Non-parametric Stochastic Approximation with Large Step sizes - Archive ouverte HAL
Rapport Année : 2014

Non-parametric Stochastic Approximation with Large Step sizes

Résumé

We consider the random-design least-squares regression problem within the reproducing kernel Hilbert space (RKHS) framework. Given a stream of independent and identically distributed input/output data, we aim to learn a regression function within an RKHS $\mathcal{H}$, even if the optimal predictor (i.e., the conditional expectation) is not in $\mathcal{H}$. In a stochastic approximation framework where the estimator is updated after each observation, we show that the averaged unregularized least-mean-square algorithm (a form of stochastic gradient), given a sufficient large step-size, attains optimal rates of convergence for a variety of regimes for the smoothnesses of the optimal prediction function and the functions in $\mathcal{H}$.
Fichier principal
Vignette du fichier
formatjournal.pdf (669.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01053831 , version 1 (02-08-2014)
hal-01053831 , version 2 (24-07-2015)

Identifiants

  • HAL Id : hal-01053831 , version 1

Citer

Aymeric Dieuleveut, Francis Bach. Non-parametric Stochastic Approximation with Large Step sizes. 2014. ⟨hal-01053831v1⟩
336 Consultations
423 Téléchargements

Partager

More