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Abstract We consider the random-design least-squares regres-
sion problem within the reproducing kernel Hilbert space (RKHS)
framework. Given a stream of independent and identically distributed
input/output data, we aim to learn a regression function within an
RKHS H, even if the optimal predictor (i.e., the conditional expecta-
tion) is not in H. In a stochastic approximation framework where the
estimator is updated after each observation, we show that the aver-
aged unregularized least-mean-square algorithm (a form of stochastic
gradient), given a sufficient large step-size, attains optimal rates of
convergence for a variety of regimes for the smoothnesses of the op-
timal prediction function and the functions in H.

1. Introduction. Positive-definite-kernel-based methods such as the
support vector machine or kernel ridge regression are now widely used in
many areas of science of engineering. They were first developed within the
statistics community for non-parametric regression using splines, Sobolev
spaces, and more generally reproducing kernel Hilbert spaces (see, e.g., [1]).
Within the machine learning community, they were extended in several inter-
esting ways (see, e.g., [2, 3]): (a) other problems were tackled using positive-
definite kernels beyond regression problems, through the “kernelization” of
classical unsupervised learning methods such as principal component anal-
ysis or K-means, (b) efficient algorithms based on convex optimization have
emerged, and (c) kernels for non-vectorial data have been designed for ob-
jects like strings, graphs, measures, etc. A key feature is that they allow the
separation of the representation problem (designing good kernels for non-
vectorial data) and the algorithmic/theoretical problems (given a kernel,
how to design, run efficiently and analyse estimation algorithms).

The theoretical analysis of non-parametric least-squares regression within
the RKHS framework is well understood. In particular, for regression on in-
put data in R

d, d > 1, and so-called Mercer kernels (continuous kernels
over a compact set) that lead to dense subspaces of the space of square-
integrable functions, the optimal rates of estimation given the smoothness
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2 DIEULEVEUT AND BACH

of the optimal prediction function are attained for a sufficiently small Hilbert
space of functions [4, 5, 6]. However, the kernel framework goes beyond Mer-
cer kernels and non-parametric regression; indeed, kernels on non-vectorial
data provide examples where the usual topological assumptions may not
be natural, such as sequences, graphs and measures. Moreover, even finite-
dimensional Hilbert spaces may need a more refined analysis when the di-
mension of the Hilbert space is much larger than the number of observations:
for example, in modern text and web applications, linear predictions are per-
formed with a large number of covariates which are equal to zero with high
probability. The sparsity of the representation allows to reduce significantly
the complexity of traditional optimization procedures; however, the finite-
dimensional analysis which ignores the spectral structure of the data is not
applicable, while the analysis we carry out is. In this paper, we consider
minimal assumptions regarding the input space and the distributions, so
that our non-asymptotic results may be applied to all the cases mentioned
above.

In practice, estimation algorithms based on regularized empirical risk min-
imization face two challenges: (a) using the correct regularization parameter
and (b) finding an approximate solution of the convex optimization prob-
lems. In this paper, we consider these two problems jointly by following a
stochastic approximation framework formulated directly in the RKHS, in
which each observation is used only once and overfitting is avoided by mak-
ing only a single pass through the data (a form of early stopping). While
this framework has been considered before [7, 8, 9], the algorithms that are
considered either (a) require two sequences of hyperparameters (the step-
size in stochastic gradient descent and a regularization parameter) or (b)
do not always attain the optimal rates of convergence for estimating the
regression function. In this paper, we aim to remove simultaneously these
two limitations.

Traditional online stochastic approximation algorithms, as introduced by
Robbins and Monro [10], lead in finite-dimensional learning problems to
stochastic gradient descent methods with steps decreasing with the number
of observations n, which are typically proportional to n−ζ , with ζ between
1/2 and 1. Short step-sizes (ζ = 1) are adapted to well-conditioned problems
(low dimension, low correlations between covariates), while longer step-sizes
(ζ = 1/2) are adapted to ill-conditioned problems (high dimension, high
correlations) but with a worse convergence rate—see, e.g., [11, 12] and refer-
ences therein). More recently [13] showed that constant steps with averaging
could lead to the best possible convergence rate in Euclidean spaces (i.e., in
finite dimensions). In this paper, we show that using longer step-sizes with
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averaging also brings benefits to Hilbert space settings.
With our analysis, based on positive definite kernels, under assumptions

on both the objective function and the covariance operator of the RKHS, we
derive improved rates of convergence [5], in both the finite horizon setting
where the number of observations is known in advance and our bounds hold
for the last iterate (with exact constants), and the online setting where our
bounds hold for each iterate (asymptotic results only). It leads to an explicit
choice of the learning rates which may be used in stochastic gradient descent,
depending on the number of training examples we want to use and on the
assumptions we make.

In this paper, we make the following contributions:

– We outline in Section 2 a general though simple algebraic framework
for least-squares regression in RKHS, which encompasses all commonly
encountered situations, and avoids many of the assumptions that are
often made. This allows to cover many practical examples.

– We characterize in Section 3 the convergence rate of averaged least-
mean-squares (LMS) and show how the proper set-up of the step-
size leads to optimal convergence rates of prediction (as they were
proved in [5]), extending results from finite-dimensional [13] to infinite-
dimensional settings. The problem we solve here was stated as an open
problem in [8, 7].

– We compare our new results with existing work, both in terms of rates
of convergence in Section 4, and with simulations on synthetic spline
smoothing in Section 5.

2. Learning with positive-definite kernels. In this paper, we con-
sider a general random design regression problem, where observations (xi, yi)
are independent and identically distributed (i.i.d.) random variables in X × Y
drawn from a probability measure ρ on X × Y. The set X may be any set
equipped with a measure, while for simplicity, we only consider Y = R and
we measure the risk of a function g : X → R, by the mean square error, that
is, ε(g) := 1

2Eρ
[
(g(X) − Y )2

]
.

The function g that minimizes ε(g) is known to be conditional expecta-
tion, that is, gρ(X) = E[Y |X]. In this paper we consider formulations where
our estimates lie in a reproducing kernel Hilbert space (RKHS) H with pos-
itive definite kernel K : X × X → R. In this section, we build a general
framework which makes “minimal” assumptions regarding the set X (only
assumed to be equipped with a measure), the kernel K (only assumed to
have bounded expectation EρK(X,X)) and the output Y (only assumed to
have finite variance).
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These assumptions include classical examples such as Mercer kernels,
finite-dimensional feature spaces, but also apply to kernels on discrete ob-
jects (with non-finite cardinality). See examples in Section 2.5.

2.1. Reproducing kernel Hilbert spaces. Throughout this paper, we make
the following assumption:

(A1) H is a separable1 RKHS associated with kernel K on the set X .

RKHSs are well-studied Hilbert spaces which are particularly adapted to
regression problems (see, e.g., [14]). They satisfy the following properties:

1. (H, 〈·, ·〉H) is a separable Hilbert space of functions: H ⊂ R
X .

2. H contains all functions Kx : t 7→ K(x, t), for all x in X .
3. For any x ∈ X and f ∈ H, the reproducing property holds:

f(x) = 〈f,Kx〉H.

The Hilbert space H is totally characterized by the positive definite ker-
nel K : X × X → R, which simply needs to be a symmetric function on
X × X such that for any finite family of points (xi)i∈I in X , the |I| × |I|-
matrix of kernel evaluations is positive semi-definite. We provide examples
in Section 2.5.

Note that we do not make any topological assumptions regarding the
set X . We will only assume that it is equipped with a probability measure.

2.2. Random variables. In this paper, we consider a set X and Y ⊂ R

and a distribution ρ on X × Y. We denote ρX the marginal law on the space
X and ρY |X=x the conditional probability measure on Y given x ∈ X . We
shall use the notations E [f(X)] or EρX [f(·)] for

∫
X f(x)dρX(x). Beyond the

moment conditions stated below, we will always make the assumptions that
the space of square-integrable function L2

ρX
defined below is separable2.

Throughout the paper, we make the following simple assumption regard-
ing finitess of moments:

(A2) E [K(X,X)] and E[Y 2] are finite.

In previous work, (A1) was typically replaced by the assumption that K
is a Mercer kernel (X compact set and ρX with full support,K continuous)[9,

1The separability assumption is necessary to be able to expand any element as an
infinite sum, using a countable orthonormal family. This assumption is satisfied in almost
all cases, for instance it is simple as soon as X admits a topology for which it is separable
and functions in H are continuous, see [14] for more details.

2Like for RKHSs, this is the case in most interesting situations. See [15] for more details.
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16, 4, 8], (A2) was replaced by the stronger assumptions supx∈X K(x, x) <
∞ [9, 8, 7] and |Y | bounded [9, 7]. Note that in functional analysis, the
weaker hypothesis

∫
X ×X k(x, x′)2dρX(x)dρX(x′) < ∞ is often used [17], but

it is not adapted to the machine learning setting.
Our assumptions are sufficient to analyse the minimization of ε(f) =

1
2E

[
(f(X) − Y )2

]
with respect to f ∈ H. In many applications, the min-

imum is not attained. We now present the usual functional analysis tools
necessary to study this minimization problem and we show that the assump-
tions above are sufficient to carry it through. In this section, we assume
given a distribution ρ on the data and we consider exact expectations; we
will consider estimation using empirical averages in Section 3.

We first need to introduce the space of square ρX -integrable functions L2
ρX

,
and its quotient L2

ρX
that makes it a separable Hilbert space (see, e.g., [18]).

That is,

L2
ρX

=

{
f : X → R

/∫

X
f2(t)dρX(t) < ∞

}
;

moreover L2
ρX

is the quotient of L2
ρX

under the equivalence relation given
by

f ≡ g ⇔
∫

X
(f(t) − g(t))2dρX(t) = 0.

We denote by ‖ · ‖L2
ρX

the (semi-)norm:

‖f‖2
L2

ρX
=

∫

X
|f(x)|2dρX(x).

The space L2
ρX

is then a Hilbert space with norm ‖ · ‖L2
ρX

, which we will

always assume separable (that is, with a countable orthormal system).
Moreover, we denote p the canonical projection from L2

ρX
into L2

ρX
such

that p : f 7→ f̃ , with f̃ = {g ∈ L2
ρX
, s.t. f ≡ g}. In the following, we will

denote by f either the function f ∈ L2
ρX

or its class f̃ ∈ L2
ρX

when it does
not induce any confusion: most of our assumptions, properties and proofs do
not depend on the chosen representant function in the class. When X is a
compact subset of R

d, and ρX is a Borel-measure with full support, the dif-
ference between L2

ρX
and L2

ρX
is traditionally neglected. When the measure

does not have full support, as shown later in this section, the distinction is
more important.

Assumption (A2) ensures that every function in H is square-integrable,
that is, if E[K(X,X)] < ∞, then H ⊂ L2

ρX
; for example, for f = Kz,

z ∈ X , ‖Kz‖2
L2

ρX

= E[K(X, z)2] 6 K(z, z)EK(X,X) (see more details in the

Appendix A, Proposition 10).
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The minimization problem will appear to be an approximation problem
in L2

ρX
, for which we will build estimates in H. However, to derive theoretical

results, it is easier to consider it as an approximation problem in the Hilbert
space L2

ρX
, building estimates in p(H), where p(H) is the image of H via the

mapping i ◦ p : H i−→ L2
ρX

p−→ L2
ρX

, where i is the trivial injection and p the
canonical projection.

Under a few additional often-made assumptions (X compact, ρX full sup-
port and K continuous), the spaces H and p(H) may be identified, as the
application i ◦ p will also be injective: in all the following propositions one
may replace p(H) by H to simplify understanding. However in the general
setting there may exist functions f ∈ H\{0} such that ‖f‖L2

ρX
= 0 (thus i◦p

non injective). This may for example occur if the support of ρX is strictly
included in X , and f is zero on this support, but not identically zero. See
the Appendix A.5 for more details.

2.3. Minimization problem. We are interested in minimizing the follow-
ing quantity, which is the prediction error of a function f , defined for any
function in L2

ρX
:

(2.1) ε(f) =
1

2
E

[
(f(X) − Y )2

]
.

Since for f ∈ L2
ρX

, ε(f) only depends on the class f̃ ∈ L2
ρX

, this also defines
a functional ε on L2

ρX
.

We are looking for a function with a low prediction error in the particular
function space H, that is we aim to minimize ε(f) over f ∈ H. We have for
f ∈ L2

ρX
:

ε(f) =
1

2
‖f‖2

L2
ρX

−
〈
f,

∫

Y
ydρY |X=·(y)

〉

L2
ρX

+
1

2
E[Y 2](2.2)

=
1

2
‖f‖2

L2
ρX

− 〈f,E [Y |X = ·]〉L2
ρX

+
1

2
E[Y 2].

A minimizer g of ε(g) over L2
ρX

is known to be such that g(X) = E[Y |X].
Such a function is generally referred to as the regression function, and de-
noted gρ as it only depends on ρ. It is moreover unique (as an element of
L2

ρX
). An important property of the prediction error is that:

(2.3) ∀f ∈ L2
ρX
, ε(f) − ε(gρ) =

1

2
‖f − gρ‖2

L2
ρX
.

It means that minimizing prediction error is equivalent to minimizing the
distance in L2

ρX
to the regression function. In this paper, we will not consider

convergence in the norm ‖ · ‖H, because in general gρ does not belong to H.
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We are thus interested in approximating a function in L2
ρX

by functions
in H ⊂ L2

ρX
. As a consequence, we need to consider closures with respect

to ‖ · ‖L2
ρX

. We traditionally denote the closure of any F ⊂ L2
ρX

in L2
ρX

as

limits in L2
ρX

of elements in F , that is:

F =
{
f ∈ L2

ρX
/ ∃(fn) ⊂ F, ‖fn − f‖L2

ρX
→ 0

}
.

Especially, for p(H) ⊂ L2
ρX

:

p(H) =
{
f ∈ L2

ρX
/ ∃(fn) ⊂ p(H), ‖fn − f‖L2

ρX
→ 0

}
.

The space p(H) is a closed and convex subset in L2
ρX

. We can thus define

gH = arg min
f∈ p(H)

1

2
E

[
(f(X) − Y )2

]
= arg min

f∈ p(H)

1

2
‖f − gρ‖2

L2
ρX

as the orthogonal projection of gρ on p(H), using the existence of the projec-
tion on any closed convex set in a Hilbert space. This leads to the following
proposition (see formal proof in the Appendix A.1, Proposition 11):

Proposition 1 (Definition of best approximation function). Assume
(A1-2). The minimum of ε(f) in p(H) is attained at a certain gH (which
is unique and well defined in L2

ρX
).

It is important to notice that we do not assume that gH is in p(H), that
is the minimum in H is in general not attained. In the following, we will also
consider a pointwise defined version of gH (by choosing any representant of
the equivalence class), still denoted gH ∈ L2

ρX
.

Estimation from n i.i.d. observations builds a sequence (gn)n∈N in H. We
will prove under suitable conditions that it satisfies weak consistency, that
is gn ends up predicting as well as gH:

E [ε(gn) − ε(gH)]
n→∞−−−→ 0 ⇔ ‖gn − gH‖L2

ρX

n→∞−−−→ 0.

We can make the following remarks:

– We have proved existence and uniqueness of a minimizer over p(H) ⊂
L2

ρX
. However approaching gH in L2

ρX
with some sequence built in

p(H) is strictly equivalent to approaching any function in L2
ρX

which
is in the equivalence class gH. This is why we may accept confusion
as it does not change anything in proofs or algorithms. However, for
other tasks than for prediction from the random variable X, the space
H and p(H) are not equivalent.
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– Seen as a function of f ∈ H, our loss function ε is not coercive (i.e.,
not strongly convex), as our covariance operator3 Σ has no minimal
eigenvalue (the sequence of eigenvalues decreases to zero). As a con-
sequence, even if gH ∈ H, gn may not converge to gH in H, and when
gH /∈ H, we shall even have ‖gn‖H → ∞.

2.4. Covariance operator. We now define the covariance operator for the
space H and probability distribution ρX . The spectral properties of such an
operator have appeared to be a key point to characterize speed of estima-
tors [16, 4, 5].

We define a linear operator Σ : H → H through

∀(f, g) ∈ H2, 〈f,Σg〉H = E [f(X)g(X)] =

∫

X
f(x)g(x)dρX(x).

This operator is the covariance operator (defined on the Hilbert space H).
Using the reproducing property, we have4:

Σ = E [KX ⊗KX ] ,

where for any elements g, h ∈ H, we denote by g ⊗ h the operator from H
to H defined as:

g ⊗ h : H → H
f 7→ 〈f, h〉K g.

In finite dimension, i.e., H = R
d, for g, h ∈ R

d, g⊗ h may be identified to

a rank-one matrix, that is, g⊗ h = gh⊤ =
(
(gihj)16i,j6d

)
∈ R

d×d as for any

f , (gh⊤)f = g(h⊤f) = 〈h, f〉Hg. In other words, g ⊗ h is a linear operator,
whose image is included in Vect(g), the linear space spanned by g. Thus in
finite dimension, Σ is the (non-centered) covariance matrix.

We have defined the covariance operator on the Hilbert space H. If f ∈ H,
we have for all z ∈ X , using the reproducing property:

E[f(X)K(X, z)] = E[f(X)Kz(X)] = 〈Kz,Σf〉H = (Σf)(z),

which shows that the operator Σ may be extended to any square-integrable
function f ∈ L2

ρX
. In the following, we extend such an operator as an en-

domorphism T from L2
ρX

to L2
ρX

and by projection as an endomorphism
T = p◦T from L2

ρX
to L2

ρX
. Note that T is well defined as

∫
X g(t) Kt dρX (t)

does not depend on the function g chosen in the class of equivalence of g.

3See definition below.
4This expectation is formally defined as a Bochner expectation (an extension of

Lebesgue integration theory to Banach spaces, see [19]) in L(H) the set of endomorphisms
of H.



NON-PARAMETRIC STOCHASTIC APPROXIMATION 9

Definition 1 (Extended covariance operator). Assume (A1-2). We
define the operator T as follows5:

T : L2
ρX

→ L2
ρX

g̃ 7→
∫

X
g(t) Kt dρX (t),

so that for any z ∈ X , T (g)(z) =

∫

X
g(x) K(x, z) dρX (t) = E[g(X)K(X, z)].

We give here some of the most important properties of T and T = p ◦ T .
The operator T (which is an endomorphism of the separable Hilbert space
L2

ρX
) may be reduced in some Hilbertian eigenbasis of L2

ρX
. It allows us to

define the power of such an operator T r, which will allow us to quantify the
regularity of the function gH. See proof in Appendix A.2, Proposition 18.

Proposition 2 (Eigen-decomposition of T ). Assume (A1-2). T is a
bounded self-adjoint semi-definite positive operator on L2

ρX
, which is trace-

class. There exists a Hilbertian eigenbasis (φi)i∈I of the orthogonal supple-
ment S of the null space Ker(T ), with summable strictly positive eigenvalues
(µi)i∈I . That is:

– ∀i ∈ I, Tφi = µiφi, (µi)i∈I strictly positive such that
∑

i∈I µi < ∞.

– L2
ρX

= Ker(T )
⊥
⊕S, that is, L2

ρX
is the orthogonal direct sum of Ker(T )

and S.

When the space S has finite dimension, then I has finite cardinality, while
in general I is countable. Moreover, the null space Ker(T ) may be either
reduced to {0}, finite-dimensional or infinite-dimensional.

The linear operator T happens to have an image included in H, and the
eigenbasis of T in L2

ρX
may also be seen as eigenbasis of Σ in H (See proof

in Appendix A.2, Proposition 17):

Proposition 3 (Decomposition of Σ). Assume (A1-2). The image of
T is included in H: Im(T ) ⊂ H, that is, for any f ∈ L2

ρX
, T f ∈ H. More-

over, for any i ∈ I, φH
i = 1

µi
T φi ∈ H ⊂ L2

ρX
is a representant for the

equivalence class φi, that is p(φH
i ) = φi. Moreover µ

1/2
i φH

i is an orthonor-
mal eigen-system of the orthogonal supplement S of the null space Ker(Σ).
That is:

– ∀i ∈ I, ΣφH
i = µiφ

H
i .

5This expectation is formally defined as a Bochner expectation in H.
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– H = Ker(Σ)
⊥
⊕ S .

We have two decompositions of L2
ρX

= Ker(T )
⊥
⊕S and H = Ker(Σ)

⊥
⊕ S .

The two orthogonal supplements S and S happen to be related through
the mapping T 1/2, which we now define.

More generally, we define all powers T r (as operator from L2
ρX

to H)
and powers T r (as operator from L2

ρX
to L2

ρX
). Note the different conditions

regarding r.

Definition 2 (Powers of T ). We define, for any r > 0, T r : L2
ρX

→ L2
ρX

,
for any h ∈ Ker(T ) and (ai)i∈I such that

∑
i∈I a

2
i < ∞, through:

T r

(
h+

∑

i∈I

aiφi

)
=
∑

i∈I

aiµ
r
iφi.

Moreover, for any r > 0, T r may be defined as a bijection from S into
Im(T r). We may thus define its unique inverse:

T−r : Im(T r) → S.

