Pointwise estimates and existence of solutions of porous medium and $p$-Laplace evolution equations with absorption and measure data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Pointwise estimates and existence of solutions of porous medium and $p$-Laplace evolution equations with absorption and measure data

Résumé

Let $\Omega $ be a bounded domain of $\mathbb{R}^{N}(N\geq 2)$. We obtain a necessary and a sufficient condition, expressed in terms of capacities, for existence of a solution to the porous medium equation with absorption \begin{equation*} \left\{ \begin{array}{l} {u_{t}}-{\Delta }(|u|^{m-1}u)+|u|^{q-1}u=\mu ~ \text{in }\Omega \times (0,T), \\ {u}=0~~~\text{on }\partial \Omega \times (0,T), \\ u(0)=\sigma , \end{array} \right. \end{equation*} where $\sigma$ and $\mu$ are bounded Radon measures, $q>\max (m,1)$, $m>\frac{N-2}{N}$. We also obtain a sufficient condition for existence of a solution to the $p$-Laplace evolution equation \begin{equation*} \left\{ \begin{array}{l} {u_{t}}-{\Delta _{p}}u+|u|^{q-1}u=\mu ~~\text{in }\Omega \times (0,T), \\ {u}=0 ~ \text{on }\partial \Omega \times (0,T), \\ u(0)=\sigma . \end{array} \right. \end{equation*} where $q>p-1$ and $p>2$.
Fichier principal
Vignette du fichier
Bidaut-NguyenQuoc-8-07-14.pdf (258.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01020999 , version 1 (08-07-2014)
hal-01020999 , version 2 (09-07-2014)

Identifiants

Citer

Marie-Françoise Bidaut-Véron, Quoc-Hung Nguyen. Pointwise estimates and existence of solutions of porous medium and $p$-Laplace evolution equations with absorption and measure data. 2014. ⟨hal-01020999v1⟩
327 Consultations
175 Téléchargements

Altmetric

Partager

More