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Pointwise estimates and existence of solutions of porous medium
and p-Laplace evolution equations with absorption and measure
data

Marie-Francoise Bidaut-Véron* Quoc-Hung Nguyen'

Abstract

Let Q be a bounded domain of RY (N > 2). We obtain a necessary and a sufficient condition,
expressed in terms of capacities, for existence of a solution to the porous medium equation with
absorption

wp — A(|u™ ") + |u|Ttu = in Q x (0,7T),
u=0 ondQx(0,T),
u(0) = o,

where o and p are bounded Radon measures, ¢ > max(m,1), m > % We also obtain a

sufficient condition for existence of a solution to the p-Laplace evolution equation
ur — Apu+ |[u|lu =p in Q x (0,7),
u=0 ondQx(0,T),
u(0) = 0.

where ¢ > p—1 and p > 2.
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1 Introduction and main results

Let Q be a bounded domain of RN, N > 2 and T > 0, and Qr = Q x (0,7). In this paper we study the
existence of solutions to the following two types of evolution problems: the porous medium problem with
absorption

up — A(Ju]™ ) + [ul?tu = p in Qr,

u=0 ondQx(0,T), (1.1)

u(0) = o,

where m > % and ¢ > max(1,m), and the p-Laplace evolution problem with absorption

ug — Apu+ |u|Tu = p in Qp,
u=0 ondQx(0,T), (1.2)
u(0) = o,

where ¢ > p—1 > 1, and p and o are bounded Radon measures respectively on Qr and 2. In the sequel,
for any bounded domain O of R!(I = 1), we denote by M,;(O) the set of bounded Radon measures in O,
and by /\/l;r(O) its positive cone. For any v € M(O), we denote by v and v~ respectively its positive and
negative part.

When m = 1,p =2 and ¢ > 1 the problem has been studied by Brezis and Friedman [12] with g = 0. It
is shown that in the subcritical case ¢ < 14 2/N, the problem can be solved for any o € M(£2), and it has
no solution when ¢ > 14 2/N and o is a Dirac mass. The general case has been solved by Baras and Pierre
[5] and their results are expressed in terms of capacities. For s > 1,a > 0, the capacity Capg_ , of a Borel
set E C RY, defined by

Capg,, o(E) = inf{]|g]|7. @~y : g € L3(RY), Ga g > 1 on B},
where Gy, is the Bessel kernel of order o and the capacity Cap, ; , of a compact set K C RN+ is defined by
Capy 1 ((K) = inf {||¢||;V3,1(RN+1) cp € S(RVTY), » > 1 in a neighborhood of K} ,
where

el @nny = llze@yeny + ll@ellze@nny F VOl lze@rey + D wwllze@y-
i,j=1,2,...,N

The capacity Cap,; , is extended to Borel sets by the usual method. Note the relation between the two
capacities:
Cilca’pcbig,s(E) S CapQ,l,s(E X {0}) S CcapG272,s

s s

(E)



for any Borel set E C RY, see [34, Corollary 4.21]. In particular, for any w € My(RY) and a € R, the
measure W ® dg;—q} in RN+ is absolutely continuous with respect to the capacity Capy; , (in RYN*1) if and

only if w is absolutely continuous with respect to the capacity CapG% 5.5 (in RM).

From [5], the problem
—Au+ |ulf"u=p in Qr,
u=0 ondQx(0,7T),
u(0) = o,
has a solution if and only if the measures u and o are absolutely continuous with respect to the capacities

Capy 1, in Qr and CapG%q/ in Q respectively, where ¢’ = qqu.

In Section 2 we study problem (1.1).

For m > 1, Chasseigne [14] has extended the results of [12] for 4 = 0 in the new subcritical range
m<qg<m-+ % The supercritical case ¢ > m + % with ¢ = 0 and o is positive is studied in [13]. He has
essentially proved that if problem (1.1) has a solution, then o ® §r;—} is absolutely continuous with respect
to the capacity o+ defined for anycompact set K C RY+1 by

CapQ,Lﬁ’q,(K) = inf{||<p||5v_£_ ey P E S(RM), ¢ > 1 in a neighborhood of E} ,

where
el orsny = 1911 o g+l ey N9 o i+ 30 min s e

g—m’ i,7=1,2,...,N

In this Section, we first give necessary conditions on the measures p and o for existence, which cover the
results mentioned above.

Theorem 1.1 Let m > Y22 and ¢ > max(1,m) and p € Mb(QT) and o € My(Q). If problem (1.1) has a

q—m’ qu :

Remark 1.2 [t is easy to see that the capacity Cap, 1L, L is absolutely continuous with respect to the
T

capacity Capy 1 _ Therefore p and 0 @0 —gy are absolutely continuous with respect to the capacities

—vE T

Capy In particular o is absolutely continuous with respect to the capacity Capg a1

YT g— lnax{TrL

q
»g—max{m,1}
The main result of this Section is the following sufficient condition for existence, where we use the notion
of R-truncated Riesz parabolic potential Iy on RV*! of a measure y € M;’(QT) , defined by
R " u(Qp(x, 1)) dp N+1
ety = [ HEEEDL for any (1) € RV,
0 P p

with R € (0,00], and Q,(x,t) = B,(x) x (t — p*,t + p?).



