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L
2-stability independent of diffusion for a finite element – finite

volume discretization of a linear convection-diffusion equation.

Paul Deuring∗, Robert Eymard†and Marcus Mildner∗

November 9, 2014

Abstract

We consider a time-dependent and a steady linear convection-diffusion equation. These
equations are approximately solved by a combined finite element – finite volume method:
the diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements on a
triangular grid, and the convection term by upwind barycentric finite volumes. In the un-
steady case, the implicit Euler method is used as time discretization. This scheme is shown
to be unconditionally L2-stable, uniformly with respect to the diffusion coefficient.

AMS subject classifications. 65M30, 65M60, 76M10, 76M12.
Key words. convection-diffusion equation, combined finite element - finite volume

method, Crouzeix-Raviart finite elements, barycentric finite volumes, upwind method, sta-
bility.

1. Introduction

We consider the convection-diffusion equation

∂tu− ν∆u+ β · ∇u = g in Ω× (0, T ), (1.1)

supplemented by the initial and boundary conditions

u(x, 0) = u(0)(x) for x ∈ Ω, u | ∂Ω× (0, T ) = 0, (1.2)

respectively. Here Ω ⊂ R
2 is a bounded open polygon with Lipschitz boundary, ν and T are

positive reals, and β : Ω 7→ R
2, u(0) : Ω 7→ R as well as g : Ω × (0, T ) 7→ R are given functions.

Our key assumptions concern the advective velocity β: we require that β ∈ H1(Ω)2,

∇ · β = 0, −β · ∇ϕ ≥ β in Ω (1.3)

for some function ϕ ∈ C1(Ω) and some constant β > 0. In the case where β(x) = β0 for all

x ∈ Ω and for some β0 ∈ R
2\{0}, a suitable function ϕ is given by ϕ(x) := −β0 · x.
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We also consider the steady variant of problem (1.1), (1.2), that is,

−ν∆U + β · ∇U = G in Ω, (1.4)

U |∂Ω = 0, (1.5)

where G : Ω 7→ R is another given function. These problems are of particular interest in the
convection-dominated regime, that is, if ν ≪ |β|, an interest that seems to be motivated by
the belief that the preceding problems in the convection-dominated case show some affinity
(although distant) with the Navier-Stokes system in the same regime. In this spirit, numerical
schemes working well for that latter system are sometimes reduced to problem (1.1), (1.2) or
(1.4), (1.5) so that they may be accessible to theoretical studies regarding stability or accuracy.

In the work at hand, we consider a discretization of (1.1), (1.2) and (1.4), (1.5), respectively, that
is motivated in this way. This scheme may be described as follows: the diffusion term in (1.1)
and (1.4) is discretized by piecewise linear Crouzeix-Raviart finite elements, and the convective
term by an upwind finite volume method based on barycentric finite volumes on a triangular
grid. Choosing an explicit time discretization, Feistauer e.a. [15, Section 7], [23, Chapter 4.4]
tested this FE-FV method in the case of high-speed compressible Navier-Stokes flows in complex
geometries and obtained very satisfactory results.

In [12], we applied this FE-FV method to problem (1.1), (1.2), using the implicit Euler method
as time discretization. Under the assumption that β is constant, we showed that the approximate
solution provided by this approach may be estimated in the L2-norm against the data, with the
constant in this estimate being independent of the diffusion parameter ν. An analogous result
was established with respect to problem (1.4), (1.5). However, we had to impose a condition on
the grid ([12, (3.9)]) that goes beyond standard assumptions in a finite element or finite volume
context, and which is not satisfied by certain structured regular meshes. Additional details in
this respect may be found in [34].

It is the aim of the work at hand to establish the stability estimates from [12] without this
inconvenient condition. In fact, we will show that even if the grid is only required to be shape-
regular (minimum angle condition), an upper bound independent of ν and only involving the data
may still be constructed for the L2-norm of the approximate solution of (1.1), (1.2) and (1.4),
(1.5), respectively, obtained by the FE-FV approach described above, with the implicit Euler
method being used as time discretization in the unsteady case. As an additional generalization
with respect to [12], the function β need no longer be constant. Instead it will only be supposed
to satisfy (1.3). Our stability constants depend polynomially on β−1, ‖β‖1,2 and an upper
bound of ϕ and ∇ϕ, respectively. For a detailed statement of our results, we refer to Theorem
2.1 and 2.2 below.

We remark that our approach also carries through if the functions β and ϕ in (1.1) depend on
time, provided that the spatial H1-norm of β is bounded uniformly with respect to time, and
(1.3) holds at any time with the same constant β. Moreover the diffusion term ν∆u may be
replaced by an elliptic operator in divergence form ∇ · (A · ∇u), where A = A(x) or A = A(x, t)
is a symmetric matrix in R

2×2 which is positive definite uniformly with respect to x and (in
the unsteady case) t. However, since our presentation would become more complicated while
our proofs would remain without essential modification, we will not make these generalizations
explicit.
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Our theory should be expected to hold in the 3D case as well. Poincaré’s inequality (2.5) is
available in that case as well ([31], [5], [45]), so there should be no obstacle in this respect.
There is only one point that might need some effort, that is, to prove an analogue or find a
replacement of equation (2.6) pertaining to the discrete L2-scalar product.

Condition (1.3)1 on β cannot be expected to be sufficient for the validity of our stability results,
even if β ∈ C1(Ω)2. This will be explained in Section 5. So inevitably an additional assumption
has to be imposed on β. The one we have chosen – inequality (1.3)2 – may look ad hoc. However,
in Section 5 we will present a strong heuristic argument implying that (1.3)2 is necessary for
Theorem 2.1 and 2.2 to hold. This observation means in particular that our result is not valid
in the purely diffusive case (β = 0), that is, for Poisson’s equation ν∆U = G in the steady and
the heat equation in the evolutionary case. This is borne out by the counterexamples we present
in Section 5.

Assumption (1.3)2 means that the advective velocity β exhibits neither closed curves nor sta-
tionary points (points x ∈ Ω with β(x) = 0). In fact, it is shown in [13] that if β is smooth
and presents these geometrical properties, there is a function ϕ with (1.3)2. This result was
generalized to the case β ∈ W 1,∞(Ω)2 in [3], a reference we will come back to below.

The key argument allowing us to improve the theory from [12] consists of a weak BV estimate
providing an upper bound for a certain weighted variation of our approximate solution. This
upper bound involves the L2-norm of the solution and of the data. For technical reasons, the
estimate in question will not appear explicitly, but will be split into two parts (Lemma 3.3
and (4.1) in the unsteady case, Lemma 3.3 and (4.11) in the steady one). Usually this type
of inequality is exploited to pass to the limit in numerical schemes for the approximation of
scalar hyperbolic equations; see [42] or [9] for example. Here, however, it is a critical part of the
sequence of inequalities leading to our stability estimate.

