓ)), α∨

i∗〉

since w0 is an involution in W (thus preserves the scalar product) and w0(α
∨
i ) = −α∨

i∗ . Since
1
ℓ 〈ω(ℓ), α∨

i∗〉 converges to a positive limit, we also have that 1
ℓ 〈(ℓ)η̂(ℓ), α∨

i 〉 tends to the same
positive limit. Consider p ≥ 1. By applying Lemma 8.6, we obtain an integer q ≥ p such that
for any t ∈ [0, p] and any ℓ ≥ q we have mins∈[t,ℓ]〈(ℓ)η̂(s), α∨

i 〉 = mins∈[t,q]〈(ℓ)η̂(s), α∨
i 〉. Now by

definition (35) of the paths (ℓ)η̂, we get for any ℓ ≥ q and any t ∈ [ℓ− p, ℓ]

min
s∈[0,t]

〈(ℓ)η(s), α∨
i 〉 = min

s∈[ℓ−q,t]
〈(ℓ)η(s), α∨

i 〉

because (ℓ)η(ℓ) is a constant (i.e. does not depend on t). For any ℓ ≥ q and any t ∈ [ℓ− p, ℓ] we
finally obtain

Pαi(
(ℓ)η)(t) =(ℓ) η(t)− min

s∈[0,t]
〈(ℓ)η(s), α∨

i 〉 =(ℓ) η(t)− min
s∈[ℓ−q,t]

〈(ℓ)η(s), α∨
i 〉.

Since [ℓ−p, ℓ] ⊂ [ℓ− q, ℓ], this implies that the p last elementary path in the paths Pαi(
(ℓ)η) and

Pαi(ηℓ−q ⊗ · · · ⊗ ηℓ) (obtained by restriction to [ℓ− p, ℓ]) coincide as desired. �

Recall that we have defined η(a) = ω(a) for any a = 0, . . . , r. For any a = 1, . . . , r, decompose

the path η(a) = η
(a)
1 ⊗ · · · ⊗ η

(a)
ℓ as the concatenation of ℓ elementary paths. The following

proposition shows that there exists an integer ℓr ≥ 1 such that η
(0)
ℓ , the final elementary path

of η(0) = P(Πℓ(ω)), is determined by the ℓr-last elementary paths in η(r).

Proposition 8.8.

(i) For any a = 0, . . . , r − 1, we have Pia+1 · · · Pir(η
(r)) = η(a). Hence η(a−1) = Pαia

(η(a))

for a = 1, . . . , r and for a = 0 we get P(η(r)) = η(0).

(ii) There exists an integer ℓr ≥ 1 such that for any ℓ ≥ ℓr, the last elementary path in η(0)

only depends on the ℓr last elementary paths of η(r).

3Observe that the first step of (ℓ)η depends on ℓ so one cannot define an infinite path in Ω from the sequence
((ℓ)η)ℓ≥1.
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Proof. Observe first that η(r) is a lowest weight path since ω(r) is a highest weight path and η(r) =

ω(r). So we have Pia+1 · · · Pir (η
(r)) = sia+1 · · · sir(η(r)) (see assertion (iv) of the remark following

Proposition 4.10). But η(a) = ω(a) = si∗a+1
· · · si∗r(ω(r)) = sia+1 · · · sir(ω(r)) = sia+1 · · · sir(η(r)).

This gives assertion (i).

To prove assertion (ii), set ℓ0 = 1. We have ω(0) = Pαi∗1
(ω(1)) and by Lemma 8.5, 1

ℓ 〈ω(1)(ℓ), α∨
i∗1
〉

tends to a positive limit. So we can apply Lemma 8.7 with p = 1 and obtain an integer ℓ1 such

that for any ℓ ≥ ℓ1 the last elementary path in η(0) and Pα1(η
(1)
ℓ−ℓ1

⊗ · · · ⊗ η
(1)
ℓ ) coincide. This

means that one can compute the last elementary path in η(0) by applying Pα1 to the ℓ1 last

elementary paths in η(1) and restricting to [ℓ−1, ℓ]. Assume by induction that we have defined a
sequence 1 = ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓa−1 such that for any k = 1, . . . , a the ℓk−1 last elementary paths

in η(k−1) and Pαk
(η

(k)
ℓ−ℓk

⊗ · · · ⊗ η
(k)
ℓ ) coincide. We have ω(a) = Pαi∗

a+1
(ω(a+1)) and by Lemma

8.5, 1
ℓ 〈ω(a+1)(ℓ), α∨

i∗a+1
〉 tends to a positive limit. So we can apply Lemma 8.7 with p = ℓa and

obtain an integer ℓa+1 ≥ ℓa such that for any ℓ ≥ ℓa+1 the ℓa last elementary paths in η(a)

and Pαa+1(η
(a+1)
ℓ−ℓa+1

⊗ · · · ⊗ η
(a+1)
ℓ ) coincide. By induction we thus have obtained a sequence

1 = ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓr such that for any a = 1, . . . , r and any ℓ ≥ ℓr, the ℓa−1 last elemen-
tary paths in η(a−1) are obtained by applying Pαa to the last ℓa elementary paths in η(a) and
restricting to [ℓ− ℓa−1, ℓ]. This can be written