Theorem 1.3 Let m > Y22, ¢ > max(1,m), p € My(Qr) and o € M,y(€).

i. If m>1 and p and o are absolutely continuous with respect to the capacities Capy 1 o in Qr and Capg, o
q

in Q, then there exists a very weak solution u of (1.1), satisfying for a.e.(x,t) € Qr

el < 0 (O jo1@) + ult@r) + 1+ Bllo] @810y + )0

where C = C(N,m) >0 and

(N +2)(2mN +1)
m(mN +2)(1+2N)’

d = diam(Q) + T2,

my =

ii. If % <m <1, and p and o are absolutely continuous with respect to the capacities Cap, , 24
D (1) F N (1—m)

in Qr and Capg in Q, there exists a very weak solution u of (1.1), such that

2
2-N(1—-m) ’2(q—1)+?\f(177n)
q
for a.e.(x,t) € Qr

ute ) < © (OO 4 891010 810y + il 1) 76

where C = C(N,m) >0 and

2N(N +2)(m +1)
24+ Nm)(2—N(1—-m))(2+N(1+m))

meo =

Remark 1.4 These estimates are not homogeneous in u. In particular if p = 0, u satisfies the decay esti-
mates, for a.e. (x,t) € Qr,

i ifm>1,

ot <0 () + oy + 1+ ).

lu(z,t)] < C <<%)W +1+ (EL%)M) .

We also give other types of sufficient conditions for measures which are good in time, that means such
that

i, ifm <1,

ceL'(Q) and |y <f4+w®F, where f e Ll(Qr),FeLb((0,T)), (1.3)

see Theorem 2.10. The proof is based on estimates for the stationary problem in terms of elliptic Riesz
potential.

In Section 3, we consider problem (1.2). Let us recall some former results about it.



For ¢ > p—1 > 0, Pettitta, Ponce and Porretta [36] have proved that it admits a (unique renormalized)
solution provided o € L}(Q) and p € M, (27) is a diffuse measure, i.e. absolutely continuous with respect
to Cp-capacity in Q7, defined on a compact set K C Q7 by

Co(K,Qr) =inf {||¢|lw : ¢ € CZ(Qr)p > 1 0on K}, (1.4)

where
W ={z:z¢€LP(0,T, WS P(Q) N L*(Q)), 2 € L¥ (0,7, W17 (Q) + L*(Q))}.

In the recent work [7], we have proved a stability result for the p-Laplace parabolic equation, see Theorem

3.5, for p > —%{,lel. As a first consequence, in the new subcritical range
p
<p—1+-=—,
¢=p * N

problem (1.2) admits a renormalized solution for any measures p € My(Qr) and o € L*(f2). Moreover,
we have obtained sufficient conditions for existence, for measures that have a good behavior in time, of the
form (1.3). It is shown that (1.2) has a renormalized solution if w € M () is absolutely continuous with
respect to Capg, __a . The proof is based on estimates of [8] for the stationary problem which involve

q—p+

Wolff potentials.

Here we give new sufficient conditions when p > 2. The next Theorem is our second main result:
Theorem 1.5 Let g > p—1>1 and p € Mp(Qr) and 0 € My(R). If p and o are absolutely continuous
with respect to the capacities Capy 1 o in Qr and Capg, o in 2, then there exists a distribution solution of

q

problem (1.2) which satisfies the pointwise estimate

|o](€) + |ul

lu(z,t)] < C <1 +D + ( N mT)) ’ + 137 [lo] ® Sgpmo0y + |1l] (z,t)) (1.5)

for a.e (z,t) € Qp with C = C(N,p) and

e NP A+ —1) — min B — diam 1p
3 ((p_l)N +p)(1+)\(p_1))’ A {1/(]? 1)a1/N}a D=d (Q)+T . (1.6)

Moreover, if o € LY(Q), u is a renormalized solution.

2 Porous medium equation

For k > 0 and s € R we set Tx(s) = max{min{s, k}, —k}. The solutions of (1.1) are considered in a weak
sense:

Definition 2.1 Let u € My(Qr) and 0 € My(R) and g € C(R).
1. A function u is a weak solution of problem

ur — A(Ju]™ ) + g(u) = p in Qr,

u=0 ondQx(0,T), (2.1)
u(0) =0 in Q.



if ue C([0,T]; L*(Q)), |u|™ € L2((0,T); H () and g(u) € L*(Qr), and for any ¢ € C>1(Q x [0,T)),

g(u)pdrdt = /

_/ wprdxdt + V(|u|m_1u).V<pd:Edt+/
QT QT QT

<pd,u+/ ©(0)do.
Qr Q

ii. A function u is a very weak solution of (2.1) if u € L™ (Qr) and g(u) € L' (Qr), and for any
p € CHQ X [0,T)),

