L2-stability independent of diffusion for a finite element -- finite volume discretization of a linear convection-diffusion equation - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2015

L2-stability independent of diffusion for a finite element -- finite volume discretization of a linear convection-diffusion equation

Résumé

We consider a time-dependent and a steady linear convection-diffusion equation. These equations are approximately solved by a combined finite element -- finite volume method: the diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the unsteady case, the implicit Euler method is used as time discretization. This scheme is shown to be unconditionally L2-stable, uniformly with respect to the diffusion coefficient.
Fichier principal
Vignette du fichier
deuring-eymard-mildner-11.pdf (309.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01060065 , version 1 (02-09-2014)
hal-01060065 , version 2 (13-11-2014)

Licence

Identifiants

Citer

Paul Deuring, Robert Eymard, Marcus Mildner. L2-stability independent of diffusion for a finite element -- finite volume discretization of a linear convection-diffusion equation. SIAM Journal on Numerical Analysis, 2015, 53 (1), pp.508-526. ⟨10.1137/140961146⟩. ⟨hal-01060065v2⟩
491 Consultations
611 Téléchargements

Altmetric

Partager

More