A very large body of work deals with convection-diffusion-reaction equations, that is, with
equations of the form

−ν∆U + (β · ∇)U + µU = G in Ω (1.6)

and their time-dependent counterparts, under the assumption that

µ−∇ · β/2 ≥ γ0 for some γ0 > 0. (1.7)

As is well known, in this situation various discretizations allow error and stability estimates with
constants independent of ν. We refer to the monographs [37, Chapter 8 and 12], [16, Section
5.2.3, 5.4.4] and [39] for more details. In the case of (1.1) and (1.4), however, the condition
µ−∇ · β/2 ≥ γ0 reduces to the inequality −∇ · β ≥ γ0, which, in view of (1.3), is not satisfied.

Sometimes, when equations (1.1), (1.4) or (1.6) are solved numerically, anisotropic meshes
(”Shishkin meshes”; see [39]) are used. They take account of boundary layers, which, in turn,
depend on ν. Construction of such meshes involves the advective velocity β and becomes diffi-
cult if Ω does not exhibit a simple geometry. Moreover, for this type of mesh, the constant σ0
in condition (2.1) relative to the grid shape is influenced by the diffusion coefficient. In view
of these features, we think Shishkin’s approach works best in situations that are not the main
interest of the work at hand. So, when we compare our theory with what is available in existing
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literature, we look for stability estimates for discretizations based on conventional grids and
pertaining to scalar convection-diffusion equations whose structure is similar to that of (1.1) or
(1.4) and which do not satisfy (1.7).

In this perspective, our work is similar in spirit to the theory developed by Ayuso, Marini in
[3]. These authors consider problem (1.6) with nonhomogeneous mixed boundary conditions,
applying various discontinuous Galerkin methods in order to obtain numerical solutions. Starting
from (1.3)2 and the inequality µ − ∇ · β/2 ≥ 0, they establish not only ν-uniform stability
estimates, but also error estimates with constants independent of ν. Still we think the theory
in [3] is not completely satisfying. Besides the fact that the DG methods in question involve
a parameter that has to be chosen appropriately, a strange technical condition ([3, (H2)]) is
imposed on β in addition to (1.3)2. Moreover the constants in stability and error estimates
depend exponentially on maxϕ − minϕ ([3, Lemma 4.1]). Apart from [3], we do not know of
any reference dealing with stability or error estimates of numerical solutions to (1.1), (1.4) or
(1.6) on the basis of condition (1.3)2.

Combined FE-FV methods similar to the one considered in the work at hand were already
studied in a number of earlier articles besides reference [12] already mentioned. Ohmori and
Ushijima [36] treated the steady problem (1.4), (1.5) under assumptions on β that are weaker
than ours. They discretized (1.4) by Crouzeix-Raviart finite elements, using an upwind version of
this element in order to approximate the convective term. For constant β, this approach reduces
to the FE-FV discretization of (1.4), (1.5) we study in the work at hand. The authors provided
a ν-uniform L∞-bound for their discrete solutions, under the assumption that the right-hand
side G in (1.4) is negative and the underlying triangulation is of acute type. Also an estimate of
the H1-error is derived. The constant in this estimate depends on ν, which is inevitable for this
type of error. Feistauer e.a. [1], [15] considered a scalar time-dependent nonlinear conservation
law with a diffusion term. Discretizing this equation by the combined FE-FV scheme described
above, with a rather general numerical flux adapted to the nonlinearity in question, and with a
semi-implicit Euler method as time discretization, they established L∞-stability independent of
ν. However, they required their triangulations to be of weakly acute type, and they supposed
that the ratio of the time step to the grid size is small with respect to a quantity depending
on the lifetime T of the solution, on the L∞-norm of the initial data and the L∞-norm of
the right-hand side in the differential equation. In [1] the stability result in question is a key
element in the proof of a convergence result, whereas in [15], it is applied for deriving L2(L2)-
and L2(H1)-error estimates, which involve constants with exponential dependence on 1/ν. The
articles [21], [22] and [25] establish results analogous to those in [1] and [15], but for a combined
finite element - finite volume method involving piecewise linear conforming finite elements and
dual finite volumes. Similar L2(L2)- and L2(H1)-error estimates as in [15], [22] and [25] are
shown in [24], but pertaining to various discontinuous Galerkin discretizations.

Reference [18] deals with a degenerate time-dependent convection-diffusion equation which is
much more general than (1.1) in some respects. A discretization is performed with a similar
finite element - finite volume method as in the present article. The theory in [18] yields ν-
independent L∞-bounds for the discrete solution, but covers (1.1) only in the case g = 0. This
means in particular the approach in [18] does not provide an access to the steady problem (1.4).
In [19], a convergence proof for a mixed FE-FV method is carried through for a similar problem
as in [18]. The method in question involves conforming P1 finite elements and cell-centered
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finite volumes.

The stability estimates in [36], [1], [15], [21], [22], [25], [18] require rather severe assumptions
because they are deduced from the maximum principle. In fact, even in the case of the continuous
steady equation (1.4), this principle introduces a factor of the form ediamΩ‖β‖∞/ν if it is applied
in order to yield L∞-bounds; see [28, Theorem 3.7]. The same factor arises for the parabolic
problem (1.1) if g 6= 0 ([26, (3.3.10)]). So the assumptions in the references just mentioned are
needed in order to circumvent this phenomenon.

In [11] we derived L2- and H1-error estimates for the same discretizations of (1.1), (1.2) and
(1.4), (1.5) as considered here, under the assumption β ∈ R

2\{0}. The constants in our estimates
are analyzed with respect to their dependence on ν. This analysis, which includes the norms of
the exact solution appearing in our error bounds, reveals a polynomial dependence on ν−1/2.

L2-stability and error bounds independent of ν are constructed in [38] for finite volume ap-
proximate solutions to (1.1). Article [38] is the most recent one in a series of papers dealing
with ν-independent stability and error estimates, with previous publications treating Euler-
Lagrangian and finite element methods. The corresponding references may be found in [38].
However, although constants independent of ν constitute the best possible case one might hope
for, the type of theory developed in [38] and its predecessor papers also has drawbacks. It re-
quires periodic boundary conditions instead of Dirichlet ones, it assumes Ω to be a rectangle and
the grid to be structured according to this geometry, and it relies on Gronwall’s inequality in a
way which leads to exponential dependence of stability and error bounds on the W 1,∞-norm of
the convective velocity. Moreover, using Gronwall’s inequality leaves open the question of how
to deal with the steady case.