—/ uwtdxdt—/ |u|m71uA<pdxdt+/ g(u)tpdmdt:/ godu—l—/go(O)do.
QT QT QT QT Q

First we give a priori estimates for the problem without perturbation term:

Proposition 2.2 Let u € L>(Q7) with |u|™ € L?((0,T); H} () be a weak solution to problem

ug — A(ju|™ ) = p in Qr,
u=0 ondQx(0,T), (2.2)
u(0)=0 in Q,

with o € Cp(Q) and p € Cy(Qr). Then,
[l Lo,y (0)) < [o](€2) + [l (Qr), (2.3)
N+2
ullpmte/nco@zy < Crllo|(€) + |p|(Qr)) ™2, (2.4)

m(N+1)+1

< Co(|o|() + [ul(Qr)) ===, (2.5)

m—1
IV (™ 0l e e

where C; = C1(N,m),Cy = Co(N,m).

Proof of Proposition 2.2. For any 7 € (0,T), and k > 0 we have

/ST(Hk(u))td:Edt—i—/QT |VTk(|u|m*1u)|2dxdt:/ (™ ) dpu(z, 1),

where H(a) = [{" Ti(|y|™ 'y)dy. This leads to
| 9Tl P dade < Ko@)+ 1l @r)) and (2.6)
[ #0)(7)dx < k(ol(@) + (@), ¥r € (0.7).

Since Hy(a) > k(Ja| — k) for any a and k > 0, we find

/Q(IUI(T) — k)dz < |o|(Q2) + |ul(Qr), V7 € (0,T).

Letting k — 0, we get (2.3).



Next we prove (2.4). By the Gagliardo-Nirenberg embedding theorem, there holds

2(N+1)

m— m— 2/N m—
/QT |Th (Ju|™ w)| "~ dadt < Cy||Ti(|ul 1u)||L/x((O7T);L1(Q)) /QT VT (|u|™ ) Pdadt

2(m—1) 2/N m—
< RS a2 o mny [, VTl )P
T

Thus, from (2.6) and (2.3) we get

) ( m—
EER T ™ > kY < / T (Ju]™ )| 7 dadt < ek v (|o]() + [l (Qr) N

Qr

which implies (2.4). Finally, we prove (2.5). Thanks to (2.6) and (2.4) we have for k, kg > 0

. 1 ¥ .
9™l > 1 < g5 [ 9l > ar
1 _
<™ > ko + g [ VT (™ ) P
Qr

——2--1 Ni2 —
< Cikg ™ (|ol(Q) + [ul(Q1) 5 + kok™2(l0|(Q) + |ul(Qr)).
Choosing ko = k~¥mit (Jo () + |p|(Qr)) ¥F1, we get (2.5). |

Lemma 2.3 Let m > %22 and g € Cy(R) be nondecreasing with g(0) = 0, and p € Cy(Qr). There exists
a weak solution u € L°°(Qr) with |u|™ € L*(0,T, H}(Q)) of problem

ue = A(Ju|™ " u) + g(u) = pin Qr,
u=0 ondQx(0,T), (2.7)
u(0)=0 in Q.

Moreover, the comparison principle holds for these solutions: if uy,us are weak solutions of (2.7) when
(1, g) is replaced by (p1,g1) and (u2,92), where pi,p2 € Cp(Qr) with py > pa and g1, g2 have the same
properties as g with g1 < g2 in R then uy > us in Qr.

As a consequence, if u > 0 then u > 0.

Proof of Lemma 2.3.  Set a,(s) = m|s|™ ! if 1/n < |s| < n and a,(s) = m|n|™" L if |s| > n,
an(s) =m(1/n)™ 1 if |s| < 1/n. Also A, () = [ an(s)ds. Then one can find u, being a weak solution to
the following equation

(un)t — div(an (un)Vuy) + g(un) = p in Qp,
up, =0 on 90 x (0,7T), (2.8)
up(0)=0 in Q.

It is easy to see that |uy(x,t)| < t||p||p~q,) for all (x,t) € Qp. Thus, choosing A, (uy) as a test function,
we obtain

190 () st < (T, 10 (2.9)
Qr



Now set ®,,(7) = [ |An(s)|ds. Choosing |A,(un)|¢ as a test function in (2.8), where ¢ € C2!(Qr), we get

the relation in D' () :
(P (un))e — div([An (un) VA (un)) + VAu(un).V[An (un)| + [An (un)]g(un) = [An(un)|p.