η
(a−1)
ℓ−ℓa−1

⊗ · · · ⊗ η
(a−1)
ℓ = Pαa(η

(a)
ℓ−ℓa

⊗ · · · ⊗ η
(a)
ℓ )↓ℓa−1

where ↓ ℓa−1 means we restrict to the last ℓa−1 elementary paths. This proves that the last

elementary path in η(0) can be obtained from η
(r)
ℓ−ℓr

⊗ · · · ⊗ η
(r)
ℓ by successive restrictions and

applications of the transforms Pαr , . . . ,Pα1 . Hence the last elementary path in η(0) only depends

on the ℓr last elementary paths in η(r). �

Recall that ω ∈ Ωtyp
C and m ∈ Dκ. For any ℓ ≥ 1, we have set Πℓ(ω) = ω(r) and obtained

η(0) = P(η(r)) = P(ω(r)). In particular η(0) is the concatenation of ℓ elementary paths and we
can write it on the form

η(0) = η
(0)
1 ⊗ · · · ⊗ η

(0)
ℓ

where η
(0)
k ∈ B(πκ) for any k = 1, . . . , ℓ. The following corollary shows that the final path η

(0)
ℓ

stabilizes when ℓ tends to infinity.

Corollary 8.9 (stabilization phenomenon). There exists an elementary path η ∈ B(πκ) and an

integer ℓr ≥ 1 such that η
(0)
ℓ = η for any ℓ ≥ ℓr.

Proof. Recall the decomposition of the path η(r) = η
(r)
1 ⊗ · · · ⊗ η

(r)
ℓ as the concatenation of

ℓ elementary paths and the similar decomposition ω(r) = π1 ⊗ · · · ⊗ πℓ of Πℓ(ω) = ω(r). By

assertion (ii) of the previous proposition, for any ℓ ≥ ℓr, the elementary path η
(0)
ℓ only depends

on η
(r)
ℓ−ℓr

⊗ · · · ⊗ η
(r)
ℓ . Since η(r) = ω(r), we have

η
(r)
1 ⊗ · · · ⊗ η

(r)
ℓ = ι(πℓ)⊗ · · · ⊗ ι(π1).

Hence η
(0)
ℓ is completely determined by ι(πℓr)⊗ · · · ⊗ ι(π1) which is independent of ℓ. �



CENTRAL MEASURES AND LITTELMANN PATHS 29

Definition 8.10. We define the map ψ from Ωtyp
C to B(πκ) by setting ψ(ω) = η where η is

obtained from ω ∈ Ωtyp
C as in the previous corollary. Namely, we have

ψ(ω) = lim
ℓ→+∞

P(Πℓ(ω))ℓ

where P(Πℓ(ω))ℓ is the last elementary path in P(Πℓ(ω)).

Remarks 8.11. (i) By the proof of the previous corollary, one can compute ψ(ω) from
ω = π1 ⊗ π2 ⊗ · · · by considering the final elementary paths in the sequences of paths
P(ι(πk) ⊗ · · · ⊗ ι(π1)), k ≥ 1. This elementary path should stabilize to ψ(ω) as soon as

ω ∈ Ωtyp
C .

(ii) The arguments in the proof of Proposition 8.8 also imply a stronger statement: for any

fixed integer p ≥ 1, the p last elementary paths in η(0) stabilizes for ℓ sufficiently large.
This is illustrated by the example below.

Example 8.12. Assume g = sp4 and take κ = ω1. Consider ω such that Π23(ω) = u with

u = 122 11122212112121212122.

For any k ∈ {1 . . . 23}, set v(k) = P(u1 · · · uk) (here, we also omit for short the symbol ⊗ in the
paths we consider). We obtain successively for the paths v(k), k = 1, · · · , 23

1
12
112
1112
12112
112212
1112212
12112212
112112212
1112112212
12112112212
122212112212
1122212112222
11122212112222
121122212112222
1121122212112222
12121122212112222
112121122212112222
1212121122 212112222

11212221122 2212112222.

8.4. Inversion of the generalized Pitman transform. Write Wι = Y1 ⊗ Y2 · · · the dual
random path with drift ι(m). The following proposition shows that the action of ψ on P(Wι)
is easy to compute.

Proposition 8.13. We have ψ ◦ P(Wι) = Y1 Pι-almost surely.