In [2], a mixed finite element method is applied to an unsteady nonlinear degenerate convection-
diffusion equation. An argument based on Gronwall’s inequality leads to a stability constant with
exponential dependence on the reciprocal value of the smallest eigenvalue of the diffusion matrix.
Li [33] studied the steady problem (1.6), assuming that µ−∇ · β/2 ≥ 0. He further supposed
the domain Ω to be a rectangle and admitted mixed boundary conditions. After transforming
equation (1.6) into a system of first-order partial differential equations, he discretized this system
by an upwind finite element method based on Raviart-Thomas finite elements on a structured
grid. H1-error estimates are derived, with constants depending on ν in an explicit way and
via certain norms of the exact solution. Various least-squares finite element methods applied
to (1.4) - again written as first-order system - were studied by Hsieh and Yang [30]. Requiring
that β is constant, these authors established error bounds whose dependence on ν is explicit
and also indirect through some norms of the exact solution. Buffa, Hughes, Sangalli [6] proved
stability and error estimates for a stabilized discontinuous Galerkin method applied to (1.4).
Their stability bounds are ν-uniform, and their error bounds depend on ν only insofar as certain
norms of the exact solutions are concerned. However their estimates pertain to norms weighted
by ν and β. Using norms weighted in a similar way, Verfürth [43] derived a posteriori error
estimates for finite element discretizations of (1.6) in the case µ −∇ · β/2 ≥ 0. The unsteady
case is treated in [44]. A lowest order discontinuous Petrov-Galerkin formulation with flux-
upwind stabilization was applied to (1.4) by Causin, Sacco, Bottasso [8]. Since their discrete
bilinear form associated with the convection term is positive, the authors obtained H1-stability.
The related constant inevitably depends on ν. In addition, H1-error estimates are shown. A
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streamline-diffusion finite element method with a stability parameter incorporating the flow
direction is proposed for (1.4) in [35]. An H1-error estimate is proved. The unsteady variant of
(1.6) with µ ∈ (0,∞) and ∇ · β = 0 is discretized by a least-squares finite element method in
[32]. Stability holds with a constant which, due to Gronwall’s lemma, depends exponentially on
the reciprocal value of the smallest eigenvalue of the diffusion matrix.

There is still another way of deriving L2-stability for certain numerical solutions to the unsteady
problem (1.1). In fact, if a discrete analogue to the equation

∫
Ω(β · ∇)uu dx = 0 (u ∈ H1

0 (Ω)) is
valid, Gronwall’s inequality yields a stability bound of the form C T ‖f‖2 on the time interval
[0, T ], with C independent of ν. Burman and Fernández [7] applied this idea to discrete solutions
of (1.1) constructed via edge-stabilization, local projection stabilization or quasi-static subscaling
in standard finite element spaces of continuous piecewise polynomial functions. An extension
to a nonlinear local projection stabilization is indicated in [4, Remark 4.5]. But of course, due
to the factor T in the stability constant, this approach does not yield estimates uniform in
t ∈ (0,∞), nor does it provide an access to the steady problem (1.4).

We mention that numerical tests of various FE-FV discretizations of compressible flows are
reported in [10], [23, Chapter 4.4] and [29]. Of course, combined FE-FV methods are not
only applied to scalar convection-diffusion equations, but also to other problems. As examples,
we indicate that in [17], [27], combined FE-FV methods based on the Crouzeix-Raviart finite
element yield approximate solutions to a nonlinear version of the steady compressible Stokes
system. These articles present convergence results. Reference [41] uses the scheme from [36]
described above, applying it to the 2D steady incompressible Navier-Stokes system. Error
estimates are presented for the case of Reynolds number 1.

2. Notation. FE-FV discretization of (1.1), (1.2) and (1.4),
(1.5), respectively. Statement of main results.

If ǫ > 0 and x ∈ R
2, we write Bǫ(x) for the open disk in R

2 centered in x and with radius ǫ.
If U ⊂ R

2, we put diam(U) := sup{|x − y| : x, y ∈ U}. We write |U | for the measure of a
measurable set U ⊂ R

2. For u, v ∈ L2(Ω), we use the abbreviation (u, v) :=
∫
Ω uv dx. We write

‖ ‖2 for the standard norm of L2(Ω). The Sobolev space H1(Ω) and its subspace H1
0 (Ω) are

defined in the usual way. The standard norm of H1(Ω) is denoted by ‖ ‖1,2.

As already indicated in Section 1, we assume that Ω ⊂ R
2 is a bounded open polygon with

Lipschitz boundary. The functions β, ϕ, g, u0 and G and the constants ν, T, β ∈ (0,∞) were

also introduced in Section 1, with β ∈ H1(Ω)2, ϕ ∈ C1(Ω) being such that (1.3) is satisfied.
We assume that g ∈ C0

(
[0, T ], H1(Ω)

)
and u(0), G ∈ H1(Ω). The functions g( · , t) and G are

required to belong to H1(Ω) instead of only to L2(Ω) so that they admit traces on edges, in
view of an interpolation operator we will introduce below.

By adding a constant to ϕ, we may suppose without loss of generality that ϕ(x) ≥ ϕ0 (x ∈ Ω)
for some ϕ0 > 0. For example, in the case β = β0 for some β0 ∈ R

2\{0}, we may put ϕ(x) :=
2 |β0|diam(Ω)−β0 · (x−x0), where x0 is an arbitrary but fixed point in Ω. Obviously there is a
constant ϕ1 > 0 with ϕ(x) ≤ ϕ1 and |∇ϕ(x)| ≤ ϕ1 for x ∈ Ω. We further introduce a parameter
σ0 ∈ (0, 1), which will appear in condition (2.1) below. The set Ω, the functions β, ϕ, g, u0 and
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G as well as the numbers ν, T, ϕ0, ϕ1, β and σ0 will be kept fixed throughout.

By the symbol C, we denote constants that may depend on σ0, diamΩ, β, ϕ0 and ϕ1, with

polynomial dependence on β−1, ϕ0 and ϕ1. This last feature is important because we want
to control how our estimates are influenced by β. This influence not only manifests itself by
the factor 1 + ‖β‖1,2 appearing in Theorem 2.1 and 2.2 and their proof, but also via the three
quantities β, ϕ0 and ϕ1.

We consider triangulations T of Ω with the following three properties: Firstly, T is a finite set
of open triangles K ⊂ R

2 with Ω = ∪{K : K ∈ T}. Secondly, if K1,K2 ∈ T with K1 ∩K2 6= ∅
and K1 6= K2, then K1 ∩K2 is a common vertex or a common side of K1 and K2. And thirdly,
for any K ∈ T, the relation

Bσ0 diamK(x) ⊂ K (2.1)

is valid for some x ∈ K. All estimates appearing in the following involve constants that do
not depend on the grid except via the parameter σ0 in (2.1). Therefore we may simplify our
presentation by fixing T already at this point. So let T be given such that the preceding
assumptions, in particular (2.1), are verified. Below, when we introduce some spaces, norms
and functions related to T, we will indicate this relation by an index h. This parameter h
may be considered as a quantity related to the size of the triangles K ∈ T, for example h :=
max{diamK : K ∈ T}, but it will not play any role in our theory. As a consequence of (2.1),
we have

(diamK)2 ≤ C |K| for K ∈ T. (2.2)

Let S be the set of the sides of the triangles K ∈ T. Put J := {1, ..., #S}, where #S denotes
the number of elements of S. Let (Si)i∈J be a numbering of S, and denote the midpoint of Si

by Qi (i ∈ J). Set Jo := {i ∈ J : Qi ∈ Ω}, so that J\Jo = {i ∈ J : Qi ∈ ∂Ω}. Note that for
i ∈ J\Jo, we have Si ⊂ ∂Ω.