Hence,
(@n (wn))el L1 ()4 220,01 (2)) < 1 An () VA (un) | 22 07) + [V An ()|l 20)

{1 An (un)g(un)llr @) + [ An(un) il |1 @r)-

Combining this with (2.9) and the estimate |A, (u,)| < C2(T,[|p]|z= (o)), we deduce that

sup [|(®n (un))tl| L1 (@r)+L200,1,0-1(0)) < 00

On the other hand, since |A, (un)| < |un|an(un) < T[]z ()@n(un), there holds

/ |V<I>n(un)|2d:cdt:/ |An(un)|2|Vun|2d:cdt§T||;L||Loc(9)/ |an (un) [?|Vun 2 dadt
QT QT

Qr

< Tl [ 194 (wn) Pdadt < Co(T. [l o).
T

Therefore, ®,,(u,,) is relatively compact in L!(Qr). Note that

[ B(B)"|sPsign(s) it |s| < 2
e { (m —1)(2)" (Is] — &) sign(s) + 4y (s — (2)") sign(s) if L <[sf <.

So, for every ni,ns > n and [s1], |s2| < T[|pf|z=(0),

1 "
11751 = ol sa] < Calom, Tlllecoy) (5 )+ 180y (51) = B o)

m—+1

Hence, for any € > 0,
1 m m
—||Un1| Uny — |un1| U’"ll > 2e < | {|(I)7l1 (unl) - (I)nz(unz)' > E} |’
m+1
for all ny,ng > (Cy(m, T||/,L||L00(Q))/€)1/m. Thus, up to a subsequence {u, } converges a.e in Qr to a function
u. From (2.8) we can write
f/ upprdrdt — / Ay (up) Apdxdt + / g(un)edrdt = / wdp,
Qr Qr Qr

Qp

for any ¢ € C?(Qr). Thanks to the dominated convergence Theorem we deduce that

—/ ucptdxdtf/ |u|m_1uA<pdzdt+/ g(u)cpdzdt:/ pdj.
QT QT QT QT

8



By Fatou’s lemma and (2.9) we also get |u|™ € L2((0,T); H}(Q)).
Furthermore, by the classic maximum principle, see [29, Theorem 9.7], if {@,} is a sequence of solutions
to equations (2.8) where (g, 1) is replaced by (h,v) such that v € Cy(2r) with v > p and h has the same
properties as g satisfying h < g in R, then, u,, < 4,. As n — oo, we get u < u. This achieves the proof.
[

We first consider the subcritical case.

Theorem 2.4 Let m > % and 0 < g < m—+ % Then problem (1.2) has a very weak solution for any
w € Mp(Qr) and o € Mp(Q).

Proof. We can reduce to the case 0 = 0 by considering 1 = o ® d{;—gy, see proof of Theorem 1.3. Let
{pn} be approximation of p by smooth data, and {u,} be a sequence of solutions of

(un)e = Allun|™ up) + Tn(lunl?™ un) = pp in Qr,
up, =0 on 90 x (0,7),
up,(0)=0 in Q,

From Proposition 2.2, {u,} is bounded in L>((0,T); L*(2)) and in L™+2/N:>(Qr). By equi-integrability,
we get easily that, up to a subsequence, {u,} converges to a very weak solution of (1.1). ]
Next we show the necessary conditions given at Theorem 1.1.

Proof of Theorem 1.1. As in [5, Proof of Proposition 3.1], it is enough to claim that for any compact
K C Qx[0,T) such that u~(K) =0, (67 ® dg4—0})(K) = 0 and Capy; _a_ ,(K) =0 then p*(K) =0 and

PRy
(07 ® dp4=0y)(K) = 0. Let € > 0 and choose an open set O such that (Ju| + |o| ® d{=0})(O\K) < € and
K COCQx(=T,T). One can find a sequence {p,} C C°(0O) which satisfies 0 < ¢, <1, @,| =1 and

on — 0in W2 ¢ (RV*1) and almost everywhere in O (see [5, Proposition 2.2]). We get

qg—m’

/ gondu—i—/ gon(O)da:—/ u(gon)tdacdt—/ |u|m_1uA<pndacdt+/ |u|9  up, drdt
QT Q QT QT QT

< (lullzoary + lullZa@e)lenllwzs . g + / Jul o ddt.
q—m q-1 Qr
Note that

/Q ond + / on(0)do > i () + (o ® o) () — (1] + |0] © 600y )(O\K)

> ,LLJF(K) + (O’Jr & 5{t:0})(K) — €.

This implies

() + (0% © 800 () < (lullsar + e eallzy_ ooy + [ lultpndadt +2.
1 T

Letting the limit we get " (K) + (6F @ (40} )(K) < e. Therefore, u* (K) = (6% @ d{4—0})(K) = 0. [
Next we look for sufficient conditions of existence in the supercritical case ¢ > m + 2/N. The crucial

result used to establish Theorem 1.3 is the following a priori estimates, due to of Liskevich and Skrypnik
[31] for m > 1 and Bogelein, Duzaar and Gianazza [11] for m < 1.



Theorem 2.5 Let m > Y22 and p € Cf (QUr)T. Let u € L (Qp) with u™ € L(0,T, H}, .(Q)) be a weak
solution to equation
ur — A(u™) =p in Qr.