Definition 3 (Powers of T ). We define, for any r > 1/2, T r : L2
ρX

→
H, for any h ∈ Ker(T ) and (ai)i∈I such that

∑
i∈I a

2
i < ∞, through:

T r

(
h+

∑

i∈I

aiφi

)
=
∑

i∈I

aiµ
r
iφ

H
i .

For r > 1/2, we clearly have that T r = p ◦ T r. In order to define T r, we

need r > 1/2, because (µ
1/2
i φH) is an orthonormal system of S . Moreover,

from the definition of T 1/2, it clearly defines an isometry from S to S .
The next proposition shows that p(S ) = p(H) and thus S and p(H) are
isomorphic. (See proof in Appendix A.2, Proposition 18):

Proposition 4 (Isometry between supplements). T 1/2 : S → S is an
isometry. Moreover, Im(T 1/2) = p(H) and T 1/2 : S → p(H) is an isomor-
phism.

This proposition may be understood as an extension of the following,
which is a consequence of Mercer’s theorem when we consider a compact set
X and a continuous kernel on it ([4, 20]). The proposition above makes no
topological assumptions about X , the kernel K, and also applies to cases
where p(H) may be much smaller than H.
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Proposition 5 (Isometry for Mercer kernels). If H is a reproducing
kernel Hilbert space associated with a Mercer kernel K (K continuous on

the compact set X ), and supp(ρ) = X , then H = T 1/2
(
L2

ρX

)
and T 1/2 :

S → p(H) is an isometrical isomorphism.

In the general context, Proposition 4 has the following consequences:

– T 1/2(S) = p(H), that is any element of p(H) may be expressed as
T 1/2g for some g ∈ L2

ρX
.

– ∀r > 1/2, T r(S) ⊂ p(H), because for r > 1/2, T r(S) ⊂ T 1/2(S), that
is, with large powers r, the image of T r is in the projection of the
Hilbert space.

– ∀r > 0, T r(L2
ρX

) = S = T 1/2(L2
ρX

) = p(H), because (a) T 1/2(L2
ρX

) =

p(H) and (b) for any r > 0, T r(L2
ρX

) = S. In other words, elements of

p(H) (on which our minimization problem attains its minimum), may
seen as limits (in L2

ρX
) of elements of T r(L2

ρX
), for any r > 0.

In the following, the regularity of the function gH will be characterized by
the fact that gH belongs to the space T r(L2

ρX
) (and not only to its closure),

for a specific r > 0 (see Section 2.6). The sequence of spaces {T r(L2
ρX

)}r>0

is thus a decreasing (r increasing) sequence of subspaces of L2
ρX

such that

any of them is dense in p(H), and T r(L2
ρX

) ⊂ p(H) if and only if r > 1/2.
Finally, although we will not use it in the rest of the paper, we can state

a version of Mercer’s theorem, which does not make any more assumptions
that are required for defining RKHSs.

Proposition 6 (Kernel decomposition). Assume (A1-2). We have for
all x, y ∈ X ,

K(x, y) =
∑

i∈I

µiφ
H
i (x)φH

i (y) + g(x, y),

and we have for all x ∈ X ,
∫

X g(x, y)2dρX(y) = 0. Moreover, the convergence
of the series is absolute.

We thus obtain a version of Mercer’s theorem (see Appendix A.5.3) with-
out any topological assumptions. Moreover, note that (a) S is also an
RKHS, with kernel (x, y) 7→ ∑

i∈I µiφ
H
i (x)φH

i (y) and (b) that given the
decomposition above, the optimization problem in S and H have equiva-
lent solutions. Moreover, considering the algorithm below, the estimators we
consider will almost surely build equivalent functions (see Appendix A.4).
Thus, we could assume without loss of generality that the kernel K is exactly
equal to its expansion

∑
i∈I µiφ

H
i (x)φH

i (y).
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2.5. Examples. The property p(H) = S, stated after Proposition 5, is
important to understand what the space p(H) is, as we are minimizing over
this closed and convex set. As a consequence the space p(H) is dense in L2

ρX

if and only if T is injective (or equivalently, Ker(L2
ρX

) = {0} ⇔ S = L2
ρX

).
We detail below a few classical situations in which different configurations
for the “inclusion” p(H) ⊂ p(H) ⊂ L2

ρX
appear:

1. Finite-dimensional setting with linear kernel: in finite dimen-
sion, with X = R

d and K(x, y) = x⊤y, we have H = R
d, with the

scalar product in 〈u, v〉H =
∑d

i=1 uivi. If the support of ρX has non-
empty interior, then p(H) = p(H): gH is the best linear estimator.
Moreover, we have p(H) = p(H)  L2

ρX
in general. Moreover, Ker(T )

is the set of functions such that EXf(X) = 0 (which is a large space),
while Ker(Σ) = (span {supp(ρX)})⊥, where the orthogonal space is
considered in R

d. If ρX has a support for non-empty interior, it is
reduced to {0}.

2. Translation invariant kernels for instance the Gaussian kernel over
X = R

d, with X following a distribution with full support in R
d: in

such a situation we have p(H)  p(H) = L2
ρX

. This last equality holds
more generally for all universal kernels, which include all kernels of
the form K(x, y) = q(x− y) where q has a summable strictly positive
Fourier transform [21, 22]. These kernels are exactly the kernels such
that T is an injective endomorphism of L2

ρX
. In all these cases, the null

spaces of T and Σ are equal to {0}.
3. Splines over the circle: When X ∼ U [0; 1] and H is the set of m-

times periodic weakly differentiable functions (see Section 5), we have
in general p(H)  p(H)  L2

ρX
. In such a case, ker(T ) = span(x 7→ 1),

and p(H) ⊕ span(x 7→ 1) = L2
ρX

, that is we can approximate any
zero-mean function.

Many examples and more details may be found in [3, 23, 20]. In particular,
kernels on non-vectorial objects may be defined (e.g., sequences, graphs or
measures).

2.6. Convergence rates. In order to be able to establish rates of conver-
gence in this infinite-dimensional setting, we have to make assumptions on
the objective function and on the covariance operator eigenvalues. In order
to account all cases (finite and infinite dimensions), we now consider eigen-
values ordered in non-increasing order, that is, we assume that the set I
is either {0, . . . , d − 1} if the underlying space is d-dimensional or N if the
underlying space has infinite dimension.
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(A3) We denote (µi)i∈I the sequence of non-zero eigenvalues of the opera-

tor T , in decreasing order. We assume µi 6
s2

iα for some α > 1 (so that
tr(T ) < ∞), with s ∈ R+.

(A4) gH ∈ T r
(
L2

ρX

)
with r > 0, and as a consequence ‖T−r(gH)‖L2

ρX
< ∞.

We chose such assumptions in order to make the comparison with the
existing literature as easy as possible, for example [8, 5]. However, some
other assumptions may be found as in [24, 6].

Dependence on α and r. The two parameters r and α intuitively parame-
terize the strength of our assumptions:

– In assumption (A3) a bigger α makes the assumption stronger: it
means the reproducing kernel Hilbert space is smaller, that is if (A3)
holds with some constant α, then it also holds for any α′ < α. More-
over, if T is reduced in the Hilbertian basis (φi)i of L2

ρX
, we have an

effective search space S =
{∑∞

i=1 aiφ
H
i /
∑∞

i=1
a2

i
µi
< ∞

}
: the smaller

the eigenvalues, the smaller the space.
– In assumption (A4), for a fixed α, a bigger r makes the assump-

tion stronger, that is the function is actually smoother. Indeed, con-
sidering that (A4) may be rewritten gH ∈ T r

(
L2

ρX

)
and for any

r < r′, T r′(L2
ρX

)
⊂ T r

(
L2

ρX

)
. In other words,

{
T r
(
L2

ρX

) }
r≥0

are

decreasing (r growing) subspaces of L2
ρX

.

For r = 1/2, T 1/2
(
L2

ρX

)
= H; moreover, for r > 1/2, our best approxi-

mation function gH ∈ p(H) is in fact in p(H), that is the optimization
problem in the RKHS H is attained by a function of finite norm.

Related assumptions. The assumptions (A3) and (A4) are adapted to our
theoretical results, but some stricter assumptions are often used, that make
comparison with existing work more direct. For comparison purposes, we
will also use:

(a3) For any i ∈ I = N, u2 6 iαµi 6 s2 for some α > 1 and u, s ∈ R+.
(a4) We assume the coordinates (νi)i∈N of gH ∈ L2

ρX
in the eigenbasis

(φi)i∈N (for ‖.‖2) of T are such that νii
δ/2 6 W , for some δ > 1 and

W ∈ R+ (so that ‖gH‖2 < ∞).

Assumption (a3) directly imposes that the eigenvalues of T decay at rate
i−α (which imposes that there are infinitely many), and thus implies (A3).
Together, assumptions (a3) and (a4), imply assumptions (A3) and (A4),
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with δ > 1 + 2αr. Indeed, we have

‖T−rgH‖2
L2

ρX
=
∑

i∈N

ν2
i µ

−2r
i 6

W 2

u4r

∑

i∈N

i−δ+2αr,

which is finite for 2αr − δ < −1. Thus, the supremum element of the set
of r such that (A4) holds is such that δ = 1 + 2αr. Thus, when comparing
assumptions (A3-4) and (a3-4), we will often make the identification above,
that is, δ = 1 + 2αr.

The main advantage of the new assumptions is their interpretation when
the basis (φi)i∈I is common for several RKHSs (such as the Fourier basis
for splines, see in Section 5): (a4) describes the decrease of the coordinates
of the best function gH ∈ L2

ρX
independently of the chosen RKHS. Thus,

the parameter δ characterizes the prediction function, while the parameter
α characterizes the RKHS.

3. Stochastic approximation in Hilbert spaces. In this section, we
consider estimating a prediction function g ∈ H from observed data, and we
make the following assumption:

(A5) For n > 1, the random variables (xn, yn) ∈ X ×R are independent and
identically distributed with distribution ρ.

Our goal is to estimate a function g ∈ H from data, such that ε(g) = 1
2E(Y −

g(X))2 is as small as possible. As shown in Section 2, this is equivalent to
minimizing ‖g−gH‖2

L2
ρX

. The two main approaches to define an estimator is

by regularization or by stochastic approximation (and combination thereof).
See also approaches by early-stopped gradient descent on the empirical risk
in [25].

3.1. Regularization and linear systems. Given n observations, regular-
ized empirical risk minimization corresponds to minimizing with respect to
g ∈ H the following objective function:

1

2n

n∑

i=1

(yi − g(xi))
2 +

λ

2
‖g‖2

H.

Although the problem is formulated in a potentially infinite-dimensional
Hilbert space, through the classical representer theorem [26, 3, 2], the unique
(if λ > 0) optimal solution may be expressed as ĝ =

∑n
i=1 aiKxi , and

a ∈ R
n may be obtained by solving the linear system (K + λI)a = y,

where K ∈ R
n×n is the kernel matrix, a.k.a. the Gram matrix, composed
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of pairwise kernel evaluations Kij = K(xi, xj), i, j = 1, . . . , n, and y is the
n-dimensional vector of all n responses yi, i = 1, . . . , n.

The running-time complexity to obtain a ∈ R
n is typically O(n3) if no

assumptions are made, but several algorithms may be used to lower the com-
plexity and obtain an approximate solution, such as conjugate gradient [27]
or column sampling (a.k.a. Nyström method) [28, 29, 30].

In terms of convergence rates, assumptions (a3-4) allow to obtain con-
vergence rates that decompose ε(ĝ) − ε(gH) = 1

2‖ĝ − gH‖2
L2

ρX

as the sum of

two asymptotic terms [5, 30, 24]:

– Variance term: O
(
σ2n−1λ−1/α

)
, which is decreasing with λ, where σ2

characterizes the noise variance, for example, in the homoscedastic case
(i.i.d. additive noise), the marginal variance of the noise; see assump-
tion (A6) for the detailed assumption that we need in our stochastic
approximation context.

– Bias term: O
(
W 2λmin{(δ−1)/α,2}

)
, which is increasing with λ. Note that

the corresponding r from assumptions (A3-4) is r = (δ − 1)/2α, and
the bias term becomes proportional to λmin{2r,2}.

There are then two regimes:

– Optimal predictions: If r < 1, then the optimal value of λ (that mini-
mizes the sum of two terms and makes them equivalent) is proportional
to n−α/(2rα+1) = n−α/δ and the excess prediction error ‖ĝ− gH‖2

L2
ρX

=

O
(
n−2αr/(2αr+1)

)
= O

(
n−1+1/δ

)
, and the resulting procedure is then

“optimal” in terms of estimation of gH in L2
ρX

(see Section 4 for de-
tails).

– Saturation: If r > 1, where the optimal value of λ (that minimizes
the sum of two terms and makes them equivalent) is proportional to
n−α/(2α+1), and the excess prediction error is less than = O

(
n−2α/(2α+1)

)
,

which is suboptimal. Although assumption (A4) is valid for a larger
r, the rate is the same than if r = 1.

In this paper, we consider a stochastic approximation framework with
improved running-time complexity and similar theoretical behavior than
regularized empirical risk minimization.

3.2. Stochastic approximation. Using the reproducing property, we have
for any g ∈ H, ε(g) = 1

2E(Y − g(X))2 = 1
2E(Y − 〈g,KX〉H)2, with gra-

dient (defined with respect to the dot-product in H) ε′(g) = −E
[
(Y −

〈g,KX〉H)KX

]
.

Thus, for each pair of observations (xn, yn), we have ε′(g) = −E
[
(yn −
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〈g,Kxn〉H)Kxn

]
, and thus, the quantity

[
− (yn − 〈g,Kxn〉H)Kxn

]
=
[

−
(yn − g(xn)〉)Kxn

]
is an unbiased stochastic gradient. We thus consider the

stochastic gradient recursion, in the Hilbert space H, started from a function
g0 ∈ H (taken to be zero in the following):

gn = gn−1 − γn
[
yn − 〈gn−1,Kxn〉H

]
Kxn = gn−1 − γn

[
yn − gn−1(xn)

]
Kxn .

We may also apply the recursion using representants. Indeed, if g0 = 0,
which we now assume, then for any n > 1,

gn =
n∑

i=1

aiKxi ,

with the following recursion on the sequence (an)n>1:

an = −γn(gn−1(xn) − yn) = −γn

(
n−1∑

i=1

aiK(xn, xi) − yi

)
.

We also output the averaged iterate defined as

(3.1) gn =
1

n+ 1

n∑

k=0

gk =
1

n+ 1

n∑

i=1

( i∑

j=1

aj

)
Kxi .

Running-time complexity. The running time complexity is O(i) for itera-
tion i—if we assume that kernel evaluations are O(1), and thus O(n2) after
n steps. Several authors have considered expanding gn on a subset of all
(Kxi), which allows to bring down the complexity of each iteration and ob-
tain an overall linear complexity is n [31, 32], but this comes at the expense
of not obtaining the sharp generalization errors that we obtain in this paper.
Note that when studying regularized least-squares problem (i.e., adding a
penalisation term), one has to update every coefficient (ai)16i6n at step n.
More content on learning with kernels may be found in [33], and references
therein.

Relationship to previous works. Such type of algorithms have been studied
before [8, 34, 33, 7, 35], under various forms. Especially, in [34, 9, 33, 35]
a regularization term is added to the loss function (thus considering the
following problem: arg minf∈H ε(f)+λ||f ||2K). In [8, 7], neither regularization
nor averaging procedure are considered, but in the second case, multiple
pass through the data are considered. In [35], a non-regularized averaged
procedure equivalent to ours is considered. However, the step-sizes γn which
are proposed, as well as the corresponding analysis, are different. Our step-
sizes are larger and our analysis uses more directly the underlying linear
algebra to obtain better rates (while the proof of [35] is applicable to all
smooth losses).
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Learning rate. We are mainly interested in two different types of step sizes
(a.k.a. learning rates): the sequence (γi)16i6n may be either:

1. a subsequence of a universal sequence (γi)i∈N, we refer to this situation
as the “online setting”. Our bounds then hold for any of the iterates.

2. a sequence of the type γi = Γ(n) for i 6 n, which will be referred to
as the “finite horizon setting”: in this situation the number of samples
is assumed to be known and fixed and we chose a constant step size
which may depend on this number. Our bound then hold only for the
last iterate.

In practice it is important to have an online procedure, to be able to deal
with huge amounts of data (potentially infinite). However, the analysis is
easier in the “finite horizon” setting. Some doubling trick allows to pass to
varying steps [36], but it is not satisfactory in practice as it creates jumps
at every n which is a power of two.

3.3. Extra regularity assumptions. We denote by Ξ = (Y − gH(X))KX

the residual, a random element of H. We have E [Ξ] = 0 but in general we
do not have E [Ξ|X] = 0 (unless the model of homoscedastic regression is
well specified). We make the following extra assumption:

(A6) There exists R > 0 and σ > 0 such that E [Ξ ⊗ Ξ] 4 σ2Σ, and
E(K(X,X)KX ⊗ KX) 4 R2Σ where 4 denotes the order between
self-adjoint operators.

In other words, for any f ∈ H, we have: E
[
(Y−gH(X))2f(X)2

]
6 σ2

E[f(X)2]
and E

[
K(X,X)f(X)2

]
6 R2

E[f(X)2].
In the well specified homoscedastic case, we have that (Y −gH(X)) is inde-

pendent of X and with σ2 = E
[
(Y − gH(X))2

]
, E [Ξ|X] = σ2Σ is clear: the

constant σ2 in the first part of our assumption characterizes the noise ampli-
tude. Moreover the second part assumption is clearly satisfied if K(X,X) is
almost surely bounded by R2: this constant can then be understood as the
radius of the set of our data points. However, our analysis holds in these more
general set-ups where only fourth order moment of ‖Kx‖H = K(x, x)1/2 are
finite.

We first present the results in the finite horizon setting in Section 3.4
before turning to online setting in Section 3.5.

3.4. Main results (finite horizon). We can first get some guarantee on
the consistency of our estimator, for any small enough constant step-size:
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Theorem 1. Assume (A1-6), then for any constant choice γn = γ0 <
1

2R2 , the prediction error of ḡn converges to the one of gH, that is:

(3.2) 2E [ε (ḡn) − ε(gH)] = E‖ḡn − gH‖2
L2

ρX

n→∞−−−→ 0.

The expectation is considered with respect to the distribution of the sam-
ple (xi, yi)16i6n, as in all the following theorems (note that ‖ḡn − gH‖2

L2
ρX

is

itself a different expectation with respect to the law ρX).
Theorem 1 means that for the simplest choice of the learning rate as a

constant, our estimator tends to the perform as well as the best estimator
in the class H. Note that in general, the convergence in H is meaningless
if r < 1/2. The following results will state some assertions on the speed of
such a convergence; our main result, in terms of generality is the following:

Theorem 2 (Complete bound, γ constant, finite horizon). Assume (A1-

6) and γi = γ = Γ(n), for 1 6 i 6 n. We have, with C(α) = 2α2

(α+1)(2α−1) :

(
E‖ḡn − gH‖2

L2
ρX

)1/2
6

σ/
√
n

1 −
√
γR2

(
1 + C(α)s

2
α (γn)

1
α

) 1
2

+
‖L−r

K gH‖L2
ρX

γrnmin{r,1}

(
1 +

√
γR2

√
1 − γR2

)
.

For easier interpretation, we may derive a simple corollary:

Corollary 1 (γ constant, finite horizon). Assume A1-6. If γR2 6 1/4,
we have the simpler bound:
(3.3)

E‖ḡn − gH‖2
L2

ρX
6

4σ2

n

(
1 +

1

(γ0s2)
1
α

)2

C(α)(s2γn)
1
α + 4

‖L−r
K gH‖2

L2
ρX

γ2rn2 min{r,1}
.

We can make the following observations:

– Proof : Theorem 1 and Corollary 1 are directly derived from Theo-
rem 2, which is proved in Appendix B.3: we derive for our algorithm a
new error decomposition and bound the different sources of error via
algebraic calculations. More precisely, following the proof in Euclidean
space [13], we first analyze (in Appendix B.2) a closely related recur-
sion (we replace Kxn ⊗Kxn by its expectation Σ, and we thus refer to
it as a semi-stochastic version of our algorithm):

gn = gn−1 − γn(ynKxn − Σgn−1).
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It (a) leads to an easy computation of the main bias/variance terms
of our result, (b) will be used to derive our main result by bounding
the drifts between our algorithm and its semi-stochastic version.

– Bias/variance interpretation: The two main terms have a simple
interpretation. The first one is a variance term, which shows the effect
of the noise σ2 on the error. It is bigger when σ gets bigger, and
moreover it also gets bigger when γ is growing (bigger steps mean more
variance). As for the second term, it is a bias term, which accounts
for the distance of the initial choice (the null function in general) to
the objective function. As a consequence, it is smaller when we make
bigger steps.

– Assumption (A4): Our assumption (A4) for r > 1 is stronger than
(A4) for r = 1 but we do not improve the bound. Indeed the bias
term (see comments below) cannot decrease faster than O(n−2): this
phenomenon in known as saturation [37]. To improve our results with
r > 1 it may be interesting to consider another type of averaging.
In the following, r < 1 shall be considered as the main and most
interesting case.