We further introduce a barycentric mesh (Di)i∈J on the triangular grid T: If i ∈ Jo, there are

two triangles in T, denoted by K1
i , K

2
i , such that K1

i ∩ K2
i = Si. We join the barycenter of

each of these triangles with the endpoints of Si. In this way we obtain a closed quadrilateral
containing Si (Fig. 1). This quadrilateral is denoted by Di. If i ∈ J\Jo (hence Qi ∈ ∂Ω), let Di

be the closed triangle whose sides are the segment Si and the segments joining the endpoints
of Si with the barycenter of the (unique) triangle K ∈ T with Si ⊂ K. If i, j ∈ J with i 6= j
are such that the set Di ∩Dj contains more than one point, then this set is a common side of
Di and Dj . In this case, the quadrilaterals Di and Dj are called “adjacent”, and their common
side is denoted Γij . For i ∈ J , we set

s(i) := {j ∈ J\{i} : Di and Dj are adjacent }.

If i ∈ J and j ∈ s(i), let nij denote the outward unit normal to Di on Γij . This means that nij

points from Di into Dj . We will use the abbreviation

Θ+
ij :=

∫

Γij

max{β(x) · nij , 0} dox (i ∈ J, j ∈ s(i) ).
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•

•
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• K1
i

K2
i

Qi

Si
.......

Figure 1: A quadrangle K1
i ∪K2

i (left) and the quadrangle Di inside K1
i ∪K2

i (right).

Since ∇ · β = 0 (see (1.3)) and nij = −nji

(
i ∈ J, j ∈ s(i)

)
, we get

∑

j∈s(i)

(Θ+
ij −Θ+

ji) =
∑

j∈s(i)

∫

Γij

β(x) · nij dox = 0 (i ∈ Jo). (2.3)

Due to relation (2.1) and because K1
i and K2

i have a common side, we obtain

diamKν
i ≤ C diamKµ

i for i ∈ Jo, ν, µ ∈ {1, 2}. (2.4)

Next we introduce two finite element spaces by setting

Xh := {v ∈ L2(Ω) : v|K ∈ P1(K) for K ∈ Th, v continuous at Qi for i ∈ J},

Vh := {vh ∈ Xh : vh(Qi) = 0 for i ∈ J\Jo},

where P1(A), for A ⊂ R
2, denotes the set of all polynomials of degree at most 1 over A.

The spaces Xh and Vh are nonconforming finite element spaces based on the piecewise linear
Crouzeix-Raviart finite element. For i ∈ J , let wi be the function from Xh that is uniquely
determined by the requirement that wi(Qj) = δij for j ∈ J . The family (wi)i∈J is a basis of Xh.
For vh, wh ∈ Xh, we put

((vh, wh))Xh
:=

∑

K∈T

∫

K
∇(vh|K) · ∇(wh|K) dx, ‖vh‖Xh

:=
(
((vh, vh))Xh

)1/2
.

Obviously

((vh, vh))Xh
= ‖vh‖

2
Xh

, |((vh, wh))Xh
| ≤ ‖vh‖Xh

‖wh‖Xh
for vh, wh ∈ Xh.

The discrete Poincaré inequality

‖vh‖2 ≤ C‖vh‖Xh
for vh ∈ Vh (2.5)

was proved in [14], [31], [5] and [45], with a detailed analysis of the constant in [45].
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From [1, (3.29), (3.31), (3.33)], we take two formulas for the L2-scalar product of vh, wh ∈ Xh,
that is,

(vh, wh) = (1/3)
∑

K∈T

|K|
3∑

r=1

vh(Q
r
K)wh(Q

r
K), (vh, wh) =

∑

i∈J

vh(Qi)wh(Qi) |Di|, (2.6)

where Qr
K ∈ R

2 for r ∈ {1, 2, 3} are the three vertices of K ∈ T. Put H1(Ω)⊕Xh := {v+wh :
v ∈ H1(Ω), wh ∈ Xh}, and let Ih : H1(Ω)⊕Xh 7→ Xh be the interpolation operator introduced
in [20, 8.9.79]; it is defined by

Ih(v) :=
∑

i∈J

l−1
i

∫

Si

v(x) doxwi for v ∈ H1(Ω)⊕Xh,

where li denotes the length of Si (i ∈ J). Note that a function v ∈ H1(Ω) admits a trace on Si

for i ∈ J , and a function vh ∈ Xh verifies the equation

∫

Si

E(vh|K
1
i ) dox = livh(Qi) =

∫

Si

E(vh|K
2
i ) dox (i ∈ Jo),

where E(vh|K
s
i ) denotes the continuous extension of vh|K

s
i to Si (s ∈ {1, 2}). Thus the operator

Ih is well defined. By [20, Lemma 8.9.81], it satisfies the estimate

‖Ih(v)‖2 ≤ C‖v‖1,2 for v ∈ H1(Ω).

It will be useful to introduce another interpolation operator besides Ih. In fact, for v ∈ L2(Ω)
with v|K ∈ C0(K) for K ∈ Th, v continuous at Qi for i ∈ J , we set ̺h(v) :=

∑
i∈J v(Qi)wi.

Next we define a discrete convection term bh, which is to approximate the variational form

b(v, w) :=

∫

Ω
(β · ∇)vw dx

(
v, w ∈ H1(Ω)

)

associated with the convection term β · ∇u in (1.1) and (1.4). We put

bh(vh, wh) :=
∑

i∈J

wh(Qi)
∑

j∈s(i)

(
Θ+

ij vh(Qi)−Θ+
jivh(Qj)

)
for vh, wh ∈ Xh.

This definition means that we discretize b by an upwind finite volume method on the barycentric
grid (Di)i∈J . A motivation for this discretization may be found in [15, p. 308], where a general
numerical flux H is considered instead of the upwind method we use here. If β is constant, our
upwind method corresponds to a choice of H given by

H(a, b, n) = a if n · β > 0, H(a, b, n) = b if n · β ≤ 0, for a, b ∈ R, n ∈ R
2 with |n| = 1.

The approach here and the one in [15], as any upwind method, is based on the idea of taking
into account the direction from which the information arrives. In view of discretizing the time
variable, we fix N ∈ N and choose t1, ..., tN ∈ (0, T ) with t1 < ... < tN . Put t0 := 0, tN+1 :=

9



T, τk := tk − tk−1 for 1 ≤ k ≤ N + 1. For brevity, we put Gh := Ih(G) and introduce functions

g
(k)
h : Ω 7→ R by setting

g
(k)
h (x) := Ih

(
g( · , tk)

)
(x) for k ∈ {0, ..., N + 1}, x ∈ Ω.