Then there exists C' = C(N,m) such that, for almost all (y,7) € Qp and any cylinder Q,(y,7) CC Qr, there
holds

i.ifm>1

2N

1 . e 1+2N .
uly.m) < C (N—+ /Q o +2Nd:cdt> - lull o (v iz (s, ) + 1+ B (0:7) |
r\Y,T

i, ifm <1,

2N (m+1)
BN = m) I N Tm) )
+ 1+ (I3[l (y, 7)) 7 ¥0

1 2(14+mN)
u(y, ) <C | | w73 /. |u| MOF) dxdt
" Qr(y,s)

As a consequence we get a new a priori estimate for the porous medium equation:

Corollary 2.6 Let m > 222 and p € Cy(Qr). Let u € L (Qr) with [u|™ € L*(0,T, H}(Q)) be the weak
solution of problem

ug — A(ju]™ ) = p in Qr,

u=0 ondQdx(0,T),

u(0) =0 in Q.

Then there exists C = C(N,m) such that, for a.e. (y,7) € Qr,
i. if m>1,

o)) < 0 (V) bl + 1+ Bl 7)) (2.10)

i, ifm <1,

<€ ((BER) ™ s (8 i) ) e.11)

where m1, mo and d are defined in Theorem 1.3.

Proof. Let 2o € 2, and Q = Ba4(z0) % (—(2d)?, (2d)?). Consider the function U € CT(Q), with
U™ € LP((—(2d)?, (2d)?); H} (Baa(wo))) such that U is weak solution of

Up = A(U™) = xarlu|  in Baa(wo) x (—(2d)?, (2d)*),
U=0 on dBaa(xo) % (—(2d)2, (2d)?), (2.12)
U(7(2d>2) =0 in Bgd(l'()).

From Theorem 2.5, we get, for a.e (y,7) € Qr,

2N
1 L T+2N
Uly,7) <1 <—dN+2 /Q - \U|mte~ dxdt) U oo ((r—d2,r+d2): L1 (Ba(e))) + 1+ B 0l](y, 7)
d\y,T

10



if m > 1 and

2N (m+1)
) C=N{A-m)2FN(1+m))

1 2(14+mN) , 2
u(y,7) <C (W[ |u| ¥aFm) dadt +1+ (H% [u](y,T)) 2-N(-m)

Qa(y,s)

if m < 1. By Proposition 2.2, we have

HUlLoo ((r—d2,7+d2): L1 (Ba(v))) < |01(227),
U] > £}] < ea(|ul(@)*F %= weso.

Thus, for any £g > 0,

1 o]
/ U™ ax dadt = (m + —)/ (N LU > 0} |de
Q 0

2N
= (m+ )/éoem+ﬁ—1|{zf>e}|dz+( . )/Ooem+ﬁ—1|{y>e}|dz
—TON ), AN
< cad™ P2 3T (1 (00)

N+2

Choosing {y = (‘”5—2”) mNH, we get
(N £2)(@mN+1)
/ T gt < eoq+2 [ 1LQT)) 2o
Q - v
Thus, for a.e (y,7) € Qr,

Utr) < o ((LIRE) ™ 4 ) + 1+ 50l

if m > 1. Similarly, we also obtain for a.e (y,7) € Qr,

Uly,m) < er ((“‘Lﬁ—?ﬂ)m f1y (Hgdlﬂul](y,r))m) |

if m < 1. By the comparison principle we get |u| < U in Qp, and (2.10)-(2.11) follow. |

Lemma 2.7 Let m > %, and g : R = R be a nondecreasing function, such that g € Cp(R), g(0) = 0,

and let p € My(Qp). There exists a very weak solution u € L¥+™(Qp) of equation (2.7) which satisfies
(2.10)-(2.11) and

/Q lg(w)ldadt < |1 ().

Moreover, the comparison principle holds for these solutions: if ui,us are very weak solutions of (2.7) when
(1, g) is replaced by (u1,g1) and (uz2,g2), where uy, pa € My(Qr) with p1 > pa and g1, g2 have the same
properties as g with g1 < g2 in R then uy > us in Qr.
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Proof. Let {u,} be a sequence in C°(2r) converging to p in My (Qr), such that |u,| < ¢, * |p| and
ln](Q7) < |p|(Q27) for any n € N where {¢,} be a sequence of mollifiers in RN*1. By Lemma 2.3 there
exists a very weak solution u,, of problem

(n)e — A(|un ™ tuy) + g(un) = pn in Qr,
u, =0 on 00 x (0,T),
up,(0)=0 in Q,

which satisfies for a.e (y,7) € Qr,

Qr)\™ ,
ot <0 (LT 4 lut0r) + 14 g B llm)) i1,
Q ma PRy eey] .
7 <€ (LA™ 14 (B I 0im) ) it ms
and
/ VT ([t |™ tug) Pdadt < E|u|(Qr),  VE >0, (2.13)
Qr
{|un| > €} < CLOF—™|u|(Qr) N, V>0, (2.14)