Proof. Consider Πℓ(Wι) = Y1 ⊗ Y2 · · · ⊗ Yℓ. To compute ψ ◦ P(Wι), we need to obtain the

limit of the last elementary path in P(Πℓ(P(Wι))). Since Wι has drift w0(m), we have for any
simple root αi, limℓ→+∞

1
ℓ 〈Πℓ(Wι)(ℓ), α∨

i 〉 = 〈w0(m), α∨
i 〉 Pι-almost surely. It follows by (33)
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that Πℓ(Wι) = ι(Yℓ)⊗ · · · ⊗ ι(Y2)⊗ ι(Y1) verifies limℓ→+∞
1
ℓ 〈Πℓ(Wι)(ℓ), α∨

i 〉 = 〈m,α∨
i 〉 P-almost

surely for any simple root αi. Also the last elementary random path in Πℓ(Wι), is always equal
to ι(Y1) for any ℓ ≥ 1 . Set

P(Πℓ(Wι)) = P(ι(Yℓ)⊗ · · · ⊗ ι(Y2)⊗ ι(Y1)) = T1 ⊗ · · · ⊗ Tℓ.

By applying Proposition 7.2, we know that limℓ→+∞ Tℓ = ι(Y1) P-almost surely. Now recall
that the bar involution is an anti-isomorphism of crystal graphs4. Since P(Πℓ(Wι)) and Πℓ(Wι)

belong to the same connected component, this is also true for P(Πℓ(Wι)) and Πℓ(Wι). Therefore

P(Πℓ(Wι)) = P(ι(Yℓ)⊗ · · · ⊗ ι(Y2)⊗ ι(Y1)) = T1 ⊗ · · · ⊗ Tℓ

is also the highest weight path of P(Πℓ(Wι)). But we have P(Πℓ(Wι)) = Πℓ(P(Wι)) because
the ℓ-first elementary paths in P(Wι) are obtained by applying the Pitman transform to the

ℓ-first elementary paths in Wι. So we also have P(Πℓ(Wι)) = Πℓ(P(Wι)). We therefore get

P(Πℓ(P(Wι))) = T1 ⊗ · · · ⊗ Tℓ.

Since limℓ→+∞ Tℓ = ι(Y1) P-almost surely, this implies that ψ ◦ P(Wι) = ι(Y1) P-almost surely,

that is ψ ◦ P(Wι) = Y1 Pι almost surely. �

Definition 8.14. We define the transformation P−1 from Ωstab
C to Ω by setting P−1(ω) =

P−1(ω)1 ⊗ P−1(ω)2 ⊗ · · · where

P−1(ω)ℓ = ψ ◦ Jℓ−1(ω).

The following Theorem shows that the transformation P−1 can be regarded as the inverse of
the generalized Pitman transform P. Observe that, contrary to P which is defined on all the
trajectories of Ω, the transformation P−1 is only defined on Ωstab

C , that is Q-almost surely since

Q(Ωstab
C ) = 1. Recall that for both random trajectoriesWι andW, we haveH = P(W) = P(Wι).

Theorem 8.15. Assume m ∈ Dκ. Then we have

(i) P−1 ◦ P(W ι) = Wι Pι-almost surely,
(ii) We have P−1(H) = Y1 ⊗Y2 ⊗ · · · where the sequence of random variable (Yℓ)ℓ≥1 is i.i.d.

and each variable Yℓ, ℓ ≥ 1 has law Y as defined in (32).
(iii) P ◦ P−1(H) = H Q-almost surely.

Proof. (i) Write Wι = Y1 ⊗ Y2 · · · . We can set P−1 ◦ P(W ι) = U1 ⊗ U2 ⊗ · · · where for any

ℓ ≥ 1, Uℓ = ψ ◦ Jℓ−1(P(Y1 ⊗ Y2 · · · ). Now by Theorem 7.1, we have Uℓ = ψ ◦ P(Yℓ ⊗ Yℓ+1 · · · ).
By Proposition 8.13, we obtain Uℓ = Yℓ Pι-almost surely for any ℓ ≥ 1. This proves that
P−1 ◦ P(W ι) = Wι Pι-almost surely.

Since P(Wι) = H, we have P−1(H) = P−1 ◦ P(W ι). By assertion (i), this means that
P−1(H) = Wι which proves assertion (ii).

To prove assertion (iii), set H = P(W ι) so that P ◦ P−1(H) = P ◦ P−1 ◦ P(Wι). By using
assertion (i), we get P ◦ (P−1 ◦ P)(Wι) = P(Wι) Pι-almost surely which is equivalent to P ◦
P−1(H) = H Q-almost surely since P(Wι) = H. �

4Here we need that the bar involution matches the connected components
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