Now we are in a position to introduce the finite element – finite volume discretization of problem
(1.1), (1.2) and (1.4), (1.5), respectively, that we want to study in the work at hand. Concerning

(1.1), (1.2), we consider functions u
(0)
h , ..., u

(N+1)
h ∈ Vh with

τ−1
k (u

(k+1)
h − u

(k)
h , vh) + ν ((u

(k+1)
h , vh))Xh

+ bh(u
(k+1)
h , vh) = (g

(k+1)
h , vh) (2.7)

for vh ∈ Vh, k ∈ {0, ..., N}, u
(0)
h = Ih(u

(0)).

This scheme is implicit because both the diffusion and the convection term are discretized
implicitly. For the steady problem (1.4), (1.5), we consider an approximate solution Uh ∈ Vh

satisfying

ν ((Uh, vh))Xh
+ bh(Uh, vh) = (Gh, vh) for vh ∈ Vh. (2.8)

In view of (2.5), and because bh(vh, vh) ≥ 0 for vh ∈ Vh (Lemma 3.3) and dimVh < ∞, both
problems admit a unique solution. Our main results may now be stated as follows.

Theorem 2.1 Let u
(0)
h , ..., u

(N+1)
h ∈ Vh be a system of functions satisfying (2.7). Then

(N+1∑

l=1

τl‖u
(l)
h ‖22

)1/2
+ max

1≤l≤N+1
‖u

(l)
h ‖2 + ν1/2

(N+1∑

l=1

τl‖u
(l)
h ‖2Xh

)1/2
(2.9)

≤ C(1 + ‖β‖1,2)
[(N+1∑

l=1

τl‖g
(l)
h ‖22

)1/2
+ ‖u

(0)
h ‖2

]
.

Theorem 2.2 Let Uh ∈ Vh be the solution of (2.8). Then

‖Uh‖2 + ν1/2‖Uh‖Xh
≤ C(1 + ‖β‖1,2)‖Gh‖2,

3. Auxiliary results.

We begin with a simple observation.

Lemma 3.1 Let aij ∈ R for i, j ∈ J . Then
∑

i∈J

∑
j∈s(i) aij =

∑
i∈J

∑
j∈s(i) aji.

Proof: For i, j ∈ J , we have j ∈ s(i) if and only if i ∈ s(j). As a consequence, we obtain
{(i, j) ∈ J2 : j ∈ s(i)} = {(i, j) ∈ J2 : i ∈ s(j)}. Thus the left-hand side of the equation in
Lemma 3.1 equals

∑
j∈J

∑
i∈s(j) aij . Lemma 3.1 now follows by renaming indices. �

The ensuing lemma deals with the interpolation operator ̺h.
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Lemma 3.2 Let vh, wh ∈ Xh. Then

‖vh‖
2
2 ≤ C

(
vh, ̺h(vhϕ)

)
,

(
vh, ̺h(vhϕ)

)
≤ C‖vh‖

2
2,

(
vh, ̺h(whϕ)

)
≤

(
vh, ̺h(vhϕ)

)1/2(
wh, ̺h(whϕ)

)1/2
,

‖̺h(vhϕ)‖Xh
≤ C‖vh‖Xh

.

Proof: The first three inequalities stated in Lemma 3.2 are an immediate consequence of (2.6),
the relation 0 < ϕ0 ≤ ϕ(x) ≤ ϕ1 (x ∈ Ω) and – as concerns the third estimate – of the
Cauchy-Schwarz inequality.

In order to prove the fourth, take K ∈ T. There are three elements i1, i2, i3 ∈ J such
that the points Qir with r ∈ {1, 2, 3} are the three vertices of K. Then ̺h(vhϕ)|K =∑3

r=1(vhϕ)(Qir)wir |K by the definition of ̺h(vhϕ). As a consequence

‖∇
(
̺h(vhϕ)|K

)
‖22 =

∫

K

∣∣
3∑

r=1

(vhϕ)(Qir)∇(wir |K)
∣∣2 dx.

An estimate as in the proof of [12, Lemma 3.1] now yields that ‖∇
(
̺h(vhϕ)|K

)
‖22 is bounded

by

2

∫

K

∣∣∣
3∑

r=1

vh(Qir)

∫ 1

0

(
∇ϕ

(
Qi1 + ϑ(Qir −Qi1)

)
(Qir −Qi1)

)
dϑ∇(wir |K)

∣∣∣
2
dx

+2ϕ(Qi1)
2‖∇(vh|K)‖22.

Therefore we obtain the upper bound

C‖∇ϕ‖2∞

3∑

r=1

vh(Qir)
2(diamK)2

∫

K
|∇(wir |K)|2dx+ 2‖ϕ‖2∞‖∇(vh|K)‖22

for ‖∇
(
̺h(vhϕ)|K

)
‖22. But in view of (2.2) |∇(wir |K)| ≤ C(diamK)−1, so by (2.6) and because

‖∇ϕ‖∞ ≤ ϕ1, ‖ϕ‖∞ ≤ ϕ1,

‖∇
(
̺h(vhϕ)|K

)
‖22 ≤ C(‖vh|K‖22 + ‖∇(vh|K)‖22).

The fourth estimate in Lemma 3.2 now follows with (2.5). �

Next we prove a basic fact regarding the discrete convection term bh. The proof in question, as
well as the proof of Lemma 3.4 below, applies techniques similar to those used by Sacco, Saleri
[40].

Lemma 3.3 For vh ∈ Vh, the equation bh(vh, vh) = Kh/2 holds, where

Kh := Kh(vh) :=
∑

i∈J

∑

j∈s(i)

Θ+
ji

(
vh(Qi)− vh(Qj)

)2
.

In particular bh(vh, vh) ≥ 0.

11



Proof: By (2.3) and because vh(Qi) = 0 for i ∈ J\Jo, we can write

bh(vh, vh) =
∑

i∈J

vh(Qi)
∑

j∈s(i)

(vh(Qi)− vh(Qj))Θ
+
ji.

Using the equation vh(Qi)(vh(Qi)− vh(Qj)) =
1
2vh(Qi)

2 + 1
2(vh(Qi)− vh(Qj))

2 − 1
2vh(Qj)

2, we
get

bh(vh, vh) =
1

2

∑

i∈J

∑

j∈s(i)

(vh(Qi)− vh(Qj))
2Θ+

ji +
1

2

∑

i∈J

∑

j∈s(i)

(vh(Qi)
2 − vh(Qj)

2)Θ+
ji.

On the other hand, by (2.3), the relation vh(Qi) = 0 for i ∈ J\Jo and Lemma 3.1, we obtain
∑

i∈J

∑

j∈s(i)

(vh(Qi)
2 − vh(Qj)

2)Θ+
ji =

∑

i∈J

∑

j∈s(i)

(Θ+
ij vh(Qi)

2 −Θ+
jivh(Qj)

2) = 0.

This concludes the proof. �

In the remainder of this section, we prove some sort of coercivity inequality for bh (Corollary
3.1). We begin by establishing a lower bound for bh

(
vh, ̺h(vhϕ)

)
.