/ lg(un)\dxdt < |pa| ().
Qr

For [ > 0, we consider S; € C%(R) such that
Si(a) = |a|™a, for |a| £1, and Sj(a) = (21)™sign(a), for |a| > 2I.
Then we find the relation in D' (Q7) :
(Si(un))e = div (] () ¥ (fun|™ ) ) + mluen ™ V10 25 (1) + 9(100)S] (1) = S () pin-

It leads to

1(St(wn))ell Loy s p2.mm-1(@) < 1157 (un) V(lunl ™ wn)llz2r) + mlllun] ™ Vun 28] (wa)llp @r)

9 (un)S; ()|t 20y + 1157 (un )l |21 02

Since [ (un)| < Cox(—ar,21(un) and |S; (un)| < Csluwn|™ X (21,21 (un), we obtain

10St(wn))ell @y +L20,7,m-1(2)) < Ca (IIVT(@tym (lun™ " un)l|L2(07) + 9] Loe )| Qr] + |1n] (1)) -
So from (2.13) we deduce that {(S;(u,))¢} is bounded in L*(Qr) + L2((0,T); H~1(2)) and for any n € N,

1081t Dl @y 201y < (D720l (@0) 2 + gl e o2 + 1l @2))

Moreover, {S;(u,)} is bounded in L2(0,T, H}(2)). Hence, {S)(uy)} is relatively compact in L (Q7) for any
I > 0. Thanks to (2.14) we find

{len, ™ty = Juny [ un, | > G < [{luny| > B+ {lun,| > 3B+ {151 (un,) = Siun, )| > £}]

N+2

< 2G5l () T 4 [{ISi(uny) — Si(uny)| > €}

12



Thus, up to a subsequence {u,} converges a.e in Q7 to a function u. Consequently, u € L%er*OO(QT) is
a very weak solution of equation (2.7) and satisfies (2.10)-(2.11). The other conclusions follow in the same
way. [

Remark 2.8 If supp(u) C Qx [a,T] for a > 0, then the solution u in Lemma 2.7 satisfies u = 0 in Q% [0,a).
Now we recall the important property of Radon measures which was proved in [6] and [34].

Proposition 2.9 Let s > 1 and pu € M;(QT). If p is absolutely continuous with respect to Capy 4 o in Qr,
there exists a nondecreasing sequence { i} C M;‘(QT), with compact support in Qp which converges to p

weakly in My(Qr) and satisfies 18[u,) € Li . (RN*L) for all R > 0.

loc

Next we prove Theorem 1.3 in several steps of approximation:

Proof of Theorem 1.3. First suppose m > 1. Assume that p,o are absolutely continuous with
respect to the capacities Capy ; ,» in Q7 and Capg, , in Q. Then 0" @ dpp—oy +pt,0~ @ dgy—gy + pu~ are

absolutely continuous with respect to the capacitiesq Capy 1 o in 2 % (=T,T). Applying Proposition 2.9 to
0" ® Ogy—0y + 1,07 ® dpy—oy + i, there exist two nondecreasing sequences {v1,,} and {vz,} of positive
bounded measures with compact support in  x (—7,7T) which converge respectively to ot ® dfi=0) + ut
and 0~ ®Jyy—qy + 4~ in My(Qx (—7,7)) and such that 1% [vy ,,], 13" [v2 ] € LI(Qx (—T,T)) for all n € N.
By Lemma 2.7, there exists a sequence {tn, ny ki.k, } Of of weak solution of the problems

(un17n2,k17k2>t - A(|un17n2,k1,k2 |m71un17n27k1,kz) + Tkl ((thnQ,kl,kZ)q)
— Tkz((u;,nz,kl,@)q) = U1y — Uz, inQx(=T,T),

Uny ,ng,ky, ko = 0 omn 00 x (7T, T),

un1,n27k17k2(7T) =0 in Q,

which satisfy

i sl € (OO @) 4 @) 414 80]). (219

and

| Dl st [ D07, ) < 20
T T

Moreover, for any n1 € Nyka > 0, {Uny no.ky ks fnoks 1S Don-increasing and for any ne € N,k > 0,
{Un, ny kv ko bry ky 18 MOn-decreasing. Therefore, thanks to the fact that 129 [v ], 13%[vg,] € LI(Q x

(=T,T)) and from (2.15) and the dominated convergence Theorem, we deduce that ty, n, = LUm  Hm wn, .k ks
k1 — 00 kz—)OO

is a very weak solution of
(un1,n2)t - A(|unlan2|m_1unl7n2) + |un1,n2|q_1un17n2 = Ul;ny — VU2,n, in  x (_T’ T)’

Unyng =0 on 0Q x (=T,T),
Unymo(—T) =0 in Q.
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And (2.15) is true when tn, n, ki ks, 1S replaced by ty, n,. Note that {un, n, }n, is non-increasing, {tn, n, fns
is non-decreasing and