– Relationship to regularized empirical risk minimization: Our
bound ends up being very similar to bounds for regularized empirical
risk minimization, with the identification λ = 1

γn . It is thus no surprise
that once we optimize for the value of γ, we recover the same rates
of convergence. Note that in order to obtain convergence, we require
that γ is bounded, which corresponds to an equivalent λ which has to
be lower-bounded by 1/n.

– Finite horizon: Once again, this theorem holds in the finite horizon
setting. That is we first choose the number of samples we are going to
use, then the learning rate as a constant. It allows us to chose γ as a
function of n, in order to balance the main terms in the error bound.
The trade-off must be understood as follows: a bigger γ increases the
effect of the noise, but a smaller one makes it harder to forget the
initial condition.

We may now deduce the following corollaries, with specific optimized
values of γ:

Corollary 2 (Optimal constant γ). Assume (A1-6) and a constant
step-size γi = γ = Γ(n), for 1 6 i 6 n:
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1. If α−1
2α < r and Γ(n) = γ0 n

−2α min{r,1}−1+α
2α min{r,1}+1 , γ0R

2 6 1/4, we have:

(3.4) E

(
‖ḡn − gH‖2

L2
ρX

)
6 A n

−
2α min{r,1}

2α min{r,1}+1 .

with A = 4

(
1 + 1

(γ0s2)
1

2α

)2

C(α)s
2
αγ

1/α
0 σ2 + 4

γ2r
0

||L−r
K gH||2L2

ρX

.

2. If 0 < r < α−1
2α , with Γ(n) = γ0 is constant, we have:

(3.5) E

(
‖ḡn − gH‖2

L2
ρX

)
6 A n− α−1

2α ,

with the same constant A.

We can make the following observations:

– Limit conditions: Assumption (A4), gives us some kind of “posi-
tion” of the objective function with respect to our reproducing kernel
Hilbert space. If r > 1/2 then gH ∈ H. That means the regression
function truly lies in the space in which we are looking for an approx-
imation. However, it is not necessary neither to get the convergence
result, which stands for any r > 0, nor to get the optimal rate (see
definition in Section 4.2), which is also true for α−1

2α < r < 1 .
– Evolution with r and α: As it has been noticed above, a bigger α

or r would be a stronger assumption. It is thus natural to get a rate
which improves with a bigger α or r: the function (α, r) 7→ 2αr

2αr+1 is
increasing in both parameters.

– Different regions: in Figure 1a, we plot in the plan of coordinates α, δ
(with δ = 2αr + 1) our limit conditions concerning our assumptions,
that is, r = 1 ⇔ δ = 2α + 1 and α−1

2α = r ⇔ α = δ. The region
between the two green lines is the region for which the optimal rate of
estimation is reached. The magenta dashed lines stands for r = 1/2,
which has appeared to be meaningless in our context.
The region α > δ ⇔ α−1

2α > r corresponds to a situation where reg-
ularized empirical risk minimization would still be optimal, but with
a regularization parameter λ that decays faster than 1/n, and thus,
our corresponding step-size γ = 1/(nλ) would not be bounded as a
function of n. We thus saturate our step-size to a constant and the
generalization error is dominated by the bias term.
The region α 6 (δ − 1)/2 ⇔ r > 1 corresponds to a situation where
regularized empirical risk minimization reaches a saturating behaviour.
In our stochastic approximation context, the variance term dominates.
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3.5. Theorem (online). We now consider the second case when the se-
quence of step sizes does not depend on the number of samples we want to
use (online setting).

The computation are more tedious in such a situation so that we will only
state asymptotic theorems in order to understand the similarities and dif-
ferences between the finite horizon setting and the online setting, especially
in terms of limit conditions.

Theorem 3 (Complete bound, (γn)n online). Assume (A1-6), assume
for any i, γi = γ0

iζ .

– If 0 < r(1 − ζ) < 1, if 0 < ζ < 1
2 then

(3.6) E‖ḡn − gH‖2
L2

ρX
6 O

(
σ2(s2γn)

1
α

n1− 1
α

)
+O




||L−r
K gH||2L2

ρX

(nγn)2r


 .

– If 0 < r(1 − ζ) < 1, 1
2 < ζ

(3.7) E‖ḡn − gH‖2
L2

ρX
6 O

(
σ2(s2γn)

1
α

n1− 1
α

1

nγ2
n

)
+O




||L−r
K gH||2L2

ρX

(nγn)2r


 .

The constant in the O(·) notations only depend on γ0 and α.

Theorem 3 is proved in Appendix B.4. In the first case, the main bias
and variance terms are the same as in the finite horizon setting, and so
is the optimal choice of ζ. However in the second case, the variance term
behaviour changes: it does not decrease any more when ζ increases beyond
1/2. Indeed, in such a case our constant averaging procedure puts to much
weight on the first iterates, thus we do not improve the variance bound
by making the learning rate decrease faster. Other type of averaging, as
proposed for example in [38], could help to improve the bound.

Moreover, this extra condition thus changes a bit the regions where we
get the optimal rate (see Figure 1b), and we have the following corollary:

Corollary 3 (Optimal decreasing γn). Assume (A1-6) (in this corol-
lary, O(·) stands for a constant depending on α, ||L−r

K gH||L2
ρX
, s, σ2, γ0 and

universal constants):

1. If α−1
2α < r < 2α−1

2α , with γn = γ0n
−2αr−1+α

2αr+1 for any n > 1 we get the
rate:

(3.8) E‖ḡn − gH‖2
L2

ρX
= O

(
n− 2αr

2αr+1

)
.
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2. If 2α−1
2α < r, with γn = γ0n

−1/2 for any n > 1, we get the rate:

(3.9) E‖ḡn − gH‖2
L2

ρX
= O

(
n− 2α−1

2α

)
.

3. If 0 < r < α−1
2α , with γn = γ0 for any n > 1, we get the rate given

in (3.5). Indeed the choice of a constant learning rate naturally results
in an online procedure.

This corollary is directly derived from Theorem 3, balancing the two main
terms. The only difference with the finite horizon setting is the shrinkage of
the optimality region as the condition r < 1 is replaced by r < 2α−1

2α < 1
(see Figure 1b). In the next section, we relate our results to existing work.
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(a) Finite Horizon
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Figure 1: Behaviour of convergence rates: (left) finite horizon and (right)
online setting. We describe in the (α, δ) plan (with δ = 2αr+1) the different
optimality regions : between the two green lines, we achieve the optimal
rate. On the left plot the red (respectively magenta and cyan) lines are the
regions for which Zhang (respectively Yao&Tarres and Ying&Pontil) proved
to achieve the overall optimal rate (which may only be the case if α = 1).
The four blue points match the coordinates of the four couples (α, δ) that
will be used in our simulations : they are spread over the different optimality
regions.

4. Links with existing results. In this section, we relate our results
from the previous section to existing results.

4.1. Euclidean spaces. Recently, Bach and Moulines showed in [13] that
for least squares regression, averaged stochastic gradient descent achieved
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a rate of O(1/n), in a finite-dimensional Hilbert space (Euclidean space),
under the same assumptions as above (except the first one of course), which
is replaced by:

(A1’) H is a d-dimensional Euclidean space.

They showed the following result:

Proposition 7 (Finite-dimensions [13]). Assume (A1’), (A2-6). Then
for any constant step-size γ < 1

R2 , we have

(4.1) E [ε (gn) − ε(gH)] 6
1

2n

[
σ

√
d

1 −
√
γR2

+R‖gH‖H
1√
γR2

]2

.

Thus with γ = 1
4R2 we get E [ε (gn) − ε(gH)] 6 2

n

[
σ

√
d+R‖gH‖H

]2
.

We show that we can deduce such a theorem from Theorem 2 (and even
with comparable constants). Indeed under (A1’) we have:

– If E
[
||xn||2

]
6 R2 then Σ 4 R2I and (A3) is true for any α ≥ 1 with

s2 = R2dα. Indeed λi 6 R2 if i 6 d and λi = 0 if i > d+ 1 so that for
any α > 1, i ∈ N

∗, λi 6 R2 dα

iα .
– As we are in a finite-dimensional space (A4) is true for r = 1/2 as

||T−1/2gH||2L2
ρX

= ||gH||2H.

Under such remarks, the following corollary may be deduced from Theo-
rem 2:

Corollary 4. Assume (A1’), (A2-6), then for any α > 1, with
γR2 6 1/4:

E‖ḡn − gH‖2
L2

ρX
6

4σ2

n

(
1 +

1

(γ0R2dα)
1

2α

)2

C(α)(R2γdαn)
1
α + 4

‖gH‖2
H

nγ
.

So that, when α → ∞, C(α) = 2α2

(α+1)(2α−1) →α→∞ 1, and

E [ε (gn) − ε(gH)] 6
2

n

(
σ

√
d

(
1 +

1√
d

)
+R‖gH‖H

1√
γR2

)2

.

This bound is easily comparable to (4.1) and shows that our analysis has

not lost too much. Moreover our learning rate is proportional to n
−1

2α+1 with
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r = 1/2, so tends to behave like a constant when α → ∞, which recovers
the constant step set-up from [13].

Moreover, N. Flammarion proved6, using same kind of techniques, that
their bound could be extended to:

(4.2) E [ε (gn) − ε(gH)] 6 4
σ2d

n
+ 4R4 ‖Σ−1/2gH‖2

(γR2)2n2
,

a result that may be deduced of the following more general corollary of our
Theorem 2:

Corollary 5. Assume (A1’), (A2-6), and, for some q > 0, ||Σ−qgH||2H =
||Σ−(q+1/2)gH||2L2

ρX

< ∞, then:

E [ε (gn) − ε(g∗)] 6 8
σ2d

n
+ 4R4(q+1/2) ||Σ−qg∗||2H

(nγR2)2(q+1/2)
.

Such a result is derived from Theorem 2 with α → ∞, with r = q + 1/2.
It bridges the gap between Proposition 7 (q = 0), and its extension (4.2)
(q = 1/2). The constants 4 and 8 come from the upper bounds (a + b)2 6

a2 + b2 and 1 + 1/
√
d 6 2 and are thus non optimal.

Remark: linking our work to the finite-dimensional setting is made using
the fact that our assumption (A3) is true for any α > 1 and the fact that
C(α) →α→∞ 1.

4.2. Optimal rates of estimation. In some situations, our stochastic ap-
proximation framework leads to “optimal” rates of prediction in the fol-
lowing sense. In [5, Theorem 2] a minimax lower bound was given: let
P(α, r) (α > 1, r ∈ [1/2, 1]) be the set of all probability measures ρ on
X × Y, such that:

• a.s., |y| 6Mρ,
• T−rgρ ∈ L2

ρ(X),

• the eigenvalues (µj)j∈N arranged in a non increasing order, are subject
to the decay µj = O(j−α).

Then the following minimax lower rate stands:

lim inf
n→∞

inf
gn

sup
ρ∈P(b,r)

P

{
ε(gn) − ε(gρ) > Cn−2rα/(2rα+1)

}
= 1,

6Personnal communication, 05/2014
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for some constant C > 0 where the infimum in the middle is taken over all
algorithms as a map ((xi, yi)16i6n) 7→ gn ∈ H.

When making assumptions (a3-4), the assumptions regarding the pre-
diction problem (i.e., the optimal function gρ) are summarized in the decay
of the components of gρ in an orthonormal basis, characterized by the con-
stant δ. Here, the minimax rate of estimation (see, e.g., [39]) is O(n−1+1/δ)
which is the same as O

(
n−2rα/(2rα+1)

)
with the identification δ = 2αr + 1.

That means the rate we get is optimal for α−1
2α < r < 1 in the finite

horizon setting, and for α−1
2α < r < 2α−1

2α in the online setting. This is the
region between the two green lines on Figure 1.

4.3. Regularized stochastic approximation. It is interesting to link our
results to what has been done in [34] and [9] in the case of regularized
least-mean-squares, so that the recursion is written:

gn = gn−1 − γn ((gn−1(xn) − yn)Kxn + λngn−1)

with (gn−1(xn)−yn)Kxn+λngn−1 an unbiased gradient of 1
2Eρ

[
(g(x) − y)2

]
+

λn
2 ||g||2. In [9] the following result is proved (Remark 2.8 following Theorem

C ):

Theorem 4 (Regularized, non averaged stochastic gradient[9]). Assume
that T−rgρ ∈ L2

ρX
for some r ∈ [1/2, 1]. Assume the kernel is bounded and

Y compact. Then with probability at least 1 − κ, for all t ∈ N,

ε(gn) − ε(gρ) 6 Oκ

(
n−2r/(2r+1)

)
.

Where Oκ stands for a constant which depends on κ.

No assumption is made on the covariance operator beyond being trace
class, but only on ‖T−rgρ‖L2

ρX
(thus no assumption (A3)). A few remarks

may be made:

1. They get almost-sure convergence, when we only get convergence in
expectation. We could perhaps derive a.s. convergence by considering
moment bounds in order to be able to derive convergence in high
probability and to use Borel-Cantelli lemma.

2. They only assume 1
2 6 r 6 1, which means that they assume the

regression function to lie in the RKHS.
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4.4. Unregularized stochastic approximation. In [8], Ying and Pontil stud-
ied the same unregularized problem as we consider, under assumption (A4).
They obtain the same rates as above (n−2r/(2r+1) log(n)) in both online case
(with 0 6 r 6 1

2) and finite horizon setting (0 < r).
They led as an open problem to improve bounds with some additional

information on some decay of the eigenvalues of T , a question which is
answered here.

Moreover, Zhang [35] also studies stochastic gradient descent algorithms
in an unregularized setting, also with averaging. As described in [8], his
result is stated in the linear kernel setting but may be extended to kernels
satisfying supx∈X K(x, x) 6 R2. Ying and Pontil derive from Theorem 5.2
in [35] the following proposition:

Proposition 8 (Short step-sizes [35]). Assume we consider the algo-
rithm defined in Section 3.2 and output gn defined by equation (3.1). Assume
the kernel K satisfies supx∈X K(x, x) 6 R2. Finally assume gρ satisfies as-
sumption (A4) with 0 < r < 1/2. Then in the finite horizon setting, with

Γ(n) = 1
4R2n

− 2r
2r+1 , we have:

E [ε (ḡn) − ε(gH)] = O
(
n− 2r

2r+1

)
.

Moreover, note that we may derive their result from Corollary 2. Indeed,

using Γ(n) = γ0n
−2r

2r+1 , we get a bias term which is of order n
−2r

2r+1 and a

variance term of order n−1+ 1
2rα+α which is smaller. Our analysis thus recovers

their convergence rate with their step-size. Note that this step-size they is
significantly smaller than ours, and that the resulting bound is worse (but
their result holds in more general settings than least-squares). See more
details in Section 4.5.

4.5. Summary of results. All three algorithms are variants of the follow-
ing:

g0 = 0

∀n > 1, gn = (1 − λn)gn−1 − γn(yn − gn−1(xn))Kxn .

But they are studied under different settings, concerning regularization,
averaging, assumptions: we sum up in Table 1 the settings of each of these
studies. For each of them, we consider the finite horizon settings, where
results are generally better.
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Algorithm Ass. Ass. γn λn Rate Conditions
type (A3) (A4)

This paper (1) yes yes 1 0 n− 2α
2α−1 r < α−1

2α

This paper (2) yes yes n− 2αr+1−α
2αr+1 0 n

−2αr
2αr+1 α−1

2α
< r < 1

This paper (3) yes yes n− α+1

2α+1 0 n
−2α

2α+1 r > 1

Zhang [35] no yes n
−2r

2r+1 0 n
−2r

2r+1 0 6 r 6
1
2

Tarrès & Yao [9] no yes n
−2r

2r+1 n
−1

2r+1 n
−2r

2r+1 1
2
6 r 6 1

Ying & Pontil [8] no yes n
−2r

2r+1 0 n
−2r

2r+1 r > 0

Table 1

Summary of assumptions and results (step-sizes, rates and conditions) for our three
regions of convergence and related approaches. We focus on finite-horizon results.

We can make the following observations:

– Dependence of the convergence rate on α: For learning in any
kernel with α > 1 we strictly improve the asymptotic rate compared to
related methods that only assume summability of eigenvalues: indeed,
the function x 7→ x/(x+ 1) is increasing on R

+. If we consider a given
optimal prediction function and a given kernel in which we are going
to learn the function, considering the decrease in eigenvalues allows to
adapt the step-size and obtain an improved learning rate. Namely, we
improved the previous rate −2r

2r+1 up to −2αr
2αr+1 .

– Worst case result in r: in the setting of assumptions (a3,4), given
δ, the optimal rate of convergence is known to be O(n−1+1/δ), where
δ = 2αr + 1. We thus get the optimal rate, as soon as α < δ <

2α + 1, while the other algorithms get the suboptimal rate n
δ−1

δ+α−1

under various conditions. Note that this sub-optimal rate becomes
close to the optimal rate when α is close to one, that is, in the worst
case situation. Thus, in the worst-case (α arbitrarily close to one), all
methods behave similarly, but for any particular instance where α > 1,
our rates are better.

– Choice of kernel: in the setting of assumptions (a3,4), given δ, in
order to get the optimal rate, we may choose the kernel (i.e., α) such
that α < δ < 2α + 1 (that is neither too big, nor too small), while
other methods need to choose a kernel for which α is as close to one
as possible, which may not be possible in practice.

– Improved bounds: Ying and Pontil [8] only give asymptotic bounds,
while we have exact constants for the finite horizon case. Moreover
there are some logarithmic terms in [8] which disappear in our analysis.

– Saturation: our method does saturate for r > 1, while the non-
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averaged framework of [8] does not (but does not depend on the value
of α). We conjecture that a proper non-uniform averaging scheme (that
puts more weight on the latest iterates), we should get the best of both
worlds.

5. Experiments on artificial data. Following [8], we consider syn-
thetic examples with smoothing splines on the circle, where our assumptions
(A3-4) are easily satisfied.

5.1. Splines on the circle. The simplest example to match our assump-
tions may be found in [1]. We consider Y = gρ(X) + ε, with X ∼ U [ 0; 1] is
a uniform random variable in [0, 1], and gρ in a particular RKHS (which is
actually a Sobolev space).

Let H be the collection of all zero-mean periodic functions on [0; 1] of the
form

f : t 7→
√

2
∞∑

i=1

ai(f) cos(2πit) +
√

2
∞∑

i=1

bi(f) sin(2πit),

with

‖f‖2
H =

∞∑

i=1

(ai(f)2 + bi(f)2)(2πi)2m < ∞.

This means that the m-th derivative of f , f (m) is in L2([0 ; 1]). We consider
the inner product:

〈f, g〉H =
∞∑

i=1

(2πi)2m (ai(f)ai(g) + bi(f)bi(g)) .

It is known that H is an RKHS and that the reproducing kernel Rm(s, t)
for H is

Rm(s, t) =
∞∑

i=1

2

(2πi)2m
[cos(2πis) cos(2πit) + sin(2πis) sin(2πit)]

=
∞∑

i=1

2

(2πi)2m
cos(2πi(s− t)).

Moreover the study of Bernoulli polynomials gives a close formula forR(s, t),
that is:

Rm(s, t) =
(−1)m−1

(2m)!
B2m ({s− t}) ,

with Bm denoting the m-th Bernoulli polynomial and {s− t} the fractional
part of s− t [1].
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We can derive the following proposition for the covariance operator which
means that our assumption (A3) is satisfied for our algorithm in H when
X ∼ U [0; 1], with α = 2m, and s = 2(1/2π)m.

Proposition 9 (Covariance operator for smoothing splines). If X ∼
U [0; 1], then in H:

1. the eigenvalues of Σ are all of multiplicity 2 and are λi = (2πi)−2m,
2. the eigenfunctions are φc

i : t 7→
√

2 cos(2πit) and φs
i : t 7→

√
2 sin(2πit).

Proof. For φc
i we have (a similar argument holds for φs

i ):

T (φc
i )(s) =

∫ 1

0
R(s, t)

√
2 cos(2πit)dt

=

(∫ 1

0

2

(2iπ)2m

√
2 cos(2πit)2dt

)
cos(2πis) = λi

√
2 cos(2πis)

= λiφ
c
i (s).

It is well known that (φc
i , φ

s
i )i>0 is an orthonormal system (the Fourier

basis) of the functions in L2([ 0; 1]) with zero mean, and it is easy to check
that ((2iπ)−mφc

i , (2iπ)−mφs
i )i>1 is an orthonormal basis of our RKHS H (this

may also be seen as a consequence of the fact that T 1/2 is an isometry).

Finally, considering gρ(x) = Bδ/2(x) with δ = 2αr+ 1 ∈ 2N, our assump-
tion (A4) holds. Indeed it implies (a3-4), with α > 1, δ = 2αr + 1, since

for any k ∈ N, Bk(x) = −2k!
∞∑

i=1

cos
(
2iπx− kπ

2

)

(2iπ)k
(see, e.g., [40]).