Lemma 3.4 Let vh ∈ Vh. Then bh
(
vh, ̺h(vhϕ)

)
≥ Ah/2, with

Ah := Ah(vh) :=
∑

j∈J

vh(Qi)
2

∑

j∈s(i)

(
Θ+

jiϕ(Qi)−Θ+
ijϕ(Qj)

)
.

Proof: By (2.3) and the equation vh(Qi) = 0 for i ∈ J\Jo,

bh
(
vh, ̺h(vhϕ)

)
=

∑

i∈J

vh(Qi)ϕ(Qi)
∑

j∈s(i)

(vh(Qi)− vh(Qj))Θ
+
ji.

Thus, with an argument as in the proof of Lemma 3.3,

bh
(
vh, ̺h(vhϕ)

)
=

1

2

∑

i∈J

ϕ(Qi)
∑

j∈s(i)

(vh(Qi)− vh(Qj))
2Θ+

ji

+
1

2

∑

i∈J

ϕ(Qi)
∑

j∈s(i)

(vh(Qi)
2 − vh(Qj)

2)Θ+
ji.

The first term in the above right hand side is non-negative, and the second equals Ah/2. In fact,
by Lemma 3.1,

∑

i∈J

ϕ(Qi)
∑

j∈s(i)

vh(Qj)
2Θ+

ji =
∑

i∈J

vh(Qi)
2
∑

j∈s(i)

Θ+
ij (Qj).

This concludes the proof. �

Lemma 3.5 Let vh ∈ Vh, and put

Bh := Bh(vh) := −
∑

i∈J

vh(Qi)
2

∑

j∈s(i)

∫

Γij

ϕ(x)β(x) · nij dox.

Then Bh ≥ β‖vh‖
2
2.

12



Proof: By the Divergence theorem and (1.3),

−
∑

j∈s(i)

∫

Γij

ϕ(x)β(x) · nij dox = −

∫

Di

β(x) · ∇ϕ(x) dx ≥ |Di|β for i ∈ Jo.

The lemma follows with (2.6) and the equation vh(Qi) = 0 for i ∈ J\Jo. �

Lemma 3.6 Let vh ∈ Vh. Then

Bh ≤ 2bh
(
vh, ̺h(vhϕ)

)
+ C‖β‖

1/2
1,2 ‖vh‖2K

1/2
h ,

where Bh = Bh(vh) and Kh = Kh(vh) were introduced in Lemma 3.5 and 3.3, respectively.

Proof: By Lemma 3.4, we have

Bh = Bh −Ah +Ah ≤ |Ah −Bh|+ 2bh
(
vh, ̺h(vhϕ)

)
, (3.1)

with Ah from that lemma. On the other hand, since nij = −nji

(
i ∈ J, j ∈ s(i)

)
,

|Ah −Bh| =
∣∣∣
∑

i∈J

vh(Qi)
2

∑

j∈s(i)

[∫

Γij

(ϕ(Qi)− ϕ(x)) max{β(x) · nji, 0} dox (3.2)

−

∫

Γij

(ϕ(Qj)− ϕ(x)) max{β(x) · nij , 0} dox

]∣∣∣

=
∣∣∣
∑

i∈J

∑

j∈s(i)

(
vh(Qi)

2 − vh(Qj)
2
) ∫

Γij

(ϕ(Qi)− ϕ(x)) max{β(x) · nji, 0} dox

∣∣∣,

where the last equation follows from Lemma 3.1. For i ∈ J, j ∈ s(i) and x ∈ Γij , we find with
the relation |∇ϕ(x)| ≤ ϕ1 (x ∈ Ω) that

|ϕ(Qi)− ϕ(x)| ≤ ϕ1 max
ν∈{1, 2}

diamKν
i .

Here and in the following, if i ∈ J\Jo, we use both the notation K1
i and K2

i for the unique
triangle K ∈ T with Qi ∈ K. Now we may deduce from (3.2) that

|Ah −Bh| ≤ ϕ1

∑

i∈J

∑

j∈s(i)

Θ+
ji max

ν∈{1, 2}
diamKν

i |vh(Qj) + vh(Qi)| |vh(Qj)− vh(Qi)|,

hence by the Cauchy-Schwarz inequality,

|Ah −Bh| ≤ ϕ1

(∑

i∈J

∑

j∈s(i)

Θ+
ji ( max

ν∈{1, 2}
diamKν

i )
2
(
vh(Qj) + vh(Qi)

)2)1/2
K
1/2
h .

For i ∈ J, j ∈ s(i), there is ν ∈ {1, 2} with Γji ⊂ Kν
j , so

Θ+
ji ≤

∫

Γji

|β(x)| dx ≤ (diamKν
j )

1/2‖β|Γji‖2 ≤ C‖β|Dj ∩Kν
j ‖1,2 ≤ C · ‖β‖1,2,

13



where the second last inequality follows by a change of the domain of integration from Dj ∩Kν
j

to the unit triangle {x ∈ [0, 1]2 : x1 + x2 ≤ 1}, an application of a standard trace inequality on
that triangle, and then another change of the domain of integration back to Dj∩K

ν
j . Concerning

that last transformation, note that (diamKν
j )

2 ≤ C |Kν
j | by (2.2) and |Kν

j |/3 = |Dj ∩Kν
j |. As a

consequence, we arrive at the estimate

|Ah −Bh| ≤ C‖β‖
1/2
1,2

(∑

i∈J

∑

j∈s(i)

( max
ν∈{1, 2}

diamKν
i )

2
(
vh(Qj)

2 + vh(Qi)
2
))1/2

K
1/2
h . (3.3)

On the other hand, with (2.4),

∑

i∈J

∑

j∈s(i)

( max
ν∈{1, 2}

diamKν
i )

2
(
vh(Qj)

2 + vh(Qi)
2
)

≤
∑

i∈J

∑

j∈s(i)

(
(diamK1

j )
2vh(Qj)

2 + (diamK1
i )

2vh(Qi)
2
)
.

Therefore by Lemma 3.1,

∑

i∈J

∑

j∈s(i)

( max
ν∈{1, 2}

diamKν
i )

2
(
vh(Qj)

2 + vh(Qi)
2
)
≤ 2

∑

i∈J

∑

j∈s(i)

(diamK1
i )

2vh(Qi)
2.

Again we use that that (diamKν
i )

2 ≤ C |Kν
i | by (2.2) and |Kν

i |/3 = |Di ∩Kν
i | for i ∈ Jo, ν ∈

{1, 2}. It follows with (2.6) that

∑

i∈J

∑

j∈s(i)

( max
ν∈{1, 2}

diamKν
i )

2
(
vh(Qj)

2 + vh(Qi)
2
)
≤ C

∑

i∈J

vh(Qi)
2 |Di| ≤ C‖vh‖

2
2.

