Exact packing measure of the range of $\psi$-Super Brownian motions. - Archive ouverte HAL
Article Dans Une Revue Probability Theory and Related Fields Année : 2017

Exact packing measure of the range of $\psi$-Super Brownian motions.

Xan Duhalde
  • Fonction : Auteur
  • PersonId : 947506

Résumé

We consider super processes whose spatial motion is the $d$-dimensional Brownian motion and whose branching mechanism $\psi$ is critical or subcritical; such processes are called $\psi$-super Brownian motions. If $d\!>\!2\bgamma/(\bgamma\!-\!1)$, where $\bgamma\!\in\!(1,2]$ is the lower index of $\psi$ at $\infty$, then the total range of the $\psi$-super Brownian motion has an exact packing measure whose gauge function is $g(r)\! =\! (\log\log1/r) / \varphi^{-1} ( (1/r\log\log 1/r)^{2})$, where $\varphi\! =\! \psi^\prime\! \circ \! \psi^{\!-1}$. More precisely, we show that the occupation measure of the $\psi$-super Brownian motion is the $g$-packing measure restricted to its total range, up to a deterministic multiplicative constant only depending on $d$ and $\psi$. This generalizes the main result of \cite{Duq09} that treats the quadratic branching case. For a wide class of $\psi$, the constant $2\bgamma/(\bgamma\!-\!1)$ is shown to be equal to the packing dimension of the total range.
Fichier principal
Vignette du fichier
SBM_gen_packing_16_07_2014_TD.pdf (372.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01025477 , version 1 (17-07-2014)

Identifiants

Citer

Thomas Duquesne, Xan Duhalde. Exact packing measure of the range of $\psi$-Super Brownian motions.. Probability Theory and Related Fields, 2017, ⟨10.1007/s00440-015-0680-2⟩. ⟨hal-01025477⟩
173 Consultations
161 Téléchargements

Altmetric

Partager

More