We may notice a few points:

1. Here the eigenvectors do not depend on the kernel choice, only the re-
normalisation constant depends on the choice of the kernel. Especially
the eigenbasis of T in L2

ρX
doesn’t depend on m. That can be linked

with the previous remarks made in Section 4.
2. Assumption (A3) defines here the size of the RKHS: the smaller α =

2m is, the bigger the space is, the harder it is to learn a function.

In the next section, we illustrate on such a toy model our main results and
compare our learning algorithm to Ying and Pontil’s [8], Tarrès and Yao’s
[9] and Zhang’s [35] algorithms.

5.2. Experimental set-up. We use gρ(x) = Bδ/2(x) with δ = 2αr + 1, as

proposed above, with B1(x) = x − 1
2 , B2(x) = x2 − x + 1

6 and B3(x) =
x3 − 3

2x
2 + 1

2x.
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We give in Figure 2 the functions used for simulations in a few cases that
span our three regions. We also remind the choice of γ proposed for the 4
algorithms. We always use the finite horizon setting.

r α δ K gρ
log(γ)
log(n)

(this paper) log(γ)
log(n)

(previous)

0.75 2 4 R1 B2 −1/2 = −0.5 −3/5 = −0.6

0.375 4 4 R2 B2 0 −3/7 ≃ −0.43

1.25 2 6 R1 B3 −3/7 ≃ −0.43 −5/7 ≃ −0.71

0.125 4 2 R2 B1 0 −1/5 = −0.2
Table 2

Different choices of the parameters α, r and the corresponding convergence rates and
step-sizes. The (α, δ) coordinates of the four choices of couple “(kernel, objective

function)” are mapped on Figure 1. They are spread over the different optimality regions.

5.3. Optimal learning rate for our algorithm. In this section, we empir-
ically search for the best choice of a finite horizon learning rate, in order
to check if it matches our prediction. For a certain number of values for n,
distributed exponentially between 1 and 103.5, we look for the best choice
Γbest(n) of a constant learning rate for our algorithm up to horizon n. In
order to do that, for a large number of constants C1, · · · , Cp, we estimate
the expectation of error E[ε(gn(γ = Ci)) − ε(gρ)] by averaging over 30 inde-
pendent sample of size n, then report the constant giving minimal error as
a function of n in Figure 2. We consider here the situation α = 2, r = 0.75.
We plot results in a logarithmic scale, and evaluate the asymptotic decrease
of Γbest(n) by fitting an affine approximation to the second half of the curve.
We get a slope of −0.51, which matches our choice of −0.5 from Corollary 2.
Although, our theoretical results are only upper-bounds, we conjecture that
our proof technique also leads to lower-bounds in situations where assump-
tions (a3-4) hold (like in this experiment).
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Figure 2: Optimal learning rate Γbest(n) for our algorithm in the finite hori-
zon setting (plain magenta). The dashed green curve is a first order affine
approximation of the second half of the magenta curve.

5.4. Comparison to competing algorithms. In this section, we compare
the convergence rates of the four algorithms described in Section 4.5. We
consider the different choices of (r, α) as described in Table 2 in order to
go all over the different optimality situations. The main properties of each
algorithm are described in Table 1. However we may note:

– For our algorithm, Γ(n) is chosen accordingly with Corollary 2, with
γ0 = 1

R2 .
– For Ying and Pontil’s algorithm, accordingly to Theorem 6 in [8], we

consider Γ(n) = γ0n
− 2r

2r+1 . We choose γ0 = 1
R2 which behaves better

than the proposed r
64(1+R4)(2r+1)

.

– For Tarrès and Yaol’s algorithm, we refer to Theorem C in [9], and

consider Γ(n) = a (n0 + n)− 2r
2r+1 and Λ(n) = 1

a (n0 + n)− 1
2r+1 . The

theorem is stated for all a > 4: we choose a = 4.
– For Zhangl’s algorithm, we refer to Part 2.2 in [8], and choose Γ(n) =

γ0n
− 2r

2r+1 with γ0 = 1
R2 which behaves better than the proposed choice

1
4(1+R2)

.

Finally, we sum up the rates that were both predicted and derived for the
four algorithms in the four cases for (α, δ) in Table 3. It appears that (a)
we approximatively match the predicted rates in most cases (they would if
n was larger), (b) our rates improve on existing work.
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(a) r = 0.75, α = 2
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(b) r = 0.375, α = 4
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(c) r = 1.25, α = 2
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(d) r = 0.125, α = 4

Figure 3: Comparison between algorithms. We have chosen parameters in
each algorithm accordingly with description in Section 4.5, especially for the
choices of γ0. The y-axis is log10 (E[ε(ĝn) − ε(gρ)]), where the final output ĝn

may be either gn (This paper, Zhang) or gn(Ying & Pontil, Yao & Tarres).
This expectation is computed by averaging over 15 independent samples.
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r = 0.75 r = 0.375 r = 1.25 r = 0.125
α = 2 α = 4 α = 2 α = 4

Predicted rate (our algo.) -0.75 -0.75 -0.8 -0.375
Effective rate (our algo.) -0.7 -0.71 -0.69 -0.29

Predicted rate (YP) -0.6 -0.43 -0.71 -0.2
Effective rate (YP) -0.53 -0.5 -0.63 -0.22

Predicted rate (TY) -0.6
Effective rate (TY) -0.48 -0.39 -0.43 -0.2

Predicted rate (Z) -0.43 -0.2
Effective rate (Z) -0.53 -0.43 -0.41 -0.21

Table 3

Predicted and effective rates (asymptotic slope of the log-log plot) for the four different
situations. We leave empty cases when the set-up does not come with existing guarantees:

most algorithms seem to exhibit the expected behaviour even in such cases.

6. Conclusion. In this paper, we have provided an analysis of averaged
unregularized stochastic gradient methods for kernel-based least-squares re-
gression. Our novel analysis allowed us to consider larger step-sizes, which
in turn lead to optimal estimation rates for many settings of eigenvalue de-
cay of the covariance operators and smoothness of the optimal prediction
function. Moreover, we have worked on a more general setting than previous
work, that includes most interesting cases of positive definite kernels.

Our work can be extended in a number of interesting ways: First, (a) we
have considered results in expectation; following the higher-order moment
bounds from [13] in the Euclidean case, we could consider higher-order mo-
ments, which in turn could lead to high-probability results or almost-sure
convergence. Moreover, (b) while we obtain optimal convergence rates for
a particular regime of kernels/objective functions, using different types of
averaging (i.e., non uniform) may lead to optimal rates in other regimes. Be-
sides, (c) following [13], we could extend our results for infinite-dimensional
least-squares regression to other smooth loss functions, such as for logistic
regression, where an online Newton algorithm with the same running-time
complexity would also lead to optimal convergence rates. Finally, (d) the
running-time complexity of our stochastic approximation procedures is still
quadratic in the number of samples n, which is unsatisfactory when n is
large; by considering reduced set-methods [31, 32, 6], we hope to able to
obtain a complexity of O(dnn), where dn is such that the convergence rate
is O(dn/n), which would extend the Euclidean space result, where dn is
constant equal to the dimension.
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Appendices

In Appendix A, we provide proofs of the propositions from Section 2 that
provide the Hilbert space set-up for kernel-based learning, while in Ap-
pendix B, we prove convergence rates for the least-mean-squares algorithm.

A. Reproducing kernel Hilbert spaces. In this appendix, we pro-
vide proofs of the results from Section 2 that provide the RHKS space set-up
for kernel-based learning. See [20, 4, 34] for further properties of RKHSs.

We consider a reproducing kernel Hilbert space H with kernel K on space
X as defined in Section 2.1. Unless explicitly mentioned, we do not make
any topological assumption on X .

As detailed in Section 2.2 we consider a set X and Y ⊂ R and a distri-
bution ρ on X × Y. We denote ρX the marginal law on the space X . In
the following, we use the notation (X,Y ) for a random variable following
the law ρ. We define spaces L2

ρX
,L2

ρX
and the canonical projection p. In the

following we further assume that L2
ρX

is separable, an assumption satisfied
in most cases.

We remind our assumptions:

(A1) H is a separable RKHS associated with kernel K on a space X .
(A2) E [K(X,X)] and E[Y 2] are finite.

Assumption (A2) ensures that every function in H is square-integrable,
that is, if E[K(X,X)] < ∞, then H ⊂ L2

ρX
. Indeed, we have:

Proposition 10. Assume (A1).

1. If E[K(X,X)] < ∞, then H ⊂ L2
ρX

.
2. If supx∈X K(x, x) < ∞, then any function in H is bounded.

Proof. Under such condition, by Cauchy-Schwartz inequality, any func-
tion f ∈ H is either bounded or integrable:

|f(x)|2 6 ‖f‖2
KK(x, x) 6 ‖f‖2

K sup
x∈X

K(x, x),

∫

X
|f(x)|2dρX(x) 6 ‖f‖2

K

∫

X
K(x, x)dρx(x).

The assumption E[K(X,X)] < ∞ seems to be the weakest assumption to
make, in order to have at least H ⊂ L2

ρX
. However they may exist functions

f ∈ H \ {0} such that ‖f‖L2
ρX

= 0. However under stronger assumptions

(see Section A.5) we may identify H and p(H).
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A.1. Properties of the minimization problem. We are interested in min-
imizing the following quantity, which is the prediction error of a function f ,
which may be rewritten as follows with dot-products in L2

ρX
:

ε(f) =
1

2
E

[
(f(X) − Y )2

]

=
1

2
‖f‖2

L2
ρX

−
∫

X ×Y
f(x)ydρ(x, y) + c

=
1

2
‖f‖2

L2
ρX

−
∫

X
f(x)

(∫

Y
ydρY |X=x(y)

)
dρ|X(x) + c

=
1

2
‖f‖2

L2
ρX

−
〈
f,

∫

Y
ydρY |X=·(y)

〉

L2
ρX

+ c(A.1)

=
1

2
‖f‖2

L2
ρX

− 〈f,E [Y |X = ·]〉L2
ρX

+ c

Notice that the problem may be re-written, if f is in H, with dot-products
in H:

ε(f) =
1

2
E[f(X)2] − 〈f,E[Y KX ]〉K +

1

2
E[Y 2]

=
1

2
〈f,Σf〉K − 〈f, µ〉K + c.

Interpretation: Under the form (A.1), it appears to be a minimisation
problem in a Hilbert space of the sum of a continuous coercive function and
a linear one. Using Lax-Milgramm and Stampachia theorems [17] we can
conclude with the following proposition, which implies Prop. 1 in Section 2:

Proposition 11 (gρ, gH). Assume (A1-2). We have the following points:

1. There exists a unique minimizer over the space L2
ρX

. This minimizer
is the regression function gρ : x 7→

∫
Y ydρY |X=x(y) (Lax-Milgramm).

2. For any non empty closed convex set, there exists a unique minimizer
(Stampachia). As a consequence, there exists a unique minimizer:

gH = arg min
f∈p(H)

E

[
(f(X) − Y )2

]

over p(H). gH is the orthogonal projection over gρ over p(H), thus
satisfies the following equality: for any ε ∈ H:

(A.2) E [(gH(X) − Y )ε(X)] = 0
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A.2. Covariance Operator. We defined operators Σ, T , T in Section 2.4.
We here state the main properties of these operators, then prove the two
main decompositions stated in Propositions 2 and 3.

Proposition 12 (Properties of Σ). Assume (A1-2).

1. Σ is well defined (that is for any f ∈ H, z 7→ Ef(X)K(X, z) is in H).
2. Σ is a continuous operator.
3. Ker(Σ) = {f ∈ H s.t. ‖f‖L2

ρX
= 0}. Actually for any f ∈ H, 〈f,Σf〉K =

‖f‖L2
ρX

.

4. Σ is a self-adjoint operator.

Proof. 1. for any x ∈ X , f(x)Kx is in H. To show that the integral∫
x∈X f(x)Kx is converging, it is sufficient to show the is is absolutely

converging in H, as absolute convergence implies convergence in any
Banach space7 (thus any Hilbert space). Moreover:
∫

x∈X
‖f(x)Kx‖K 6

∫

x∈X
|f(x)|〈Kx,Kx〉1/2

K

6

∫

x∈X
|f(x)|K(x, x)1/2dρX(x)

6

(∫

x∈X
f(x)2dρX(x)

)1/2 (∫

x∈X
K(x, x)dρX(x)

)1/2

< ∞,

under assumption E[K(X,X)] < ∞ ((A2)).
2. For any f ∈ H, we have

‖Σf‖K = 〈Σf,Σf〉K =

∫

x∈X
(Σf)(x)f(x)dρX(x)

=

∫

x∈X

(∫

y∈X
f(y)K(x, y)dρX(y)

)
f(x)dρX(x)

=

∫

x,y∈X 2
〈f,Kx〉K〈f,Ky〉K〈Ky,Kx〉KdρX(x)dρX(y)

6

∫

x,y∈X 2
‖f‖K‖Kx‖K‖f‖K‖Ky‖K‖Kx‖K‖Ky‖KdρX(x)dρX(y)

by Cauchy Schwartz,

6 ‖f‖2
K

(∫

x∈X 2
‖Kx‖2

KdρX(x)

)2

6 ‖f‖2
K

(∫

x∈X 2
K(x, x)dρX(x)

)2

,

7A Banch space is a linear normed space which is complete for the distance derived
from the norm.
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which proves the continuity under assumption (A2).
3. Σf = 0 ⇒ 〈f,Σf〉 = 0 ⇒ E[f2(X)] = 0. Reciprocally, if ‖f‖L2

ρX
= 0,

it is clear that ‖Σf‖L2
ρX

= 0, then ‖Σf‖K = E [f(X)(Σf)(X)] = 0,

thus f ∈ Ker(T ).
4. It is clear that 〈Σf, g〉 = 〈f,Σg〉.

Proposition 13 (Properties of T ). Assume (A1-2). T satisfies the
following properties:

1. T is a well defined, continuous operator.
2. For any f ∈ H, T (f̃) = Σf , ‖T f‖2

K =
∫

x,y∈X 2 f(y)f(x)K(x, y)dρX(y)dρX(x).
3. The image of T is a subspace of H.

Proof. It is clear that T is well defined, as for any class f̃ ,
∫

X f(t)Kt dρX(t)
does not depend on the representer f , and is converging in H (which is the
third point), just as in the previous proof. The second point results from the
definitions. Finally for continuity, we have:

‖T f‖2
K = 〈T f, T f〉K

=

∫

x∈X

∫

y∈X
f(y)f(x)K(x, y)dρX(y)dρX(x)

6

(∫

x∈X 2
|f(x)K(x, x)1/2|dρX(x)

)2

6

(∫

x∈X
f(x)2dρX(x)

)(∫

x∈X
K(x, x)dρX(x)

)
6 C‖f‖2

L2
ρX
.

We now state here a simple lemma that will be useful later:

Lemma 1. Assume (A1).

1. E [k(X,X)] < ∞ ⇒
∫

x,y∈X k(x, y)2dρX(x)dρX(y) < ∞.

2. E [|k(x, y)|] < ∞ ⇒
∫

x,y∈X k(x, y)2dρX(x)dρX(y) < ∞.

Proposition 14 (Propeties of T ). Assume (A1-2). T satisfies the fol-
lowing properties:

1. T is a well defined, continuous operator.
2. The image of T is a subspace of p(H).
3. T is a self-adjoint semi definite positive operator in the Hilbert space

L2
ρX

.
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Proof. T = p ◦ T is clearly well defined, using the arguments given
above. Moreover:

‖Tf‖2
L2

ρX
=

∫

x∈X

(∫

t∈X
K(x, t)f(t)dρX(t)

)2

dρX(x)

6

(∫

x∈X

∫

t∈X
K(x, t)2dρX(t)dρX(x)

)(∫

t∈X
f2(t)dρX(t)

)
by C.S.

6 C‖f‖L2
ρX

by Lemma 1,

which is continuity8. Then by Proposition 13, Im(Td) ⊂ p(Im(T )) ⊂ p(H).
Finally, for any f, g ∈ L2

ρX
,

〈f, Tg〉L2
ρX

=

∫

X
f(x) Tg(x)dρX(x)

=

∫

X
f(x)

(∫

X
g(t)K(x, t)dρX(t)

)
dρX(x)

=

∫

X ×X
f(x)g(t)K(x, t)dρX(t)dρX(x) = 〈Tf, g〉L2

ρX
.

and 〈f, Tf〉L2
ρX

≥ 0 as a generalisation of the positive definite property

of K.

In order to show the existence of an eigenbasis for T , we now show that
is trace-class.

Proposition 15 (Compactness of the operator). We have the following
properties:

1. Under (A2), T is a trace class operator9. As a consequence, it is also
a Hilbert-Schmidt operator10.

2. If K ∈ L2(ρX × ρX) then T is a Hilbert-Schmidt operator.
3. Any Hilbert-Schmidt operator is a compact operator.

Proof. Proofs of such facts may be found in [17, 41]. Formally, with

8We could also use the continuity of p : H → L2
ρX

.
9Mimicking the definition for matrices, a bounded linear operator A over a separable

Hilbert space H is said to be in the trace class if for some (and hence all) orthonormal
bases (ek)k of H the sum of positive terms tr|A| :=

∑
k
〈(A∗A)1/2 ek, ek〉 is finite.

10A Hilbert-Schmidt operator is a bounded operator A on a Hilbert space H with finite
Hilbert–Schmidt norm: ‖A‖2

HS = tr|(A
∗

A)| :=
∑

i∈I
‖Aei‖

2.
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(φi)i an Hilbertian basis in L2
ρX

:

E [K(X,X)] = E [〈Kx,Kx〉K ]

= E

[
∞∑

i=1

〈Kx, φi〉2
K

]
by Parseval equality,

=
∞∑

i=1

E

[
〈Kx, φi〉2

K

]

=
∞∑

i=1

〈Tφi, φi〉K = tr(T ).

Corollary 6. We have thus proved that under (A1) and (A2), the
operator T may be reduced in some Hilbertian eigenbasis: the fact that T is
self-adjoint and compact implies the existence of an orthonormal eigensystem
(which is an Hilbertian basis of L2

ρX
).

This is a consequence of a very classical result, see for example [17].

Definition 4. The null space Ker(T ) :=
{
f ∈ L2

ρX
s.t. Tf = 0

}
may

not be {0}. We denote by S an orthogonal supplementary of Ker(T ).

Proposition 2 is directly derived from a slightly more complete Proposi-
tion 16 below:

Proposition 16 (Eigen-decomposition of T ). Under (A1) and (A2),
T is a bounded self adjoint semi-definite positive operator on L2

ρX
, which is

trace-class. There exists11 a Hilbertian eigenbasis (φi)i∈I of the orthogonal
supplement S of the null space Ker(T ), with summable eigenvalues (µi)i∈I .
That is:

• ∀i ∈ I, Tφi = µiφi, (µi)i strictly positive non increasing (or finite)
sequence such that

∑
i∈I µi < ∞.

• L2
ρX

= Ker(T )
⊥
⊕ S.

We have12: S = span{φi} =

{
∞∑

i=1

aiφi s.t.
∞∑

i=1

a2
i < ∞

}
. Moreover:

(A.3) S = p(H).

11S is stable by T and T : S → S is a self adjoint compact positive operator.
12We denote by span(A) the smallest linear space which contains A, which is in such

a case the set of all finite linear combinations of (φi)i∈I .



41

Proof. For any i ∈ I, φi = 1
µi
LKφi ∈ p(H). Thus span {φi} ⊂ p(H),

thus S = span {φi} ⊂ p(H). Moreover, using the following Lemma, p(H) ⊂
Ker(T )⊥ = S, which concludes the proof, by taking the closures.

Lemma 2. We have the following points:

• if T 1/2f = 0 in L2
ρX

, then Tf = 0 in H.

• p(H) ⊂ Ker(T )⊥.

Proof. We first notice that if T 1/2f = 0 in L2
ρX

, then T f = 0 in H:
indeed13

‖Tf‖2
H =

〈∫

X
f(x)KxdρX(x),

∫

X
f(y)KydρX(y)

〉

K

=

∫

X 2
f(x)f(y)K(x, y)dρX(x)dρX(y)

= 〈f, Tf〉L2
ρX

= 0 if Tf = 0 in L2
ρX

.

Moreover H is the completed space of span {Kx, x ∈ X }, with respect to
‖ · ‖K and for all x ∈ X , for all ψk ∈ Ker(T ):

〈p(Kx), ψk〉L2
ρX

=

∫

X
Kx(y)ψK(y)dρX(y) = (Tψk)(x),

however, Tψk =L2
ρX

0 ⇒ Tψk =H 0 ∀x ∈ X ⇒ Tψk(x) = 0.

As a consequence, span {p(Kx), x ∈ X } ⊂ Ker(T )⊥. We just have to
show that span {p(Kx), x ∈ X } = p(H), as Ker(T )⊥ is a closed space. It
is true as for any f̃ ∈ p(H), f ∈ H there exists fn ⊂ span {Kx, x ∈ X }
such that fn

H→ f , thus p(fn) → f̃ in L2
ρX

14. Finally we have proved that

p(H) ⊂ Ker(T )⊥.