Thus we obtain from (3.3) that |Ah − Bh| ≤ C‖β‖
1/2
1,2 ‖vh‖2K

1/2
h . Lemma 3.6 now follows from

(3.1). �

Corollary 3.1 Let vh ∈ Vh. Then

‖vh‖
2
2 ≤ C(1 + ‖β‖1,2)

(
bh
(
vh, ̺(vhϕ)

)
+ bh(vh, vh)

)
. (3.4)

Proof: Lemma 3.5, 3.6 and 3.3 imply

‖vh‖
2
2 ≤ C

(
bh
(
vh, ̺(vhϕ)

)
+ ‖β‖

1/2
1,2 bh(vh, vh)

1/2‖vh‖2
)
,

so that

‖vh‖
2
2 ≤ C

(
bh
(
vh, ̺(vhϕ) + ‖β‖1,2 bh(vh, vh)

)
+ ‖vh‖

2
2/2.

The corollary follows from this estimate. �
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4. Proof of Theorem 2.1 and 2.2.

The largest part of this section is taken by the

Proof of Theorem 2.1: Putting vh = u
(k+1)
h in (2.7), we get

ν ‖u
(k+1)
h ‖2Xh

+ τ−1
k+1‖u

(k+1)
h ‖22 + bh(u

(k+1)
h , u

(k+1)
h )

≤ (g
(k+1)
h , u

(k+1)
h ) + (2τk+1)

−1‖u
(k+1)
h ‖22 + (2τk+1)

−1‖u
(k)
h ‖22 for 0 ≤ k ≤ N.

Taking the sum with respect to k ∈ {0, ..., s}, for s ∈ {0, ..., N}, and using a simple shoestring
argument, we find with s = N that

N+1∑

l=1

τl bh(u
(l)
h , u

(l)
h ) + ν

N+1∑

l=1

τl‖u
(l)
h ‖2Xh

≤
N+1∑

l=1

τl‖g
(l)
h ‖2‖u

(l)
h ‖2 + ‖u

(0)
h ‖22/2, (4.1)

and for s ∈ {0, ..., N},

s+1∑

l=1

τl

(
bh(u

(l)
h , u

(l)
h ) + ν ‖u

(l)
h ‖2Xh

)
+ ‖u

(s+1)
h ‖22/2

≤
s+1∑

l=1

τl‖g
(l)
h ‖2‖u

(l)
h ‖2 + ‖u

(0)
h ‖22/2.

The term ‖u
(N+1)
h ‖22/2 was dropped on the left-hand side of (4.1) because it will not be needed.

Since bh(vh, vh) ≥ 0 for vh ∈ Vh (Lemma 3.3), we may conclude that

max
1≤l≤N+1

‖u
(l)
h ‖22/2 ≤

N+1∑

l=1

τl‖g
(l)
h ‖2‖u

(l)
h ‖2 + ‖u

(0)
h ‖22/2. (4.2)

Next we use (2.7) once more, this time with vh = ̺h(u
(k+1)
h ϕ), to obtain with Lemma 3.2 that

ν τk+1 ((u
(k+1)
h , ũ

(k+1)
h ))Xh

+ τk+1 bh(u
(k+1)
h , ũ

(k+1)
h ) + (u

(k+1)
h , ũ

(k+1)
h )

≤ τk+1 (g
(k+1)
h , ũ

(k+1)
h ) + (u

(k)
h , ũ

(k)
h )1/2 (u

(k+1)
h , ũ

(k+1)
h )1/2

≤ τk+1 (g
(k+1)
h , ũ

(k+1)
h ) + (u

(k+1)
h , ũ

(k+1)
h )/2 + (u

(k)
h , ũ

(k)
h )/2 for k ∈ {0, ..., N}.

Here and in the following, we use the abbreviation ũ
(k)
h := ̺h(u

(k)
h ϕ) for 0 ≤ k ≤ N + 1. Now

we again take the sum with respect to k ∈ {0, ..., N}. By a simple shoestring argument and

because (u
(N+1)
h , ũ

(N+1)
h ) ≥ 0 according to Lemma 3.2, we then get

N+1∑

l=1

τl bh(u
(l)
h , ũ

(l)
h ) ≤

N+1∑

l=1

τl |(g
(l)
h , ũ

(l)
h )|+ ν

N+1∑

l=1

τl |((u
(l)
h , ũ

(l)
h ))Xh

|+ (u
(0)
h , ũ

(0)
h )/2. (4.3)

On the other hand, from Corollary 3.1 with vh = u
(l)
h ,

‖u
(l)
h ‖22 ≤ C(1 + ‖β‖1,2)

(
bh(u

(l)
h , ũ

(l)
h ) + bh(u

(l)
h , u

(l)
h )

)
for 1 ≤ l ≤ N + 1.
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Therefore, with (4.1) and (4.3),

N+1∑

l=1

τl‖u
(l)
h ‖22 ≤ C(1 + ‖β‖1,2)R, (4.4)

where

R :=

N+1∑

l=1

τl |(g
(l)
h , ũ

(l)
h )|+ ν

N+1∑

l=1

τl |((u
(l)
h , ũ

(l)
h ))Xh

|+ (u
(0)
h , ũ

(0)
h )

+

N+1∑

l=1

τl‖g
(l)
h ‖2‖u

(l)
h ‖2 + ‖u

(0)
h ‖22.

By adding the left- and right-hand side of (4.1) and (4.2) to respectively the left- and right-hand
side of (4.4), and taking account of the fact that bh(vh, vh) ≥ 0 for vh ∈ Vh (Lemma 3.3), we get

N+1∑

l=1

τl‖u
(l)
h ‖22 + max

1≤l≤N+1
‖u

(l)
h ‖22 + ν

N+1∑

l=1

τl‖u
(l)
h ‖2Xh

≤ C(1 + ‖β‖1,2)R. (4.5)

But with Lemma 3.2,

|(g
(l)
h , ũ

(l)
h )| ≤

(
g
(l)
h , ̺h(g

(l)
h ϕ)

)1/2
(u

(l)
h , ũ

(l)
h )1/2 ≤ C‖g

(l)
h ‖2‖u

(l)
h ‖2 for 1 ≤ l ≤ N + 1, (4.6)

(u
(0)
h , ũ

(0)
h ) ≤ C‖u

(0)
h ‖22, (4.7)

ν
N+1∑

l=1

τl |((u
(l)
h , ũ

(l)
h ))Xh

| ≤ ν

N+1∑

l=1

τl‖u
(l)
h ‖Xh

‖ũ
(l)
h ‖Xh

≤ Cν

N+1∑

l=1

τl‖u
(l)
h ‖2Xh

(4.8)

≤ C

(N+1∑

l=1

τl‖g
(l)
h ‖2‖u

(l)
h ‖2 + ‖u

(0)
h ‖22

)
,

where the last inequality holds according to (4.1). Thus the left-hand side of (4.5) is bounded

by C(1 + ‖β‖1,2)
(∑N+1

l=1 τl‖g
(l)
h ‖2‖u

(l)
h ‖2 + ‖u

(0)
h ‖22

)
. Noting that

C(1 + ‖β‖1,2)τl‖g
(l)
h ‖2‖u

(l)
h ‖2 ≤ C(1 + ‖β‖1,2)