/ [tng my |1dzdt < |u|(Qr) ¥V ni,ne € N
Qr

From the monotone convergence Theorem we obtain that v = lim lim wup, », is a very weak solution of
ng—00 N1 —+00

up — A(|u|™ ) + [ul?tu = 0 ® oy + xoppu In Qx (=T,7),
u=0 ondQx (-T,7T),
u(=T)=0 in .
which v = 0in Q x (=7,0) and wu satisfies (??). Clearly, u is a very weak solution of equation (1.1).
Next suppose m < 1. The proof is similar, with the new capacitary assumptions and (??) is replaced by

(??). |

Next, from an idea of [7, Theorem 2.3], we obtain an existence result for measures which present a good
behaviour in time:

Theorem 2.10 Let m > 22, ¢ > max(1,m) and f € L' (Qr), p € My(Qr), such that

lp| Sw® F, for some w € M (Q) and F € L¥*((0,T)).

If w is absolutely continuous with respect to the capacities Capg, o in €, then there exists a very weak
’q

solution to problem
ug — A(Ju|™ ) + |u|u = f +pin Qr,
u=0 ondQx(0,7), (2.16)
u(0) = 0.

Proof. For R € (0, 0c], we define the R-truncated Riesz elliptic potential of a measure v € M; () by

Ri1(g) = RV(BP(QC))@ "
12[]()—/0 7/)1\,72 ) Vr € Q.

By [8, Theorem 2.6],there exists sequence {w,} C M; (€2) with compact support in € which converges to w
in Mp(2) and such that Igdiam(m [wn] € LY™(Q) for any n € N. We can write
frp=m—p2  m=f"+ut, pe=fT4uT,
and pu*,u” Sw® F. We set
e =To(f7) +inf{p we @ To(F)},  pon = Tn(f7) +inf{p™, wy @ Tn(F)}-

Then {1 0}, {p2,n} are nondecreasing sequences converging to p1, pg respectively in My (Qr) and gy p, 2, <

O ® X (0,1, With &, = n(xa + w,) and Igdiam(m [@n] € L9/™(Q). As in the proof of Theorem 1.3, there
exists a sequence of weak solution {un, n, ks .k, } Of equations

(Unl,ng,kl,kg)t - A(|un17n2,k1,k2 |m_1un17n27k1,k2) + Tkl ((u:z_l,nQ,kl,kg)q)
- Tk2((u;1,n2,k1,k2)q) = Mlng = H2,n in 2 x (_T’ T)’

Uny no ki ke = 0 ON 00 x (—T, T),

unl,nz,kl,kQ(*T) =0 in Q.
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Using the comparison principle as in [7], we can assume that

m—1
—Up, < |un1,n27k1,k2| Uny,na,ki,k2 < Unys
where for any n € N, v,, is a nonnegative weak solution of

{ —Av, =@, in Q,

u, =0 on 99,
such that _
v, < cllgdlam(m [@On] VneN.
Hence, utilizing the arguments in the proof of Theorem 1.3, it is easy to obtain the result as desired. ]

It is easy to show that w ® x[o, 1) is absolutely continuous with respect to the capacities Capy; _a_ . in
At
Qr if any only if w is absolutely continuous with respect to the capacities Capg, < in {2. Consequently,
Yg—m

we obtain the following;:

Corollary 2.11 Let m > %, q > max(1,m) and w € My(Q). Then, w is absolutely continuous with
respect to the capacities Capg, _a_ in S if and only if there exists a very weak solution of problem

q—m

ug — A(lu|™ M) + ul? e = w @ xp,7) i Qr,
u=0 ondQx(0,T), (2.17)
uw(0)=0 in Q.

3 p—Laplacian evolution equation
Here we consider solutions in the week sense of distributions, or in the renormalized sense,.

3.1 Distribution solutions

Definition 3.1 Let u € My(Qr), 0 € Mp(2) and B € C(R). A measurable function u is a distribution
solution to problem (3.1) if u € L3(0,T, Wy *(Q)) for any s € {1,1) - NL_H) , and B(u) € L*(Qr), such that

—/ ucptdxdt+/ |Vu|p72Vu.Vg0d:cdt+/ B(u)gﬁd:cdt:/
QT QT QT

el + [ ol0)do
Qr Q

for every ¢ € CL(Q x [0,T)).
Remark 3.2 Let o' € My(Q2) and o’ € (0,T), set w = p+ 0’ @ dy—qry. Let u is a distribution solution to

problem (3.1) with data w and o = 0, such that supp(p) C Q x [a’,T], and u = 0, B(u) = 0 in Q x (0,a’).
Then @ := ulg (o 7y 5 a distribution solution to problem (3.1) in Q x (a/,T) with data p and o’
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3.2 Renormalized solutions

The notion of renormalized solution is stronger. It was first introduced by Blanchard and Murat [10] to
obtain uniqueness results for the p-Laplace evolution problem for L' data u and o, and developed by Petitta
[35] for measure data u. It requires a decomposition of the measure p, that we recall now.