Similarly, Proposition 3 is derived from Proposition 17 below:

13In other words, we the operator defined below T 1/2

T 1/2f =L2
ρX

0

T f =H Σ1/2( T 1/2f)

‖ T f‖2
K = ‖Σ1/2( T 1/2f)‖2

K = ‖( T 1/2f)‖2
L2

ρX

= 0

HT f =H 0.

14‖fn − f‖L2
ρX

= ‖Σ1/2(fn − f)‖K → 0 as Σ continuous.
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Proposition 17 (Decomposition of Σ). Under (A1) and (A2), Im(T ) ⊂
H, that is, for any f ∈ L2

ρX
, T f ∈ H. Moreover, for any i ∈ I, φH

i =
1
µi

T φi ∈ H is a representant for the equivalence class φi. Moreover
(
µ

1/2
i φH

i

)
i∈I

is an orthonormal eigein-system of S That is:

• ∀i ∈ I, ΣφH
i = µiφ

H
i .

•
(
µ

1/2
i φH

i

)
i∈I

is an orthonormal family in S .

We thus have:

S =

{
∑

i∈I

aiφ
H
i s.t.

∑

i∈I

a2
i

µi
< ∞

}
.

Moreover S is the orthogonal supplement of the null space Ker(Σ):

H = Ker(Σ)
⊥
⊕ S .

Proof. The family φH
i = 1

µi
Tφi satisfies:

• φ̃H
i = φi (in L2

ρX
),

• φH
i ∈ S ,

• TφH
i = µiφi in L2

ρX
,

• T φH
i = ΣφH

i = µiφ
H
i in H.

All the points are clear: indeed for example ΣφH
i = Tφi = µiφ

H
i . More-

over, we have that:

‖φi‖2
L2

ρX
= ‖φH

i ‖2
L2

ρX
= 〈φH

i ,Σφi〉K by Proposition 3

= µi‖φH
i ‖2

K

= ‖√
µiφ

H
i ‖2

K

That means that (
√
µiφ

H
i )i is an orthonormal family in H.

Moreover, S is defined as the completion for ‖ · ‖K of this orthonormal

family, which gives S =

{∑
i∈I aiφ

H
i s.t.

∑
i∈I

a2
i

µi
< ∞

}
.

To show that H = Ker(Σ)
⊥
⊕ S , we use the following sequence of argu-

ments:

• First, as Σ is a continuous operator, Ker(Σ) is a closed space in H,

thus H = Ker(Σ)
⊥
⊕ (Ker(Σ))⊥.

• Ker(Σ) ⊂ (T 1/2(S))⊥: indeed for all f ∈ Ker(Σ), 〈f, φH
i 〉 = 1

µi
〈f,ΣφH

i 〉 =
1
µi

Σ〈f, φH
i 〉 = 0, and as a consequence for any f ∈ Ker(Σ), g ∈ T 1/2(S),
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there exists (gn) ⊂ span(φH
i ) s.t. gn

H→ g, thus 0 = 〈gn, f〉H → 〈f, g〉
and finally f ∈ (T 1/2(S))⊥. Equivalently T 1/2(S) ⊂ (Ker(Σ))⊥.

• (T 1/2(S))⊥ ⊂ Ker(Σ). For any i, φH
i ∈ T 1/2(S). If f ∈ (T 1/2(S))⊥,

then 〈p(f), φi〉L2
ρX

= 〈f, T φi〉H = 0. As a consequence p(f) ∈ p(H) ∩
Ker(T ) = {0}, thus f ∈ Ker(Σ). That is (T 1/2(S))⊥ ⊂ Ker(Σ). Equiv-
alently Ker(Σ)⊥ ⊂ (T 1/2(S)).

• Combining these points: H = Ker(Σ)
⊥
⊕ S .

We have two decompositions of L2
ρX

= Ker(T )
⊥
⊕S and H = Ker(Σ)

⊥
⊕ S .

They happen to be related through the mapping T 1/2, which we now define.

A.3. Properties of T r, r > 0. We defined operators T r, r > 0 and T r,
r > 1/2 in Section 2.4 in Definitions 2,3.

Proposition 18 (Properties of T r, T r).

• T r is well defined for any r > 0.
• T r is well defined for any r > 1

2 .

• T 1/2 : S → S is an isometry.
• Moreover Im(T 1/2) = p(H). That means T 1/2 : S → p(H) is an iso-

morphism.

Proof. T r is well defined for any r > 0.
S =

{∑∞
i=1 aiφi s.t.

∑∞
i=1 a

2
i < ∞

}
. For any sequence (ai)i∈I such that∑∞

i=1 a
2
i < ∞, T r(

∑
aiφi) =

∑
i µ

r
iaiφi is a converging sum in the Hilbert

space L2
ρX

(as (µi)i∈I is bounded thus
∑

i µ
r
iaiφi satisfies Cauchy is crite-

rion: ‖∑p
i=n µ

r
iaiφi‖2 6 µr

0

(∑p
i=n a

2
i

)1/2
). And Cauchy is criterion implies

convergence in Hilbert spaces.

T r is well defined for any r > 1
2 .

We have shown that (
√
µiφ

H
i )i is an orthonormal family in H. As a conse-

quence (using the fact that (µi) is a bounded sequence), for any sequence
(ai)i such that

∑
a2

i < ∞,
∑

i µ
r
iaiφ

H
i satisfies Cauchy is criterion thus is con-

verging in H as ‖∑i∈I′ µr
iaiφ

H
i ‖K =

∑
i∈I′ µ

r−1/2
i a2

i 6 µ
r−1/2
0

∑
i∈I′ a2

i < ∞.
(We need r > 1/2 of course).

T 1/2 : S → S is an isometry.
Definition has been proved. Surjectivity in S is by definition, as T 1/2(S) ={∑

i∈I aiφ
H
i s.t.

∑
i∈I

a2
i

µi
< ∞

}
. Moreover, the operator is clearly injective
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as for any f ∈ S, Tf 6= 0 in L2
ρX

thus Tf 6= 0 in H. Moreover for any
f =

∑∞
i=1 aiφi ∈ S, ‖Tf‖2

K = ‖∑∞
i=1 ai

√
µiφi‖2

K =
∑∞

i=1 a
2
i = ‖f‖2

L2
ρX

,

which is the isometrical property.
It must be noticed that we cannot prove surjectivity in H15, that is with-

out our “strong assumptions”. However we will show that operator T 1/2 is
surjective in p(H).

Im(T 1/2) = p(H). That means T 1/2 : S → p(H) is an isomorphism.
Im(T 1/2) = p(Im(T 1/2)) = p(S ). Moreover p(H) = p(Ker(Σ)⊕S ) = p(S ).
Consequently Im(T 1/2) = p(H). Moreover T 1/2 : S → L2

ρX
is also injective,

which give the isomorphical character.
Note that it is clear that T 1/2(S) ⊂ p(H) and that for any x ∈ X ,

p(Kx) ∈ T 1/2(S) indeed p(Kx) =
∑∞

i=1〈Kx, φi〉L2
ρX
φi =

∑∞
i=1 µiφ

H
i (x)φi,

with
∑∞

i=1
(µiφ

H
i (x))

2

µi
=
∑∞

i=1 µiφ
H
i (x)2 < ∞, as K(x, x) =

∑∞
i=1 µiφ

H
i (x)2

Finally, it has appeared that S and S may be identified via the isometry
T 1/2. We conclude by a proposition which sums up the properties of the
spaces T r(L2

ρX
).

Proposition 19. The spaces T r(L2
ρX

), r > 0 satisfy:

∀r > r′ > 0, T r
(
L2

ρX

)
⊂ T r′

(
L2

ρX

)

∀r > 0, T r
(
L2

ρX

)
= S

T 1/2
(
L2

ρX

)
= p(H)

∀r > 1

2
, T r

(
L2

ρX

)
⊂ p(H)

A.4. Kernel decomposition. We prove here Proposition 6.

Proof. Considering our decomposition of H = S
⊥
⊕ ker(Σ), an the fact

the (
√
µiφ

H
i ) is a Hilbertian eigenbasis of S , we have for any x ∈ X ,

Kx =
∞∑

i=1

〈√µiφ
H
i ,Kx〉H

√
µiφ

H
i + gx

=
∞∑

i=1

µiφ
H
i (x)φH

i + gx

15It is actually easy to build a counter example, f.e. with a measure of “small” support
(let is say [−1, 1]), a Hilbert space of functions on X = [−5; 5], and a kernel like min(0, 1−
|x − y|): Im

(
T 1/2

)
⊂ {f ∈ H s. t. supp(f) ⊂ [−2; 2]}  H.
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And as it has been noticed above this sum is converging in S (as in H)

because
∑∞

i=1
(µiφ

H
i (x))2

µi
=
∑∞

i=1 µi(φ
H
i (x))2 = K(x, x) < ∞. However, the

convergence may not be absolute in H. Our function gx is in Ker(Σ), which
means

∫
y∈X gx(y)2dρX(y) = 0.

And as a consequence, we have for all x, y ∈ X ,

K(x, y) =
∑

i∈I

µiφ
H
i (x)φH

i (y) + g(x, y),

With g(x, y) := gx(y). Changing roles of x, y, it appears that g(x, y) =
g(y, x). And we have for all x ∈ X ,

∫
X g(x, y)2dρX(y) = 0. Moreover, the

convergence of the series is absolute
We now prove the following points

(a) (S , ‖·‖H) is also an RKHS, with kernelKS : (x, y) 7→ ∑
i∈I µiφ

H
i (x)φH

i (y)
(b) given the decomposition above, almost surely the optimization prob-

lem in S and H have equivalent solutions.

(a) (S , ‖ · ‖H) is a Hilbert space as a closed subspace of a Hilbert space.
Then for any x ∈ X : KS

x := (y 7→ KS (x, y)) =
∑∞

i=1 µiφ
H
i (x)φH

i ∈ S .
Finally, for any f ∈ S

〈f,KS
x 〉H = 〈f,KS

x + gx〉H = 〈f,Kx〉H = f(x),

because gx ∈ Ker(Σ) = S ⊥ ∋ f . Thus stands the reproducing property.
(b) We have that p(S ) = p(H) and our best approximating function

is a minimizer over this set. Moreover if KS
x was used instead of Kx in

our algorithm, both estimators are almost surely almost surely equal (i.e.,
almost surely in the same equivalence class). Indeed, at any step n, if we
denote gS

n the sequence built in S with KS , if we have gS
n

a.s.
= gn, then

almost surely gS
n (xn) = gn(xn) and moreover Kxn

a.s.
= KS

xn
. Thus almost

surely, gn+1
a.s.
= gS

n+1.

A.5. Alternative assumptions. As it has been noticed in the paper, we
have tried to minimize assumptions made on X and K. In this section, we
review some of the consequences of such assumptions.

A.5.1. Alternative assumptions. The following have been considered pre-
viously:

1. Under the assumption that ρ is a Borel probability measure (with re-
spect with some topology on R

d) and X is a closed space, we may
assume that supp(ρ) = X , where supp(ρ) is the smallest close space
of measure one.
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2. The assumption that K is a Mercer kernel (X compact, K continuous)
has generally been made before [9, 16, 4, 8], but does not seem to be
necessary here.

3. (A2) was replaced by the stronger assumption supx∈X K(x, x) < ∞
[9, 8, 7] and |Y | bounded [9, 7] .

A.5.2. Identification H and p(H). Working with mild assumptions has
made it necessary to work with sub spaces of L2

ρX
, thus projecting H in p(H).

With stronger assumptions given above, the space H may be identified with
p(H).

Our problems are linked with the fact that a function f in H may satisfy
both ‖f‖H 6= 0 and ‖f‖L2

ρX
= 0.

• the “support” of ρ may not be X .
• even if the support is X , a function may be ρ-a.s. 0 but not null in H.

Both these “problems” are solved considering the further assumptions
above. We have the following Proposition:

Proposition 20. If we consider a Mercer kernel K (or even any con-
tinuous kernel), on a space X compact and a measure ρX on X such that
supp(ρ) = X then the map:

p : H → p(H)

f 7→ f̃

is injective, thus bijective.

A.5.3. Mercer kernel properties. We review here some of the properties
of Mercer kernels, especially Mercer’s theorem which may be compared to
Proposition 6.

Proposition 21 (Mercer theorem). Let X be a compact domain or a
manifold, ρ a Borel measure on X , and K : X × X → R a Mercer Kernel.
Let λk be the k-th eigenvalue of T and Φk the corresponding eigenvectors.
For all x, t ∈ X , K(x, t) =

∑∞
k=1 λkΦk(x)Φk(t) where the convergence is

absolute (for each x, t ∈ X 2) and uniform on X × X .

The proof of this theorem is given in [42].

Proposition 22 (Mercer Kernel properties). In a Mercer kernel, we
have that:
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1. CK := supx,t∈X 2(K(x, t)) < ∞.
2. ∀f ∈ H, f is C0.
3. The sum

∑
λk is convergent and

∑∞
k=1 λk =

∫
X K(x, x) 6 ρ(X )CK .

4. The inclusion IK : H → C(X ) is bounded with |||IK ||| 6 C
1/2
K .

5. The map

Φ : X → ℓ2

x 7→ (
√
λkΦk(x))k∈N

is well defined, continuous, and satisfies K(x, t) = 〈Φk(x),Φk(t)〉.
6. The space H is independent of the measure considered on X .

We can characterize H via the eigenvalues-eigenvectors:

H =

{
f ∈ L2

ρX
|f =

∞∑

k=1

akΦk with
∞∑

k=1

(
ak√
λk

)2

< ∞
}
.

Which is equivalent to saying that T 1/2 is an isomorphism between L2
ρX

and H. Where we have only considered λk > 0. It has no importance to
consider the linear subspace S of L2

ρX
spanned by the eigenvectors with non

zero eigenvalues. However it changes the space H which is in any case S,
and is of some importance regarding the estimation problem.

B. Proofs. To get our results, we are going to derive from our recur-
sion a new error decomposition and bound the different sources of error via
algebraic calculations. We first make a few remarks on short notations that
we will use in this part and difficulties that arise from the Hilbert space
setting in Section B.1, then provide intuition via the analysis of a closely
related recursion in Section B.2. We give in Sections B.3, B.4 the complete
proof of our bound respectively in the finite horizon case (Theorem 2) and
the online case (Theorem 3). We finally provide technical calculations of the
main bias and variance terms in Section B.5.

B.1. Preliminary remarks. We remind that we consider a sequence of
functions (gn)n∈N satisfying the system defined in Section 3.

g0 = 0 (the null function),

gn =
n∑

i=1

aiKxi .

With a sequence (an)n>1 such that for all n greater than 1 :

(B.1) an := −γn(gn−1(xn) − yn) = −γn

(
n−1∑

i=1

aiK(xn, xi) − yi

)
.
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We output

(B.2) gn =
1

n+ 1

n∑

k=0

gk.

We consider a representer gH ∈ L2
ρX

of gH defined by Proposition 1. We
accept to confuse notations as far as our calculations are made on L2

ρX
-

norms, thus does not depend on our choice of the representer.
We aim to estimate :

ε(gn) − ε(gH) =
1

2
‖gn − gH‖2

L2
ρX
.

B.1.1. Notations. In order to simplify reading, we will use some shorter
notations :

• For the covariance operator, we will only use Σ instead of Σ, T, T ,

Space : H
Observations : (xn, yn)n∈N i.i.d. ∼ ρ

Best approximation function : gH

Learning rate : (γi)i

All the functions may be split up the orthonormal eigenbasis of the oper-
ator T . We can thus see any function as an infinite-dimensional vector, and
operators as matrices. This is of course some (mild) abuse of notations if we
are not in finite dimensions. For example, our operator Σ may be seen as
Diag(µi)16i. Carrying on the analogy with the finite dimensional setting, a

self adjoint operator, may be seen as a symmetric matrix.
We will have to deal with several “matrix products” (which are actually

operator compositions). We denote :

M(k, n, γ) =
n∏

i=k

(I − γKxi ⊗Kxi) = (I − γKxk
⊗Kxk

) · · · (I − γKxn ⊗Kxn)

M(k, n, (γi)i) =
n∏

i=k

(I − γiKxi ⊗Kxi)

D(k, n, (γi)i) =
n∏

i=k

(I − γiΣ)

Remarks :

• As our operators may not commute, we use a somehow unusual con-
vention by defining the products for any k, n, even with k > n , with
M(k, n, γ) = (I−γKxk

⊗Kxk
)(I−γKxk−1

⊗Kxk−1
) · · · (I−γKxn⊗Kxn).
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• We may denote D(k, n, γ) =
∏n

i=k(I − γΣ) even if its clearly (I −
γΣ)n−k+1 just in order to make the comparison between equations
easier.

B.1.2. On norms. In the following, we will use constantly the following
observation :

Lemma 3. Assume A2-4 , let ηn = gn − gH, η̄n = gn − gH :

ε(gn) − ε(gH) =
1

2
〈ηn,Σηn〉 =

1

2
E

[
〈x, gn − gH〉2

] (
:=

1

2
‖gn − gH‖2

L2
ρX

)
,

ε (gn) − ε(gH) =
1

2
〈η̄n,Ση̄n〉.

B.1.3. On symmetric matrices. One has to be careful when using auto
adjoint operators, especially when using the order A 4 B which means that
B −A is non-negative.

Some problems may arise when some self adjoint A,B do not commute,
because then AB is not even in auto adjoint. It is also hopeless to compose
such relations : for example A 4 B does not imply A2 4 B2 (while the
opposite is true).

However, it is true that if A 4 B, then for any C in Sn(R), we have
CtAC 4 CtBC. We will often use this final point. Indeed for any x,
xt (CtBC − CtAC)x = (Cx)t(B −A)(Cx) > 0.

B.1.4. Notation. In the proof, we may use, for any x ∈ H:

˜Kx ⊗Kx : L2
ρX

→ H
f 7→ f(x) Kx.

We only consider functions L2
ρX

, which are well defined at any point.
The regression function is only almost surely defined but we will consider a
version of the function in L2

ρX
.

The following properties clearly hold :

• ˜Kx ⊗Kx|H = Kx ⊗Kx

• E

(
˜Kx ⊗Kx

)
= T

• E (Kx ⊗Kx) = Σ as it has been noticed above.

For some x ∈ X , we may denote x ⊗ x := Kx ⊗ Kx. Moreover, abusing
notations, we may forget the ∼ in many cases.
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B.2. Semi-stochastic recursion - intuition. We remind that :

gn = (I − γKxn ⊗Kxn)gn−1 + γynKxn ,

with θ0 = 0. We have denoted Ξn = (yn − gH(xn))Kxn . Thus ynKxn =

gH(xn)Kxn +Ξn
def
= ˜Kxn ⊗KxngH+Ξn, and our recursion may be rewritten :

(B.3) gn − gH = (I − γ ˜Kxn ⊗Kxn)(gn−1 − gH) + γΞn,

Finally, we are studying a sequence (ηn)n defined by :

η0 = gH,

ηn = (I − γn
˜Kxn ⊗Kxn)ηn−1 + γnΞn.(B.4)

Behaviour : It appears that to understand how this will behave, we may
compare it to the following recursion, which may be described as a “semi-
stochastic” version of (B.4) : we keep the randomness due to the noise Ξn

but forget the randomness due to sampling by replacing ˜Kxn ⊗Kxn by its
expectation Σ (T , more precisely) :

ηssto
0 = gH,

ηssto
n = (I − γnΣ)ηssto

n−1 + γnΞn.(B.5)

Complete proof : This comparison will give an interesting insight and
the main terms of bias and variance will appear if we study (B.5). However
this is not the true recursion : to get Theorem 2, we will have to do a bit of
further work : we will first separate the error due to the noise from the error
due to the initial condition, then link the true recursions to their “semi-
stochastic” counterparts to make the variance and bias terms appear. That
will be done in Section B.3.

Semi-stochastic recursion : In order to get such intuition, in both the
finite horizon and on-line case, we will begin by studying the semi-stochastic
equation (B.5).



51

First, we have, by induction:

∀j > 1 ηssto
j = (I − γjΣ)ηssto

j−1 + γjΞj .

ηssto
j =




j∏

i=1

(I − γiΣ)


 ηssto

0 +
j∑

k=1




j∏

i=k+1

(I − γiΣ)


 γkΞk

ηssto
j = D(1, j, (γi)i)η

ssto
0 +

j∑

k=1

D(k + 1, j, (γi)i)γkΞk

ηssto
n =

1

n

n∑

j=1

D(1, j, (γi)i)η
ssto
0 +

1

n

n∑

j=1

j∑

k=1

D(1, j, (γi)i)γkΞk.

