Audio thumbnails for spoken content without transcription based on a maximum motif coverage criterion - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Audio thumbnails for spoken content without transcription based on a maximum motif coverage criterion

Résumé

The paper presents a system to create audio thumbnails of spo- ken content, i.e., short audio summaries representative of the entire content, without resorting to a lexical representation. As an alternative to searching for relevant words and phrases in a transcript, unsupervised motif discovery is used to find short, word-like, repeating fragments at the signal level without acous- tic models. The output of the word discovery algorithm is ex- ploited via a maximum motif coverage criterion to generate a thumbnail in an extractive manner. A limited number of relevant segments are chosen within the data so as to include the maxi- mum number of motifs while remaining short enough and intel- ligible. Evaluation is performed on broadcast news reports with a panel of human listeners judging the quality of the thumb- nails. Results indicate that motif-based thumbnails stand be- tween random thumbnails and ASR-based keywords, however still far behind thumbnails and keywords humanly authored.
Fichier principal
Vignette du fichier
gravier-is14.pdf (161.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01026402 , version 1 (21-07-2014)

Identifiants

  • HAL Id : hal-01026402 , version 1

Citer

Guillaume Gravier, Nathan Souviraà-Labastie, Sébastien Campion, Frédéric Bimbot. Audio thumbnails for spoken content without transcription based on a maximum motif coverage criterion. Annual Conference of the International Speech Communication Association, Sep 2014, Singapour, Singapore. ⟨hal-01026402⟩
370 Consultations
319 Téléchargements

Partager

More