2 τl‖g
(l)
h ‖22 + τl‖u

(l)
h ‖22/2 (4.9)

for 1 ≤ l ≤ N + 1, we may deduce from (4.5) that the left-hand side of (4.5) is bounded by

C(1 + ‖β‖1,2)
2
(N+1∑

l=1

τl‖g
(l)
h ‖22 + ‖u

(0)
h ‖22

)
+

N+1∑

l=1

τl‖u
(l)
h ‖22/2. (4.10)

Therefore again from (4.5), by a simple shoestring argument,

N+1∑

l=1

τl‖u
(l)
h ‖22/2 + max

1≤l≤N+1
‖u

(l)
h ‖22 + ν

N+1∑

l=1

τl‖u
(l)
h ‖2Xh

≤ C(1 + ‖β‖1,2)
2
(N+1∑

l=1

τl‖g
(l)
h ‖22 + ‖u

(0)
h ‖22

)
.
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This proves Theorem 2.1. �

We finally turn to the

Proof of Theorem 2.2: From (2.8) with vh replaced by Uh, we get

ν ‖Uh‖
2
Xh

+ bh(Uh, Uh) = (Gh, Uh) ≤ ‖Gh‖2‖Uh‖2. (4.11)

Thus Corollary 3.1 with Uh in the place of vh yields

‖Uh‖
2
2 ≤ C(1 + ‖β‖1,2)

(
bh(Uh,Wh) + ‖Gh‖2‖Uh‖2

)
, (4.12)

where we used the abbreviation Wh := ̺h(Uhϕ). Moreover, from (2.8) with vh = Wh,

bh(Uh,Wh) ≤ ν |((Uh,Wh))Xh
|+ |(Gh,Wh)|. (4.13)

On the other hand, with Lemma 3.2,

|(Gh,Wh)| ≤
(
Gh, ̺(Ghϕ)

)1/2
(Uh,Wh)

1/2 ≤ C‖Gh‖2‖Uh‖2, (4.14)

and by Lemma 3.2, 3.3 and (4.11),

ν |((Uh,Wh))Xh
| ≤ Cν ‖Uh‖

2
Xh

≤ C
(
ν ‖Uh‖

2
Xh

+ bh(Uh, Uh)
)
≤ C‖Gh‖2‖Uh‖2.

This estimate together with (4.12) – (4.14) yield

‖Uh‖
2
2 ≤ C(1 + ‖β‖1,2)‖Gh‖2‖Uh‖2,

hence with (4.11) and the relation bh(Uh, Uh) ≥ 0 (Lemma 3.3),

‖Uh‖
2
2 + ν |((Uh,Wh))Xh

| ≤ C(1 + ‖β‖1,2)‖Gh‖2‖Uh‖2 ≤ C(1 + ‖β‖1,2)
2‖Gh‖

2
2 + ‖Uh‖2/2.

Theorem 2.2 follows from this inequality. �

5. Final comments.

It is natural to ask what are the minimal hypotheses on β such that Theorem 2.1 and 2.2
remain valid. In this respect we first remark that the assumptions β ∈ C1(Ω)2, ∇ · β = 0 are
not sufficient for Theorem 2.2 to hold.

To see this, consider the case Ω = {x ∈ R
2 : |x| < 1}, β(x) = (−x2, x1) for x ∈ Ω. Obviously

β ∈ C1(Ω)2 and ∇ · β = 0. Note that since β(x) → 0 for |x| → 0, there is no function
ϕ ∈ C1(Ω) such that the second relation in (1.3) is valid. We further put uν(x) := |x|2/ν − 1/ν
for x ∈ Ω, ν ∈ (0,∞). Then −ν∆uν + β · ∇uν = −4 and uν |∂Ω = 0 for any ν ∈ (0,∞).
Since ‖uν‖2 =

√
π/(3ν) for ν ∈ (0,∞), it follows there cannot be a constant C > 0 such that

‖u‖2 ≤ C ‖f‖2 for ν ∈ (0,∞), f ∈ L2(Ω) and u ∈ H2(Ω) the solution of the boundary value
problem

−ν∆u+ β · ∇u = f in Ω, u|∂Ω = 0. (5.1)
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With some additional effort, the preceding example may be extended to the case that Ω is an
annular domain, for example Ω = {y ∈ R

2 : 1/2 < |y| < 1}, and to rotationally symmetric
functions f ∈ L2(Ω). In fact, for such a domain Ω and such a function f , the solution u ∈ H2(Ω)
of the boundary value problem

−∆u = f/ν in Ω, u|∂Ω = 0, (5.2)

is rotationally symmetric as well. Due to our choice of β, this means that u solves problem
(5.1). On the other hand, u as a solution of (5.2) may be represented as a series involving
eigenfunctions of the Laplacian on Ω. This representation shows that ‖u‖2 cannot be bounded
uniformly in ν > 0 when ν tends to zero.

It is true that in the above cases Ω is not a polygon, and that the exact solution of (5.1) and an
approximate solution provided by (2.8) are not the same thing. Still the preceding observations
on L2-estimates of solutions to (5.1) indicate it cannot be expected that an inequality as in
Theorem 2.2 holds with a constant C independent of h and ν if β ∈ H1(Ω)2 is only supposed to
satisfy the relation ∇ · β = 0.

Going a step further, one might conjecture that if ∇ · β = 0, the second condition in (1.3) is
not only sufficient (as we have shown), but even necessary for existence of a constant C as in
Theorem 2.2. In fact, if such a constant exists, it should be expected there is C > 0 with
‖u‖2 ≤ C ‖f‖2 for ν ∈ (0,∞), f ∈ L2(Ω) and u ∈ H2(Ω) the solution of (5.1). This means in
particular that the preceding constant C is independent of ν. In this situation, let β ∈ (0,∞)
and let (νn) be a sequence in (0,∞) with νn → 0. Let the solution of (5.1) with f, ν replaced
by β, νn, respectively, be denoted by un, for n ∈ N. Then, due to the estimate ‖u‖2 ≤ C ‖f‖2
for ν, f, u as above. the sequence (‖un‖2) is bounded and thus possesses a subsequence which
is weakly convergent in L2(Ω). Let this subsequence be also denoted by (un). Let u ∈ L2(Ω) be
the limit function of this sequence, and take φ ∈ C∞

0 (Ω). Choosing f = −β, u = un in (5.1),
multiplying this equation by φ, integrating over Ω and performing some integrations by parts,
we arrive at the equation

∫

Ω
un (−νn∆φ− β · ∇φ+ βφ) = 0 for n ∈ N.

Letting n tend to infinity, we see that
∫
Ω u(−β · ∇φ + βφ) dx = 0. This means that u satisfies

the equation −β · ∇u = β in a weak sense. Thus, if u ∈ C1(Ω), the second condition in (1.3)
would hold with u in the role of ϕ. However, the question of how to prove C1-regularity of u is
open.
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