Then :

E‖ηssto
n ‖2

L2
ρX

=
1

n2
E‖

n∑

j=1

D(1, j, (γi)i)gH +
n∑

j=1

j∑

k=1

D(k + 1, j, (γi)i)γkΞk‖L2
ρX

=
1

n2
E‖

n∑

j=1

D(1, j, (γi)i)gH‖L2
ρX

︸ ︷︷ ︸
Bias(n)

+ 2
1

n2
E〈

n∑

j=1

D(1, j, (γi)i)gH,
n∑

j=1

j∑

k=1

D(k + 1, j, (γi)i)γkΞk〉L2
ρX

︸ ︷︷ ︸
=0 by (A.2) ,

+
1

n2
E‖

n∑

j=1

j∑

k=1

D(k + 1, j, (γi)i)γkΞk‖L2
ρX

︸ ︷︷ ︸
Var(n)

(B.6)

In the following, all calculations may be driven either with ‖Σ1/2 · ‖K

or in ‖ · ‖L2
ρX

using the isometrical character of Σ1/2. In order to simplify

comparison with existing work and especially [13], we will mainly use the
former as all calculations are only algebraic sums, we may sometimes use the
notation 〈x,Σx〉H instead of ‖Σ1/2x‖2

H. It is an abuse if x /∈ H, but however
does not induce any confusion or mistake. In the following, if not explicitely
specified, ‖ · ‖ will denote ‖ · ‖K .
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In the following we will thus denote :

Bias
(
n, (γi)i,Σ, gH

)
=

1

n2
E

∥∥∥∥Σ
1/2

n∑

j=1




j∏

i=1

(I − γiΣ)


 gH

∥∥∥∥

2

K

Var
(
n, (γi)i,Σ, (Ξi)i

)
=

1

n2
E

∥∥∥∥Σ
1/2

n∑

j=1

j∑

k=1




j∏

i=k+1

(I − γiΣ)


 γkΞk

∥∥∥∥

2

K

.

In section B.5 we will prove the following Lemmas which upper bound
these bias and variance terms under different assumptions :

1. Bias
(
n, γ,Σ, gH

)
if we assume A3,4, γ constant,

2. Var
(
n, γ,Σ, (Ξi)i

)
if we assume A3,6, γ constant,

3. Bias
(
n, (γi)i,Σ, gH

)
if we assume A3,4 and γi = 1

nζ , 0 6 ζ 6 1,

4. Var
(
n, (γi)i,Σ, (Ξi)i

)
if we assume A3,6 and γi = 1

nζ , 0 6 ζ 6 1.

The two terms show respectively the impact :

1. of the initial setting and the hardness to forget the initial condition,
2. the noise.

Thus the first one tends to decrease when γ is increasing, whereas the second
one increases when γ increases. We understand we may have to choose our
step γ in order to optimize the trade-off between these two factors.

In the finite-dimensional case, it results from such a decomposition that
if C = σ2Σ then E

[〈
αn−1,Σαn−1

〉]
6 1

nγ ‖α‖2
0 + σ2d

n , as this upper bound is
vacuous when d is either large or infinite, we can derive comparable bounds
in the infinite-dimensional setting under our assumptions A3,4,6.

Lemma 4 (Bias, A3,4, γ const.). Assume A3-4 and let α (resp. r) be
the constant in A3 (resp. A4) :

If r 6 1 :

Bias
(
n, γ,Σ, gH

)
6 ‖Σ−rgH‖2

L2
ρX

(
1

(nγ)2r

)
not
= bias(n, γ, r).

If r > 1 :

Bias
(
n, γ,Σ, gH

)
6 ‖Σ−rgH‖2

L2
ρX

(
1

n2γr

)
not
= bias(n, γ, r).
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Lemma 5 (Var, A3,4, γ const). Assume A3,6, let α, s be the constants
in A3, and σ the constant in A6 (so that E [Ξn ⊗ Ξn] 4 σ2Σ).

Var
(
n, γ,Σ, (Ξi)i

)
6 C(α) s2/α σ2 γ

1
α

n1− 1
α

+
σ2

n
not
= var(n, γ, σ2, r, α),

with C(α) = 2α2

(α+1)(2α−1) .

Lemma 6 (Bias, A3,4, (γ)i ). Assume A3-4 and let α (resp. r) be the
constant in A3 (resp. A4). Assume we consider a sequence γi = γ0

iζ with
0 < ζ < 1 then :

1. if r(1 − ζ) < 1:

Bias
(
n, (γi)i,Σ, gH

)
= O

(
‖Σ−rgH‖2

L2
ρX
n−2r(1−ζ)

)

= O

(
‖Σ−rgH‖2

L2
ρX

1

(nγn)2r

)
,

2. if r(1 − ζ) > 1:

Bias
(
n, (γi)i,Σ, gH

)
= O

(
1

n2

)
.

Lemma 7 (Var, A3,4, (γ)i ). Assume A3,6, let α, s be the constants
in A3, and σ the constant in A6 . If we consider a sequence γi = γ0

iζ with
0 < ζ < 1 then :

1. if 0 < ζ < 1
2 then

Var
(
n, (γi)i,Σ, (Ξi)i

)
= O

(
n−1+ 1−ζ

α

)
= O

(
σ2(s2γn)

1
α

n1− 1
α

)
,

2. and if ζ > 1
2 then

Var
(
n, (γi)i,Σ, (Ξi)i

)
= O

(
n−1+ 1−ζ

α
+2ζ−1

)
.

Those Lemmas are proved in section B.5.
Considering decomposition (B.6) and our Lemmas above, we can state a

first Proposition.
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Proposition 23 (Semi-stochastic recursion). Assume A1-6. Let’s con-
sider the semi-stochastic recursion (that is the sequence : ηn = (I−γnΣ)ηn−1+
γnΞn) instead of our recursion initially defined. In the finite horizon setting,
thus with γi = γ for i 6 n, we have :

E [ε (gn) − ε(gρ)] 6 C(α) s
2
α σ2 γ

1
α

n1− 1
α

+
σ2

n
+ ‖Σ−rgρ‖2

L2
ρX

(
1

n2 min{r,1}γ2r

)
.

Theorem 2 must be compared to Proposition 23 : Theorem 2 is just an ex-
tension but with the true stochastic recursion instead of the semi-stochastic
one.

We finish this first part by a very simple Lemma which states that what
we have done above is true for any semi stochastic recursion under few
assumptions. Indeed, to get the complete bound, we will always come back
to semi-stochastic type recursions, either without noise, or with a null initial
condition.

Lemma 8. Let’s assume:

1. αn = (I − γΣ)αn−1 + γΞα
n, with γΣ 4 I.

2. (Ξα
n) ∈ H is Fn measurable for a sequence of increasing σ-fields (Fn).

3. E [Ξα
n|Fn−1] = 0, E

[
‖Ξα

n‖2|Fn−1
]

is finite and E [Ξα
n ⊗ Ξα

n] 4 σ2
αΣ.

Then :

(B.7) E
[〈
αn−1,Σαn−1

〉]
= Bias

(
n, γ,Σ, α0

)
+ Var

(
n, γ,Σ, (Ξα

i )i

)
.

And we may apply Lemmas 4 and 5 if we have good assumptions on Σ, α0.

B.3. Complete proof, Theorem 2 (finite horizon) . In the following, we
will focus on the finite horizon setting, i.e., we assume the step size is
constant, but may depend on the total number of observations n : for all
1 6 i 6 n, γi = γ = Γ(n). The main idea of the proof is to be able to :

1. separate the different sources of error (noise & initial conditions),
2. then bound the difference between the stochastic recursions and their

semi-stochastic versions, a case in which we are able to compute bias
and variance as it is done above.

Our main tool will be the Minkowski’s inequality, which is the triangular

inequality for E

(
‖ · ‖L2

ρX

)
. This will allow us to separate the error due to

the noise from the error due to the initial conditions. The sketch of the
decomposition is given in Table 4.
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Complete recursion ηn

ւ ց
variance term ηnoise

n | bias term ηinit
n

↓ | ↓
multiple recursion | semi stochastic variant

ւ ց | ւ ց
main terms ηr

n, r > 1 residual term ηnoise
n −

∑
ηr

n | main term η0
n residual term ηinit

n − η0
n

satisfying semi-sto recursions satisf. stochastic recursion | satisf. semi-sto recursion satisf. stochastic recursion
↓ Lemma 8 ↓ Lemma 9 | ↓ ↓ Lemma 9

6 C Variance term →r→∞ 0 | 6 Bias term residual negligible term

Lemma 5 ց ւ Lemma 4
Theorem 2

Table 4

Error decomposition in the finite horizon setting.

We remind that (ηn)n is defined by :

η0 = gH, and the recusion ηn = (I − γKxn ⊗Kxn)ηn−1 + γΞn.

B.3.1. A Lemma on stochastic recursions. Before studying the main de-
composition in Section B.3.2 we must give a classical Lemma on stochastic
recursions which will be useful below :

Lemma 9. Assume (xn,Ξn) ∈ H × H are Fn measurable for a sequence
of increasing σ-fields (Fn). Assume that E [Ξn|Fn−1] = 0, E

[
‖Ξn‖2|Fn−1

]
is

finite and E
[
‖Kxn‖2Kxn ⊗Kxn |Fn−1

]
4 R2Σ, with E [Kxn ⊗Kxn |Fn−1] =

Σ for all n > 1 , for some R > 0 and invertible operator Σ. Consider the
recursion αn = (I − γKxn ⊗Kxn)αn−1 + γΞn, with γR2 6 1. Then :

(1 − γR2) E
[〈
αn−1,Σαn−1

〉]
+

1

2nγ
E‖αn‖2

6
1

2nγ
‖α0‖2 +

γ

n

n∑

k=1

E‖Ξk‖2.

Especially, if α0 = 0, we have

E
[〈
αn−1,Σαn−1

〉]
6

1

(1 − γR2)

γ

n

n∑

k=1

E‖Ξk‖2.

Its proof may be found in [13] : it is a direct consequence of the classical
recursion to upper bound ‖αn‖2.

B.3.2. Main decomposition.
We consider :
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1. (ηinit
n )n defined by :

ηinit
0 = gH and ηinit

n = (I − γKxn ⊗Kxn)ηinit
n−1.

ηinit
n is the part of (ηn)n which is due to the initial conditions ( it is

equivalent to assuming Ξn ≡ 0).
2. Respectively, let (ηnoise

n )n be defined by :

ηnoise
0 = 0 and ηnoise

n = (I − γKxn ⊗Kxn)ηnoise
n−1 + γΞn.

ηnoise
n is the part of (ηn)n which is due to the noise.

A straightforward induction shows that for any n, ηn = ηinit
n + ηnoise

n and

η̄n = η̄init
n +η̄noise

n . Thus Minkowski’s inequality, applied to

(
E

[
‖ · ‖2

L2
ρX

])1/2

,

leads to :
(
E

[
‖η̄n‖2

L2
ρX

])1/2
6

(
E

[
‖η̄noise

n ‖2
L2

ρX

])1/2
+
(
E

[
‖η̄init

n ‖2
L2

ρX

])1/2

(B.8)

(E [〈η̄n,Ση̄n〉])1/2
6

(
E

[
〈η̄noise

n ,Ση̄noise
n 〉

])1/2
+
(
E

[
〈η̄init

n ,Ση̄init
n 〉

])1/2
.

That means we can always consider separately the effect of the noise and
the effect of the initial conditions. We’ll first study ηnoise

n and then ηinit
n .

B.3.3. Noise process. We remind that (ηnoise
n )n is defined by :

(B.9) ηnoise
0 = 0 and ηnoise

n = (I − γKxn ⊗Kxn)ηnoise
n−1 + γΞn.

We are going to define some other sequences, which are defined by the
following “semi-stochastic” recursion, in which Kxn ⊗Kxn has been replaced
be its expectancy Σ : first we define

(
ηnoise,0

n

)
n so that

ηnoise,0
0 = 0 and ηnoise,0

n = (I − γΣ)ηnoise,0
n−1 + γΞn.

Triangular inequality will allow us to upper bound

(
E

[
‖η̄noise

n ‖2
L2

ρX

])1/2

:

(B.10)(
E

[
‖η̄noise

n ‖2
L2

ρX

])1/2
6

(
E

[
‖η̄noise,0

n ‖2
L2

ρX

])1/2
+
(
E

[
‖η̄noise

n − η̄noise,0
n ‖2

L2
ρX

])1/2

So that we’re interested in the sequence
(
ηnoise

n − ηnoise,0
n

)
n : we have

ηnoise
0 − ηnoise,0

0 = 0,

ηnoise
n − ηnoise,0

n = (I − γKxn ⊗Kxn)(ηnoise
n−1 − η0

n−1) + γ(Σ −Kxn ⊗Kxn)η0
n−1

= (I − γKxn ⊗Kxn)(ηnoise
n−1 − η0

n−1) + γΞ1
n.(B.11)
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which is the same type of Equation as (B.9). We have denoted Ξ1
n = (Σ −

Kxn ⊗Kxn)η0
n−1.

Thus we may consider the following sequence, satisfying the “semi-stochastic”
version of recursion (B.11), changing Kxn ⊗Kxn into its expectation Σ : we
define

(
ηnoise,1

n

)
n so that:

(B.12) ηnoise,1
0 = 0 and ηnoise,1

n = (I − γΣ)ηnoise,1
n−1 + γΞ1

n.

Thanks to the triangular inequality, we’re interested in
(
ηnoise

n − ηnoise,0
n − ηnoise,1

n

)
n,

which satisfies the (B.9)-type recursion :

ηnoise
0 − ηnoise,0

0 − ηnoise,1
0 = 0,

ηnoise
n − ηnoise,0

n − ηnoise,1
n = (I − γKxn ⊗Kxn)(ηnoise

n−1 − ηnoise,0
n−1 − ηnoise,1

n )

+γ(Σ −Kxn ⊗Kxn)ηnoise,1
n−1

= (I − γKxn ⊗Kxn)(ηnoise
n−1 − ηnoise,0

n−1 − ηnoise,1
n ) + γΞ(2)

n .

With Ξ
(2)
n := (Σ −Kxn ⊗Kxn)ηnoise,1

n−1 .

And so on... For any r > 0 we define a sequence (ηnoise,r
n )n by :

ηnoise,r
0 = 0 and ηnoise,r

n = (I − γΣ)ηnoise,r
n−1 + γΞr

n,

with Ξr
n = (Σ −Kxn ⊗Kxn)ηnoise,r−1

n−1 .

We have, for any r, n ∈ N
2 :

ηnoise
0 −

r∑

i=0

ηnoise,i
0 = 0,

ηnoise
n −

r∑

i=0

ηnoise,i
n = (I − γKxn ⊗Kxn)

(
ηnoise

n−1 −
r∑

i=0

ηnoise,i
n−1

)

+γ(Σ −Kxn ⊗Kxn)ηnoise,r
n−1 .

= (I − γKxn ⊗Kxn)

(
ηnoise

n−1 −
r∑

i=0

ηnoise,i
n−1

)
+ γΞ(r+1)

n .(B.13)

So that
(
ηnoise,r+1

n

)
follows the “semi-stochastic” version of (B.13)...

Minkowski’s inequality. Considering this decomposition, we have, for any
r, using triangular inequality :
(B.14)

(
E

[
‖η̄noise

n ‖2
L2

ρX

])1/2
6

r∑

i=0

(
E

[
‖η̄noise,i

n ‖2
L2

ρX

])1/2
+


E



∣∣∣∣
∣∣∣∣η̄

noise
n −

r∑

i=0

η̄noise,i
n

∣∣∣∣
∣∣∣∣
2

L2
ρX






1/2
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Moment Bounds. For any i > 0, we find that we may apply Lemma 8 to
the sequence (ηnoise,i

n ). Indeed :

1. For any r > 0, (ηnoise,r
n ) is defined by :

ηnoise,r
0 = 0 and ηnoise,r

n = (I − γΣ)ηnoise,r
n−1 + γΞr

n,

with Ξr
n =

{
(Σ −Kxn ⊗Kxn)ηr−1

n−1 if r > 1.
Ξn if r = 0.

2. for any r > 0, for all n > 0, Ξr
n is Fn := σ ((xi, zi)16i6n) measurable.

(for r = 0 we use the definition of Ξn (H4), and by induction, for any
r > 0 if we have ∀n ∈ N, Ξr

n is Fn measurable, then for any n ∈ N,
by induction on n, ηnoise,r

n is Fn measurable, thus for any n ∈ N, Ξr+1
n

is Fn measurable.)
3. for any r, n > 0, E [Ξn|Fn−1] = 0 : as shown above, ηr−1

n−1 is Fn−1

measurable so E [ Ξn |Fn−1] = E [Σ −Kxn ⊗Kxn |Fn−1] ηnoise,r−1
n−1 =

E [Σ −Kxn ⊗Kxn ] ηnoise,r−1
n−1 = 0 (as xn is independent of Fn−1 by A5

and E [Σ −Kxn ⊗Kxn ] = E [Σ −Kxn ⊗Kxn ] by H4 ).
4. E

[
‖Ξr

n‖2
]

is finite (once again, by A2 if r = 0 and by a double recursion
to get the result for any r, n > 0).

5. We have to find a bound on E [Ξr
n ⊗ Ξr

n]. To do that, we are going,
once again to use induction on r.

Lemma 10. For any r > 0 we have

E [Ξr
n ⊗ Ξr

n] 4 γrR2rσ2Σ

E

[
ηnoise,r

n ⊗ ηnoise,r
n

]
4 γr+1R2rσ2I.

Lemma 10. We make an induction on n.

Initialisation : for r = 0 we have by A6 that E
[
Ξ0

n ⊗ Ξ0
n

]
4 σ2Σ. Moreover

E(η0
n ⊗ η0

n) = γ2
n−1∑

k=1

(I − γΣ)n−k
E

[
Ξ0

n ⊗ Ξ0
n

]
(I − γΣ)n−k

4 γ2σ2
n−1∑

k=1

(I − γΣ)2(n−k)Σ.

We get

∀n > 0, E

[
η0

n ⊗ η0
n

]
4 γ2σ2

n−1∑

k=1

(I − γΣ)2n−2−kΣ 4 γσ2I.



59

Recursion : If we assume that for any n > 0,E [Ξr
n ⊗ Ξr

n] 4 γrR2rσ2Σ and
E [ηr

n ⊗ ηr
n] 4 γr+1R2rσ2I then for any n > 0 :

E

[
Ξr+1

n ⊗ Ξr+1
n

]
4 E

[
(Σ −Kxn ⊗Kxn)ηr

n−1 ⊗ ηr
n−1(Σ −Kxn ⊗Kxn)

]

= E
[
(Σ −Kxn ⊗Kxn)E

[
ηr

n−1 ⊗ ηr
n−1

]
(Σ −Kxn ⊗Kxn)

]

(as ηn−1 ∈ Fn−1)

4 γr+1R2rσ2
E

[
(Σ −Kxn ⊗Kxn)2

]

4 γr+1R2r+2σ2Σ.

Once again we have (ηr+1
n ) = γ2∑n−1

k=1(I − γΣ)n−1−kΞr+1
n , for any n:

E

[
ηr+1

n ⊗ ηr+1
n

]
4 γ2

E

[
n∑

k=1

(I − γΣ)n−1−kΞr+1
n ⊗ Ξr+1

n (I − γΣ)n−1−k

]

4 γr+3R2r+2σ2
n∑

k=1

(I − γΣ)2n−2−2kΣ

4 γr+2R2r+2σ2I.

With the bound on E [Ξr
n ⊗ Ξr

n] and as we have said, with Lemma 8:

E

[
‖η̄noise,i

n ‖2
L2

ρX

]
= E

[
〈η̄i

n,Ση̄
i
n〉
]

6 var(n, γ, σ2γiR2i, s, α)

6

‖

γiR2i var(n, γ, σ2, s, α) ..(B.15)

Moreover, using the Lemma on stochastic recursions (Lemma 9) for (η̄noise
n −∑r

i=0 η̄
i
n)n (all conditions are satisfied) we have :

(1 − γR2) E

[〈
η̄noise

n −
r∑

i=0

η̄i
n,Σ

(
η̄noise

n −
r∑

i=0

η̄i
n

)〉]
6

γ

n

n∑

i=1

E‖Ξr+1
k ‖2

6 γ tr
(
E

[
Ξr+1

k ⊗ Ξr+1
k

])

6 γr+2R2r+2σ2 tr(Σ)

that is E



∣∣∣∣
∣∣∣∣η̄

noise
n −

r∑

i=0

η̄noise,i
n

∣∣∣∣
∣∣∣∣
2

L2
ρX


 6 γr+2R2r+2σ2 tr(Σ).(B.16)
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Conclusion. Thus using (B.14), (B.15) and (B.16) :

(
E

[
〈η̄noise

n ,Ση̄noise
n 〉

])1/2
6

(
1

1 − γR2
γr+2σ2R2r+2 tr(Σ)

)1/2

+ var(n, γ, σ2, s, α)1/2
r∑

i=0

(
γR2

)i/2
.(B.17)

And using the fact that γR < 1, when r → ∞ we get:

(B.18)
(
E

[
〈η̄noise

n ,Ση̄noise
n 〉

])1/2
6 var(n, γ, σ2, s, α)1/2 1

1 −
√
γR2

.

Which is the main result of this part.

B.3.4. Initial conditions. We are now interested in getting such a bound
for E

[
〈η̄init

n ,Ση̄init
n 〉

]
. As this part stands for the initial conditions effect we

may keep in mind that we would like to get an upper bound comparable to
what we found for the Bias term in the proof of Proposition 1.

We remind that :

ηinit
0 = gH and ηinit

n = (I − γKxn ⊗Kxn)ηinit
n−1.

and define (η0
n)n∈N so that :

η0
0 = gH, η0

n = (I − γΣ)η0
n−1.

Minkowski’s again. As above
(B.19)(

E

[
〈η̄init

n ,Ση̄init
n 〉

])1/2
6

(
E

[
〈η̄init

n − η̄0
n,Σ

(
η̄init

n − η̄0
n

)
〉
])1/2

+
(
E

[
〈η̄0

n,Ση̄
0
n〉
])1/2

.

First for η0
n we have a semi-stochastic recursion, with Ξn ≡ 0 so that we

have
E〈η0

n,Ση
0
n〉 6 bias(n, γ, r).

Then , for the residual term we use Lemma 9. Using that :

η0
n − ηinit

n = (I − γKxn ⊗Kxn)(η0
n − ηinit

n ) + γ(Kxn ⊗Kxn − Σ)η0
n−1,

we may apply Lemma 9 to the recursion above with αn = η0
n − ηinit

n and
Ξn = (Kxn ⊗Kxn − Σ)η0

n−1. That is (as α0 = 0):

(B.20) E〈η̄0
n − η̄noise

n ,Σ(η̄0
n − η̄noise

n )〉 6 1

1 − γR2

γ

n
E

[
n∑

k=1

‖Ξk‖2

]
.
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Now

E‖Ξk‖2 = E

[〈
η0, (I − γΣ)k(Σ − xk ⊗ xk)2(I − γΣ)kη0

〉]

6
〈
η0, (I − γΣ)kR2Σ(I − γΣ)kη0

〉

6 R2〈η0, (I − γΣ)2kΣη0
〉
.

Thus :

γ

n
E

[
n∑

k=1

‖Ξk‖2

]
6

γR2

n

〈
η0,

n∑

k=1

(I − γΣ)2kΣη0
〉

6
γR2

n

∣∣∣∣
∣∣∣∣

(
n∑

k=1

(I − γΣ)2kΣ2r

)1/2

Σ1/2−rη0

∣∣∣∣
∣∣∣∣
2

6
γR2

n
γ−2r

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

k=1

(I − γΣ)2k(γΣ)2r

∣∣∣∣
∣∣∣∣
∣∣∣∣ ‖Σ−rη0‖2

L2
ρX
.

‖|A1/2‖|2 = ‖|A‖|. Moreover, as Σ is self adjoint, we have:
∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

k=1

(I − γΣ)2k(γΣ)2r

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6 sup

06x61

n∑

k=1

(1 − x)2k(x)2r

6 sup
06x61

1 − (1 − x)2n

1 − (1 − x)2
(x)2r

6 sup
06x61

1 − (x)2n

1 − x2
(1 − x)2r

6 sup
06x61

1 − (x)2n

1 + x
(1 − x)2r−1

6 sup
06x61

(1 − (1 − x)2n)(x)2r−1

6 n1−2r

Where we have used inequality (B.44).
So that we would get, replacing our result in (B.20) :

(B.21) E〈η̄0
n − η̄noise

n ,Σ(η̄0
n − η̄noise

n )〉 6 1

1 − γR2

γR2

(γn)2r
‖Σ−rη0‖2

L2
ρX
.

Conclusion. Summing both bounds we get from (B.19) :

(B.22)
(
E

[
〈η̄init

n ,Ση̄init
n 〉

])1/2
6

(
1

1 − γR2

γR2

(γn)2r
‖Σ−rη0‖2

L2
ρX

)1/2

+(Bias(n, γ, gH, α))1/2 .
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B.3.5. Conclusion. These two parts allow us to show Theorem 2 : using
(B.22) and (B.18) in (B.8), and Lemmas 4 and 5 we have the final result.

Assuming A1-6 :

1. If r < 1

(2 E [ε (gn) − ε(gH)])1/2
6

1

1 −
√
γR2

(
C(α) s

2
α σ2 γ

1
α

n1− 1
α

+
σ2

n

)1/2

+

(
‖Σ−rgH‖2

L2
ρX

(
1

(nγ)2r

))1/2

+

(
1

1 − γR2

γR2

(γn)2r
‖Σ−rη0‖2

L2
ρX

)1/2

.

2. If r > 1

(2 E [ε (gn) − ε(gH)])1/2
6

1

1 −
√
γR2

(
C(α) s

2
α σ2 γ

1
α

n1− 1
α

+
σ2

n

)1/2

+

(
‖Σ−rgH‖2

L2
ρX

(
1

n2γ2r

))1/2

+

(
1

1 − γR2

γR2

(γn)2r
‖Σ−rη0‖2

L2
ρX

)1/2

.

Regrouping terms, we get exactly Theorem 2. In order to derive corollar-
ies, one just has to chose γ = Γ(n) in order to balance the main terms.

B.4. Complete proof, Theorem 3 (on-line setting). The sketch of the
proof is exactly the same. We just have to check that changing a constant
step into a decreasing sequence of step-size does not change to much. How-
ever as most calculations make appear some weird constants, we will only
look for asymptotics. The sketch of the decomposition is given in Table 5.

B.4.1. A Lemma on stochastic recursions - on-line. We want to derive
a Lemma comparable to Lemma 9 in the online setting. That is considering
a sequence (γn)n and the recursion αn = (I−γnKxn ⊗Kxn)αn−1 +γnΞn we
would like to have a bound on E

〈
αn−1,Σαn−1

〉
.

Lemma 11. Assume (xn,Ξn) ∈ H×H are Fn measurable for a sequence
of increasing σ-fields (Fn). Assume that E [Ξn|Fn−1] = 0, E

[
‖Ξn‖2|Fn−1

]
is

finite and E
[
‖Kxn‖2Kxn ⊗Kxn |Fn−1

]
4 R2Σ, with E [Kxn ⊗Kxn |Fn−1] =
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Complete recursion ηn

ւ ց
noise term ηnoise

n | bias term ηinit
n

↓ | ↓
multiple recursion | semi stochastic variant

ւ ց | ւ ց
main terms ηr

n, r > 1 residual term ηnoise
n −

∑
ηr

n | main term η0
n residual term ηinit

n − η0
n

satisfying semi-sto recursions satisf. stochastic recursion | satisf. semi-sto recursion satisf. stochastic recursion
Lemma 8 Lemma 11 | ↓ Lemma 11

↓ ւ ց | ↓ ւ ց
6 C Variance term →r→∞ 0 + →r→∞ 0 | 6 Bias term Resid. term 1 + Resid term 2

Lemma 7 ց ւ Lemma 6
Theorem 3

Table 5

Sketch of the proof, on-line setting.

Σ for all n > 1 , for some R > 0 and invertible operator Σ. Consider the
recursion αn = (I − γnKxn ⊗Kxn)αn−1 + γnΞn, with (γn)n a sequence such
that for any n, γnR

2 6 1. Then if α0 = 0, we have So that if α0 = 0 :
(B.23)

E
[〈
αn−1,Σαn−1

〉]
6

1

2n(1 − γ0R2)

(
n−1∑

i=1

‖αi‖2
(

− 1

γi
+

1

γi+1

)
+

n∑

k=1

γkE‖Ξk‖2

)
.

Proof.

(B.24) 2γn(1 − γnR
2)E〈Σαn−1, αn−1〉 6 E

(
‖αn−1‖2 − ‖αn‖2 + γ2

n‖Ξn‖2
)

So that, if we assume that (γn) is non increasing:

(B.25) E〈Σαn−1, αn−1〉 6 1

2γn(1 − γ0R2)
E

(
‖αn−1‖2 − ‖αn‖2 + γ2

n‖Ξn‖2
)

Using convexity :

E
[〈
αn−1,Σαn−1

〉]
6

1

2n(1 − γ0R2)

(
‖α0‖2

γ1
+

n−1∑

i=1

‖αi‖2
(

− 1

γi
+

1

γi+1

)

︸ ︷︷ ︸
>0

−‖αn‖2

γn
+

n∑

k=1

γkE‖Ξk‖2

)
.

So that if α0 = 0 :
(B.26)

E
[〈
αn−1,Σαn−1

〉]
6

1

2n(1 − γ0R2)

(
n−1∑

i=1

‖αi‖2
(

− 1

γi
+

1

γi+1

)
+

n∑

k=1

γkE‖Ξk‖2

)
.
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Note that it may be interesting to consider the weighted average α̃n =∑
γiαi∑
γi

, which would satisfy be convexity

(B.27)

E
[〈
α̃n−1,Σα̃n−1

〉]
6

1

2(
∑
γi)(1 − γ0R2)

(
‖α0‖2

γ1
− ‖αn‖2

γn
+

n∑

k=1

γ2
kE‖Ξk‖2

)
.

B.4.2. Noise process. We remind that (ηnoise
n )n is defined by :

(B.28) ηnoise
0 = 0 and ηnoise

n = (I − γKxn ⊗Kxn)ηnoise
n−1 + γΞn.

As before, for any r > 0 we define a sequence (ηnoise,r
n )n by :

ηnoise,r
0 = 0 and ηnoise,r

n = (I − γΣ)ηnoise,r
n−1 + γΞr

n,

with Ξr
n = (Σ −Kxn ⊗Kxn)ηnoise,r−1

n−1 .

And we want to use the following upper bound
(B.29)

(
E

[
‖η̄noise

n ‖2
L2

ρX

])1/2
6

r∑

i=0

(
E

[
‖η̄noise,i

n ‖2
L2

ρX

])1/2
+


E



∣∣∣∣
∣∣∣∣η̄

noise
n −

r∑

i=0

η̄noise,i
n

∣∣∣∣
∣∣∣∣
2

L2
ρX






1/2

.

So that we had to upper bound the noise :

Lemma 12. For any r > 0 we have E [Ξr
n ⊗ Ξr

n] 4 R2rγr
0σ

2Σ and
E
[
ηnoise,r

n ⊗ ηnoise,r
n

]
4 γr+1

0 R2rσ2I.

Lemma 12. We make an induction on n.
We note that :

n∑

k=1

D(n, k + 1, (γk)k)γ2
kΣD(n, k + 1, (γk)k) 6 γ0

n∑

k=1

D(n, k + 1, (γk)k)γkΣ

6 γ0

n∑

k=1

D(n, k + 1, (γk)k) −D(n, k, (γk)k)

6 γ0(I −D(n, 1, (γk)k))

6 γ0I(B.30)

Where we have used that : D(n, k+ 1, (γk)k) −D(n, k, (γk)k) = D(n, k+
1, (γk)k)γkΣ.
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Initialisation : for r = 0 we have by A6 that E
[
Ξ0

n ⊗ Ξ0
n

]
4 σ2Σ. Moreover

η0
n =

∑n
k=1D(n, k + 1, (γk)k)γkΞ0

k.

E(η0
n ⊗ η0

n) =
n∑

k=1

D(n, k + 1, (γk)k)γ2
kE

[
Ξ0

k ⊗ Ξ0
k

]
D(k + 1, n, (γk)k)

4 σ2
n∑

k=1

D(n, k + 1, (γk)k)γ2
kΣD(k + 1, n, (γk)k)

4 σ2γ0I, by (B.30)

Induction : If we assume ∀n > 0, E [Ξr
n ⊗ Ξr

n] 4 γr
0R

2rσ2Σ and E [ηr
n ⊗ ηr

n] 4
γr+1

0 R2rσ2I then: ∀n > 0,

E

[
Ξr+1

n ⊗ Ξr+1
n

]
4 E

[
(Σ −Kxn ⊗Kxn)ηr

n−1 ⊗ ηr
n−1(Σ −Kxn ⊗Kxn)

]

= E
[
(Σ −Kxn ⊗Kxn)E

[
ηr

n−1 ⊗ ηr
n−1

]
(Σ −Kxn ⊗Kxn)

]

(as ηn−1 ∈ Fn−1)

4 γr+1
0 R2rσ2

E

[
(Σ −Kxn ⊗Kxn)2

]

4 γr+1
0 R2r+2σ2Σ.

Once again we have ηr+1
n =

∑n
k=1D(n, k + 1, (γk)k)γkΞr+1

k , for any n:

E

[
ηr+1

n ⊗ ηr+1
n

]
4 γ2

E

[
n∑

k=1

(I − γΣ)n−1−kΞr+1
n ⊗ Ξr+1

n (I − γΣ)n−1−k

]

4 σ2γr+1
0 R2r

n∑

k=1

D(n, k + 1, (γk)k)γ2
kΣD(k + 1, n, (γk)k)

4 σ2γr+2
0 R2rI, by (B.30)

With the bound on E [Ξr
n ⊗ Ξr

n] and as we have said, with Lemma 8:
(B.31)

E

[
‖η̄noise,i

n ‖2
L2

ρX

]
= E

[
〈η̄i

n,Ση̄
i
n〉
]
6 var(n, γ, α, γi

0R
2iσ, s) = γi

0R
2i var(n, γ, α, σ, s).

Moreover, using the Lemma on stochastic recursions (Lemma 11) for
(αr

n)n = (ηnoise
n −∑r

i=0 η
i
n)n (all conditions are satisfied) we have :

2(1 − γ0R
2) E

[〈
αr

n,Σα
r
n

〉]
6

1

n

(
n−1∑

i=1

E‖αr
i ‖2
(

− 1

γi
+

1

γi+1

)
+

n∑

k=1

γkE‖Ξr+1
k ‖2

)
.



66

We are going to show that both these terms goes to 0 when r goes to
infinity. Indeed :

n∑

k=1

γkE‖Ξr+1
k ‖2

6

n∑

k=1

γk tr
(
E

[
Ξr+1

k ⊗ Ξr+1
k

])

6

n∑

k=1

γkγ
r+1
0 R2r+2σ2 tr(Σ)

6 nγr+2
0 R2r+2σ2 tr(Σ)

Moreover, if we assume γi = 1
iζ :

1

n

n−1∑

i=1

E‖αr
i ‖2
(

− 1

γi
+

1

γi+1

)
6 2ζ

1

n

n−1∑

i=1

γi

i
E‖αr

i ‖2

And
αr

i = (I − γi
˜Kxi ⊗Kxi)α

r
i−1 + γiΞi

So that :

‖αr
i ‖ 6 ‖|(I − γi

˜Kxi ⊗Kxi)‖| ‖αr
i−1‖ + γi ‖Ξi‖

6 ‖αr
i−1‖ + γi ‖Ξi‖

6

i∑

k=1

γk ‖Ξk‖.

thus : ‖αr
i ‖2

6

i∑

k=1

γk

i∑

k=1

γk ‖Ξk‖2

E‖αr
i ‖2

6

i∑

k=1

γk

i∑

k=1

γk E‖Ξk‖2

E‖αr
i ‖2

6 C1 iγi iγr+2
0 R2r+2σ2 tr(Σ)

γi

i
E‖αr

i ‖2
6 C2 iγ2

i (γ0R
2)r+2

1

n

n−1∑

i=1

E‖αr
i ‖2
(

− 1

γi
+

1

γi+1

)
6 C3 nγ2

n (γ0R
2)r+2.

That is :

(B.32) E



∣∣∣∣
∣∣∣∣η̄

noise
n −

r∑

i=0

η̄noise,i
n

∣∣∣∣
∣∣∣∣
2

L2
ρX


 6 (γ0R

2)r+2
(
σ2 tr(Σ) + C3nγ

2
n

)
.
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With (B.29), (B.31),(B.32), we get :

(
E

[
‖η̄noise

n ‖2
L2

ρX

])1/2
6

r∑

i=0

(
γi

0R
2i var(n, γ, α, σ, s)

)1/2

+
(
(γ0R

2)r+2
(
σ2 tr(Σ) + C3 nγ

2
n

))1/2
.(B.33)

So that, with r → ∞ :

(B.34)
(
E

[
‖η̄noise

n ‖2
L2

ρX

])1/2
6 (C var(n, γ, α, σ, s))1/2 .

B.4.3. Initial conditions. Exactly as before, we can separate the effect
of initial conditions and of noise : We are interested in getting such a bound
for E

[
〈η̄init

n ,Ση̄init
n 〉

]
. We remind that :

ηinit
0 = gH and ηinit

n = (I − γnKxn ⊗Kxn)ηinit
n−1.

and define (η0
n)n∈N so that :

η0
0 = gH, η0

n = (I − γnΣ)η0
n−1.

Minkowski’s again :. As above
(B.35)(

E

[
〈η̄init

n ,Ση̄init
n 〉

])1/2
6

(
E

[
〈η̄init

n − η̄0
n,Σ

(
η̄init

n − η̄0
n

)
〉
])1/2

+
(
E

[
〈η̄0

n,Ση̄
0
n〉
])1/2

.

First for η0
n we have a semi-stochastic recursion, with Ξn ≡ 0 so that we

have

(B.36) 〈η0
n,Ση

0
n〉 6 Bias(n, (γn)n, gH, r).

Then , for the residual term we use Lemma 11 for the recursion above
with αn = η0

n − ηinit
n . Using that :

η0
n − ηinit

n = (I − γKxn ⊗Kxn)(η0
n − ηinit

n ) + γn(Kxn ⊗Kxn − Σ)η0
n−1,

That is (as α0 = 0):

E〈η̄0
n − η̄noise

n ,Σ(η̄0
n − η̄noise

n )〉 6
1

2n(1 − γ0R2)

(
n−1∑

i=1

E‖αi‖2
(

− 1

γi
+

1

γi+1

)

+
n∑

k=1

γkE‖Ξk‖2

)
.(B.37)
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Now

E‖Ξk‖2 = E

[〈
η0, D(n, 1, (γi)i)(Σ − xk ⊗ xk)2D(1, n, (γi)i)η0

〉]

6 R2〈η0, D(1, n, (γi)i)
2Ση0

〉
.

Thus :

E

[
n∑

k=1

γk‖Ξk‖2

]
6 R2〈η0,

n∑

k=1

γkD(1, n, (γi)i)
2Ση0

〉

6 R2

∣∣∣∣
∣∣∣∣

(
n∑

k=1

γkD(1, n, (γi)i)
2Σ2r

)1/2

Σ1/2−rη0

∣∣∣∣
∣∣∣∣
2

6 R2

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

k=1

D(1, n, (γi)i)
2γkΣ2r

∣∣∣∣
∣∣∣∣
∣∣∣∣ ‖Σ−rη0‖2

L2
ρX
.(B.38)

Now :
∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

k=1

D(1, n, (γi)i)
2γkΣ2r

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6 sup

06x61/γ0

n∑

k=1

n∏

i=1

(1 − γix)2γkx
2r

6 sup
06x61/γ0

n∑

k=1

exp

(
−

k∑

i=1

γix

)
γkx

2r

6 sup
06x61/γ0

n∑

k=1

exp (−kγkx) γkx
2r if (γk)k is decreasing

6 γ0 sup
06x61/γ0

n∑

k=1

exp (−kγkx)x2r

6 γ0 sup
06x61/γ0

n∑

k=1

exp
(
−k1−ργ0x

)
x2r if (γk)i =

γ0

kρ

6 γ0 sup
06x61/γ0

x2r
∫ n

u=0
exp

(
−u1−ργ0x

)
du

∫ n−1

u=0
exp

(
−u1−ργ0x

)
du 6 n clearly, but also

∫ n−1

u=0
exp

(
−u1−ργ0x

)
du 6

∫ ∞

t=0
exp

(
−t1−ρ

)
(xγ0)

− 1
1−ρdt changing variables. So that :

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

k=1

D(1, n, (γi)i)
2γkΣ2r

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6 γ0 sup

06x61/γ0

x2r
(
n ∧ I(xγ0)

− 1
1−ρ

)

6 γ0C1 sup
06x61/γ0

(
nx2r ∧ x

2r− 1
1−ρ

)
and if 2r − 1

1 − ρ
< 0

6 γ0C1n
1−2r(1−ρ).(B.39)
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And finally, using (B.38), (B.39) :

1

2n(1 − γ0R2)

n∑

k=1

γkE‖Ξk‖2
6

γ0C1 ‖Σ−rη0‖2
L2

ρX

R2

2(1 − γ0R2)
(nγn)−2r

6 K(nγn)−2r.(B.40)

To conclude, we have to upper bound :

1

2n(1 − γ0R2)

n−1∑

i=1

E‖αi‖2
(

− 1

γi
+

1

γi+1

)
.

By the induction we make to get Lemma 11, we have :

‖αi‖2
6 ‖αi−1‖2 + γ2

i ‖Ξi‖2

6

i∑

k=1

γ2
k‖Ξk‖2

6

i∑

k=1

γk‖Ξk‖2

6 Ci (iγi)
−2r.

So that (C changes during calculation) :

1

2n(1 − γ0R2)

n−1∑

i=1

E‖αi‖2
(

− 1

γi
+

1

γi+1

)
6 C

1

n

n−1∑

i=1

E‖αi‖2γi

i

6 C
1

n

n−1∑

i=1

i (iγi)
−2r γi

i

6 C
1

n

n−1∑

i=1

(iγi)
−2rγi

6 C
γn

(nγn)2r
.

So that we would get, replacing our result in (B.37) :
(B.41)

E〈η̄0
n − η̄noise

n ,Σ(η̄0
n − η̄noise

n )〉 = O

(
1

nγn

)2r

+O

(
γn

nγn

)2r

= O

(
1

nγn

)2r

.

And finally, with (B.36) and (B.41) in (B.35),
(
E

[
〈η̄init

n ,Ση̄init
n 〉

])1/2
6

(
E

[
〈η̄init

n − η̄0
n,Σ

(
η̄init

n − η̄0
n

)
〉
])1/2

+
(
E

[
〈η̄0

n,Ση̄
0
n〉
])1/2

6

(
O

(
1

nγn

)2r
)1/2

+ bias(n, (γn)n, gH, r)
1/2.(B.42)
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B.4.4. Conclusion. We conclude with both (B.34) and (B.42) in (B.8) :
(B.43)
(
E

[
‖η̄n‖2

L2
ρX

])1/2
6 (C var(n, γ, α, σ, s))1/2+

(
O

(
1

nγn

)2r
)1/2

+bias(n, (γn)n, gH, r)
1/2.

Which gives Theorem 3 using Lemmas 6 and 7. Once again, deriving
corollaries is simple.

B.5. Some quantities. In this section, we bound the main quantities
which are involved above.

B.5.1. Lemma 4.

Lemma 4.

If 0 6 r 6 1 :

Bias(n, γ, gH, r) =
1

n2

〈 n−1∑

k=0

(I − γΣ)kgH,
n−1∑

k=0

(I − γΣ)k ΣgH

〉

=
1

n2

〈 n−1∑

k=0

(I − γΣ)kΣ2rΣ−r+1/2gH,
n−1∑

k=0

(I − γΣ)k Σ−r+1/2gH

〉

=
1

n2

∣∣∣∣
∣∣∣∣

n−1∑

k=0

(I − γΣ)kΣr(Σ−r+1/2gH)

∣∣∣∣
∣∣∣∣
2

6
1

n2

∣∣∣∣
∣∣∣∣
∣∣∣∣

n−1∑

k=0

(I − γΣ)kΣr

∣∣∣∣
∣∣∣∣
∣∣∣∣
2 ∣∣∣∣
∣∣∣∣Σ

−r+1/2gH

∣∣∣∣
∣∣∣∣
2

=
1

n2
γ−2r

∣∣∣∣
∣∣∣∣
∣∣∣∣

n−1∑

k=0

(I − γΣ)kγrΣr

∣∣∣∣
∣∣∣∣
∣∣∣∣
2 ∣∣∣∣
∣∣∣∣Σ

−rgH

∣∣∣∣
∣∣∣∣
2

L2
ρ

6
1

n2
γ−2r sup

06x61

(
n−1∑

k=0

(1 − x)kxr

)2 ∣∣∣∣
∣∣∣∣Σ

−rgH

∣∣∣∣
∣∣∣∣
2

L2
ρ

6

(
1

(nγ)2r

) ∣∣∣∣
∣∣∣∣Σ

−rgH

∣∣∣∣
∣∣∣∣
2

L2
ρX

.

Using the inequality :

(B.44) sup
06x61

(
n−1∑

k=0

(1 − x)kxr

)
6 n1−r.
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Indeed :
(

n−1∑

k=0

(1 − x)kxr

)
=

1 − (1 − x)n

x
xr

= (1 − (1 − x)n)xr−1.

And we have, for any n ∈ N, r ∈ [ 0; 1], x ∈ [ 0; 1] : (1 − (1 − x)n) 6 (nx)1−r :

1. if nx 6 1 then (1 − (1 − x)n) 6 nx 6 (nx)1−r (the first inequality can
be proved by deriving the difference).

2. if nx > 1 then (1 − (1 − x)n) 6 1 6 (nx)1−r .

If r > 1, x 7→ (1−(1−x)n) is increasing on [ 0; 1] so sup06x61

(∑n−1
k=0(1 − x)kxr

)
=

1 : there is no improvement in comparison to r = 1 :

Bias(n, γ, gH, r) 6

(
1

n2γ2r

) ∣∣∣∣
∣∣∣∣Σ

−rgH

∣∣∣∣
∣∣∣∣
2

L2
ρX

.

B.5.2. Lemma 5.

Lemma 5 .

In the following proof, we consider s = 1. It’s easy to get the complete
result replacing in the proof below “ γ” by “ s2γ”. We have, for j ∈ N, still
assuming γΣ 4 I, and by a comparison to the integral :

tr
(
I − (I − γΣ)j

)2
Σ−1C = σ2 tr

(
I − (I − γΣ)j

)2

6 1 + σ2
∫ ∞

u=1

(
1 −

(
1 − γ

uα

)j
)2

du

(1 stands for the first term in the sum)

= 1 + σ2
∫ (γj)

1
α

u=1

(
1 −

(
1 − γ

uα

)j
)2

du

+σ2
∫ ∞

u=(γj)
1
α

(
1 −

(
1 − γ

uα

)j
)2

du.

Note that the first integral may be empty if γj 6 1. We also have:

tr
(
I − (I − γΣ)j

)2
Σ−1C > σ2

∫ ∞

u=1

(
1 −

(
1 − γ

uα

)j
)2

du.
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Considering that gj : u 7→
(
1 −

(
1 − γ

uα

)j)2
is a decreasing function of u we

get :

∀u ∈ [1; (γj)
1
α ], (1 − e−1)2

6 gj(u) 6 1.

Where we have used the fact that
(
1 − 1

j

)j
6 e−1 for the left hand side

inequality. Thus we have proved :

(1 − e−1)2(γj)
1
α 6

∫ (γj)
1
α

u=1

(
1 −

(
1 − γ

uα

)j
)2

du 6 (γj)
1
α .

For the other part of the sum, we consider hj : u 7→
(

1−(1− γ
uα )

j

γ
uα

)2

which is

an increasing function of u. So :

∀u ∈ [(γj)
1
α ; +∞], (1 − e−1)2j2

6 hj(u) 6 j2,

using the same trick as above. Thus :

∫ ∞

u=(γj)
1
α

(
1 −

(
1 − γ

uα

)j
)2

du =

∫ ∞

u=(γj)
1
α

hj(u)

(
γ

uα

)2

du

6 j2
∫ ∞

u=(γj)
1
α

(
γ

uα

)2

du

6 j2γ2
∫ ∞

u=(γj)
1
α

(
1

uα

)2

du

= j2γ2
[

1

(1 − 2α)u2α−1

]∞

u=(γj)
1
α

= j2γ2 1

(2α− 1)((γj)
1
α )2α−1

=
1

(2α− 1)
(jγ)

1
α .

And we could get, by a similar calculation :

∫ ∞

u=(γj)
1
α +1

(
1 −

(
1 − γ

uα

)j
)2

du > (1 − e−1)2 1

(2α− 1)
(jγ)

1
α .

Finally, we have shown that :

C1(jγ)
1
α 6 tr

(
I − (I − γΣ)j

)2
6 C2(jγ)

1
α + 1.
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Where C1 = (1−e−1)2 (1+ 1
(2α−1)) and C2 = (1+ 1

(2α−1)) are real constants.

To get the complete variance term we have to calculate : σ2

n2

∑n−1
j=1 tr (I − (I − γΣ))j .

We have :

σ2

n2

n−1∑

j=1

tr
(
I − (I − γΣ)j

)2
6

σ2

n2

n−1∑

j=1

(
C2(jγ)

1
α + 1

)

6
σ2

n2
C2γ

1
α

∫ n

u=2
u

1
αdu+

σ2

n

6
σ2

n2
C2γ

1
α

α

α+ 1
n

α+1
α +

σ2

n

6
α σ2 C2

α+ 1

γ
1
α

n1− 1
α

+
σ2

n
.

That is :

(1 − e−1)2 C(α) σ2 γ
1
α

(n− 1)1− 1
α

6 Var(n, γ, α, σ2) 6 C(α) σ2 γ
1
α

n1− 1
α

+
σ2

n
,

with C(α) = 2α2

(α+1)(2α−1) .

B.5.3. Lemma 6.

Proof.

1

n2

∥∥∥∥Σ
1/2

n∑

k=1

k∏

i=1

(I − γiΣ) gH

∥∥∥∥
2

K

6
1

n2

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

k=1

k∏

i=1

(I − γiΣ) Σr

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

||Σ1/2−rgH||2K

6
1

n2

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

k=1

k∏

i=1

(I − γiΣ) Σr

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

||Σ−rgH||2L2
ρX
.
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Moreover :

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

k=1

k∏

i=1

(I − γiΣ) Σr

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6 sup

06x61

n∑

k=1

k∏

i=1

(I − γix)xr

6 sup
06x61

n∑

k=1

exp

(
−

k∑

i=1

γix

)
γkx

r

6 sup
06x61

n∑

k=1

exp (−kγkx) γkx
r if (γk)k is decreasing

6 sup
06x61

n∑

k=1

exp (−kγkx)xr

6 sup
06x61

n∑

k=1

exp
(
−k1−ζx

)
xr if (γk)i =

1

kζ

6 sup
06x61

xr
∫ n

u=0
exp

(
−u1−ζx

)
du by comparison to the integral

∫ n

u=0
exp

(
−u1−ζx

)
du 6 n clearly, but also

∫ n

u=0
exp

(
−u1−ζx

)
du 6

∫ ∞

t=0
exp

(
−t1−ζ

)
(x)

− 1
1−ζ dt changing variables. So that :

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

k=1

k∏

i=1

(I − γiΣ) Σr

∣∣∣∣
∣∣∣∣
∣∣∣∣ 6 K sup

06x61
xr
(
n ∧ x

− 1
1−ζ

)

6 K sup
06x61

(
nxr ∧ x

r− 1
1−ζ

)
and if r − 1

1 − ζ
< 0

6 Kn1−r(1−ζ).

So that :

1

n2

〈
n∑

k=1

k∏

i=1

(I − γiΣ) gH,
n∑

k=1

k∏

i=1

(I − γiΣ) ΣgH

〉
6

1

n2

(
Kn1−r(1−ζ)

)2
||Σ−rgH||2L2

ρX

6 K2||Σ−rgH||2L2
ρX
n−2r(1−ζ).

Else if r − 1
1−ζ > 0, then sup06x61

(
nxr ∧ x

r− 1
1−ζ

)
= 1, so that

1

n2

〈
n∑

k=1

k∏

i=1

(I − γiΣ) gH,
n∑

k=1

k∏

i=1

(I − γiΣ) ΣgH

〉
= O




||Σ−rgH||2L2
ρX

n2


 .
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B.5.4. Lemma 7.

Proof. To get corollary 7, we will just replace in the following calcula-
tions γ by s2γ We remind that :

(B.45)

Var
(
n, (γi)i,Σ, (ξi)i

)
=

1

n2
E

〈
n∑

j=1

j∑

k=1




j∏

i=k+1

(I − γiΣ)


 γkξk,Σ

n∑

j=1

j∑

k=1




j∏

i=k+1

(I − γiΣ)


 γkξk

〉
.

For shorter notation, in the following proof, we note Var(n) = Var
(
n, (γi)i,Σ, (ξi)i

)
.

Var(n) =
1

n2
E

〈
n∑

j=1

j∑

k=1




j∏

i=k+1

(I − γiΣ)


 γkξk,Σ

n∑

j=1

j∑

k=1




j∏

i=k+1

(I − γiΣ)


 γkξk

〉

=
1

n2
E

〈
n∑

k=1




n∑

j=k




j∏

i=k+1

(I − γiΣ)




 γkξk,Σ

n∑

k=1




n∑

j=k




j∏

i=k+1

(I − γiΣ)




 γkξk

〉

=
1

n2

n∑

k=1

E

〈


n∑

j=k




j∏

i=k+1

(I − γiΣ)




 γkξk,Σ




n∑

j=k




j∏

i=k+1

(I − γiΣ)




 γkξk

〉

=
1

n2

n∑

k=1

E 〈Mn,kγkξk,ΣMn,kγkξk〉 with Mn,k :=




n∑

j=k




j∏

i=k+1

(I − γiΣ)






=
1

n2

n∑

k=1

γ2
k E 〈Mn,kξk,ΣMn,kξk〉 =

1

n2

n∑

k=1

γ2
k E tr (Mn,kΣMn,kξk ⊗ ξk)

6
1

n2

n∑

k=1

γ2
kσ

2 tr
(
M2

n,kΣΣ
)

6
1

n2

n∑

k=1

γ2
kσ

2 tr






n∑

j=k




j∏

i=k+1

(I − γiΣ)




Σ




2

6
1

n2

n∑

k=1

γ2
kσ

2
∞∑

t=1






n∑

j=k




j∏

i=k+1

(
1 − γi

1

tα

)


 1

tα




2

.
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Let’s first upper bound:




j∏

i=k+1

(
1 − γi

1

tα

)
 6 exp

j∑

i=k+1

(γi
1

tα
)

= exp −
j∑

i=k+1

(
1

iζ
1

tα

)
if γi =

1

iζ

6 exp − 1

tα

∫ j+1

u=k+1

(
1

uζ
du

)

6 exp − 1

tα
(j + 1)1−ζ − (k + 1)1−ζ

1 − ζ
.

Then

n∑

j=k

j∏

i=k+1

(
1 − γi

1

tα

)
6

n∑

j=k

exp − 1

tα
(j + 1)1−ζ − (k + 1)1−ζ

1 − ζ

6

∫ n

u=k
exp − 1

tα
(u+ 1)1−ζ − (k + 1)1−ζ

1 − ζ
du

6 (n− k) clearly

(this upper bound is good when t >> n1−ζ), but we also have:

∫ n

u=k
exp − 1

tα
(u+ 1)1−ζ − (k + 1)1−ζ

1 − ζ
du =

∫ n+1

u=k+1
exp − 1

tα
u1−ζ − (k + 1)1−ζ

1 − ζ
du.
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With ρ = 1 − ζ,Kζ := 1
(1−ζ)1/ρtα/ρ and

vρ =
1

tα
(u)ρ − (k + 1)ρ

(1 − ζ)

v =
1

(1 − ζ)1/ρtα/ρ
((u)ρ − (k + 1)ρ)1/ρ

dv = Kζ
1

ρ
(uρ − (k + 1)ρ)1/ρ−1 ρuρ−1du

dv = Kζ

(
1 −

(
k + 1

u

)ρ)1/ρ−1

du

dv
1

Kζ

(
1 −

(
(k+1)ρ

tαCvρ+(k+1)ρ

))1/ρ−1
= du

dv
1

Kζ

(
tαCvρ + (k + 1)ρ

tαCvρ + (k + 1)ρ − (k + 1)ρ

)1/ρ−1

= du

dv
1

Kζ

(
tαCvρ + (k + 1)ρ

tαCvρ

)1/ρ−1

= du

dv
1

Kζ

(
1 +

(k + 1)ρ

tαCvρ

)1/ρ−1

= du

∫ n

u=k
exp − 1

tα
(u+ 1)

α
α+β − (k + 1)

α
α+β

(1 − ζ)
du 6

∫ ∞

0

1

Kζ

(
1 +

(k + 1)ρ

tαCvρ

)1/ρ−1

exp (−vρ) dv

6
21/ρ−1

Kζ

∫ ∞

0

(
1 ∨ (k + 1)ρ

tαCvρ

)1/ρ−1

exp (−vρ) dv

6 21/ρ−1(1 − ζ)1/ρtα/ρ
∫ ∞

0

(
1 ∨ (k + 1)1−ρ

(tαC)1/ρ−1v1−ρ

)
exp (−vρ) dv.

6 Ktα/ρ

(
I1 ∨ I2

(k + 1)1−ρ

(tα)1/ρ−1

)

6 K
(
t

α
1−ζ ∨ tα(k + 1)ζ

)
.
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Finally :

Var(n) 6
1

n2

n∑

k=1

γ2
kσ

2
∞∑

t=1

1

t2α

(
(n− k) ∧K

(
t

α
1−ζ ∨ tα(k + 1)ζ

))2

Var(n) 6
1

n2

n∑

k=1

γ2
kσ

2
∞∑

t=1

1

t2α

(
(n− k)2 ∧K

(
t
2 α

1−ζ + t2αk2ζ
))

6
1

n2

n∑

k=1

γ2
kσ

2
∞∑

t=1

1

t2α

(
(n− k)2 ∧K

(
t
2 α

1−ζ

))

︸ ︷︷ ︸
S1

+
1

n2

n∑

k=1

γ2
kσ

2
∞∑

t=1

1

t2α

(
(n− k)2 ∧ t2αk2ζ

)

︸ ︷︷ ︸
S2

S1 6 K
1

n2

n∑

k=1

γ2
kσ

2




(n−k)
1−ζ

α∑

t=1

1

t2α
t
2 α

1−ζ +
∞∑

t=(n−k)
1−ζ

α

1

t2α
(n− k)2




6 K
1

n2

n∑

k=1

γ2
kσ

2




(n−k)
1−ζ

α∑

t=1

t
2αζ
1−ζ + (n− k)2

∞∑

t=(n−k)
1−ζ

α

1

t2α




6 G
1

n2

n∑

k=1

γ2
kσ

2

(
(n− k)

1−ζ
α

( 2αζ
1−ζ

+1)
+ (n− k)2 1

(n− k)
1−ζ

α
(2α−1)

)

6 G
1

n2

n∑

k=1

γ2
kσ

2
(

(n− k)
(2α−1)ζ+1

α + (n− k)2− 1−ζ
α

(2α−1)
)

= 2Gσ2 1

n2

n∑

k=1

1

k2ζ
(n− k)

(2α−1)ζ+1
α

6 2Gσ2 1

n2

n∑

k=1

(
n

k
− 1

) (2α−1)ζ+1
α

k
1−ζ

α

= 2Gσ2n−1+ 1−ζ
α

1

n

n∑

k=1

(
1

k/n
− 1

) (2α−1)ζ+1
α

(
k

n

) 1−ζ
α

= 2Gσ2n−1+ 1−ζ
α


 1

n

n∑

k=1

(
1

k/n
− 1

) (2α−1)ζ+1
α

(
k

n

) 1−ζ
α




= 2Gσ2n−1+ 1−ζ
α


 1

n

n∑

k=1

(
1

k/n
− 1

)2ζ (
1 − k

n

) 1−ζ
α


 .
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If ζ < 1
2 then

∫ 1

0

(
1

x
− 1

)2ζ

(1 − x)
1−ζ

α dx < ∞

and

S1 6 Hn−1+ 1−ζ
α


 1

n

n∑

k=1

(
1

k/n
− 1

)2ζ (
1 − k

n

) 1−ζ
α




6 H ′n−1+ 1−ζ
α .

If ζ > 1
2 then

∫ 1

0

(
1

x
− 1

)2ζ

(1 − x)
1−ζ

α −
(

1

x

)2ζ

dx < ∞.

and

S1 6 Hn−1+ 1−ζ
α


 1

n

n∑

k=1

(
1

k/n
− 1

)2ζ (
1 − k

n

) 1−ζ
α

−
(
n

k

)2ζ

+
1

n

n∑

k=1

(
n

k

)2ζ



6 Hn−1+ 1−ζ
α

(
C + n2ζ−1

)

6 Cn−1+
1−ζ+α(2ζ−1)

α .
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S2 =
1

n2

n∑

k=1

γ2
kσ

2
∞∑

t=1

1

t2α

(
(n− k)2 ∧ t2αk2ζ

)

6
1

n2

n∑

k=1

γ2
kσ

2




tℓ∑

t=1

1

t2α
t2αk2ζ +

∞∑

t=tℓ

1

t2α
(n− k)2


 with tℓ =

(n− k)
1
α

k
ζ
α

6
1

n2

n∑

k=1

γ2
kσ

2


k2ζ

tℓ∑

t=1

1 + (n− k)2
∞∑

t=tℓ

1

t2α




6
1

n2

n∑

k=1

γ2
kσ

2


k2ζ (n− k)

1
α

k
ζ
α

+ (n− k)2


(n− k)

1
α

k
ζ
α




1−2α



=
1

n2

n∑

k=1

γ2
kσ

2
(
k2ζ− ζ

α (n− k)
1
α + (n− k)

1
αk

ζ
α

(2α−1)
)

=
2σ2

n2

n∑

k=1

1

k2ζ
(n− k)

1
αk

ζ
α

(2α−1)

=
2σ2

n2

n∑

k=1

k− ζ
α (n− k)

1
α

= 2σ2n(−1+− ζ
α

+ 1
α ) 1

n

n∑

k=1

(
k

n

)− ζ
α
(

1 − k

n

) 1
α

6 Kn(−1+ 1−ζ
α ).

As we have a Riemann sum which converges.
Finally we get : if 0 < ζ < 1

2 then

Var(n) = O
(
σ2n−1+ 1−ζ

α

)

= O

(
σ2σ

2(s2γn)1/α

n1−1/α
n−1+ 1−ζ

α

)

where we have re-used the constants s by formaly replacing in the proof γ
by γs2.

and if ζ > 1
2 then

Var(n) = O
(
σ2n−1+ 1−ζ

α
+2ζ−1

)
.

Which is substantially Lemma 7.
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