Let Mo (27) be the space of Radon measures in 2 which are absolutely continuous with respect to the
Cp-capacity, defined at (1.4), and M(Q2r) be the space of measures in Qp with support on a set of zero
Cp-capacity. Classically, any p € M;(Qr) can be written in a unique way under the form p = po + ps where
1o € Mo(Qr) N Mp(Qr) and ps € My(Qr). In turn po can be decomposed under the form

po = f—div g+ hy,

where f € L*(Qr), g € (LP (Q7))N and h € LP(0,T; W, P(Q)), see [20]; and we say that (f,g,h) is a
decomposition of pg. We say that a sequence of {u,} in My(£2r) converges to u € My(2r) in the narrow
topology of measures if

lim odp, = / wdp Yo e C(Qr) N L>(Qr).
Qr Qr

n—oo

We recall that if u is a measurable function defined and finite a.e. in Qr, such that Ty (u) € LP(0, T, W, *(Q))

for any k > 0, there exists a measurable function v : Q7 — RY such that VTj(u) = X|u|<k? a.e. in Q7 and
for all £ > 0. We define the gradient Vu of u by v = Vu.

Definition 3.3 Let p > 2]<[v:-11 and p = po + ps € Mp(Qr), o € L1 (Q) and B € C(R). A measurable

function u is a renormalized solution of

ur — Apu+ B(u) = p in Qr,
u=0 on 00 x (0,7T), (3.1)
u(0) =0 in Q,

if there exists a decomposition (f,g,h) of uo such that
s 1,s 0o 1 N
0= e LT W @) N L. TR L), W€ |1 17 ).
Ty(v) € LP((0,T); Wy* () Vk > 0, B(u) € L'(Qr), (32)

and:
(i) for any S € W3>(R) such that S’ has compact support on R, and S(0) = 0,
— [ S(o)p(0)dx —/ oS (v)dadt + S’ (v)|[VulP~2VuV pdadt
Q Qr Qr

—l—/ﬂ S (v)p|VulP~2VuVudrdt + S'(v)pB(u)dxdt :/ (fS'(v)p+g.V(S' (v)p)dzdt  (3.3)

QT QT

for any @ € LP((0,T); Wy P(Q)) N L(Qr) such that o, € LP ((0,T); W5 (Q)) + LY (Qr) and (., T) = 0;
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(ii) for any ¢ € C(Q_T),

1
lim — / ¢|Vu|p72Vqudacdt:/ ddut  and (3.4)
m—o0 M Qr
{m<v<2m}
1
lim — / B\ VulP*VuVudedt = | ¢du; . (3.5)
m—o0 M Qr

{—-m>v>—-2m}
We first mention a convergence result of [7].

Proposition 3.4 Let {y,} be bounded in My(Qr) and {o,} be bounded in L*(Q), and B = 0. Let uy,, be
a renormalized solution of (3.1) with data pn, = fin,o + tn,s relative to a decomposition (fn, gn,hn) of ptin,o
and initial data on. If {fn} is bounded in L*(Q7), {gn} bounded in (L¥ (7)Y and {hn} convergent in
Lr(0,T, Wol’p(Q)), then, up to a subsequence, {u,} converges to a function u in L*(Qr). Moreover, if {u,}

is bounded in L'(Qr) then {uy} is convergent in L*(0,T, Wy *(Q)) for any s € {1,1) - NL_H .
Next we recall the fundamental stability result of [7].

Theorem 3.5 Suppose that p > QNN—fll and B=0. Let o € L'(Q) and

p=f—divg+hy +pul —p; € Mp(Qr),
with f € LY(Qr), g € (LY ()N, h e LP((0,T); WP (Q)) and uf, py € MT(Qr). Let o, € L*(Q) and
tn = fn — divgn + (hn)t + pn — nn € My(Qr),
with  fn € LNQ7), gn € (LX ()N, hyy € LP((0,T); Wy (), and pp,nn € MF(Qr), such that
pn = ph — div P2+ prsy N =10 — div 02 + s,

with ph,ny € LY(Qr), p3, 02 € (L ()N and pps,mn,s € M (Qr).

Assume that {un} is bounded in My(Q7), {on}, {fn}, {gn}, {hn} converge to o, f, g, h in L*(Q), weakly
in LY (Qr), in (LP (Q7))N in LP(0, T, Wy P (Q)) respectively and {pn}, {n.} converge to ut, us in the narrow
topology of measures; and {p}},{ns} are bounded in L*(Qr), and {p2%},{n2} bounded in (LP (Qp))N.
Let {un} be a sequence of renormalized solutions of

(un)t - Apun = HUn n QT,
Up =0 on I x (0,T), (3.6)
un(0) =0, in Q,

relative to the decomposition (f, + p}l — 77711, Jn + p% — 77%, hy) of pno. Let vy, = Uy — hp.

Then up to a subsequence, {u,} converges a.e. in Qr to a renormalized solution u of (3.1), and {v,}
converges a.e. in Qp to v =u — h. Moreover, {Vuv,} converge to Vv a.e in Qrp, and {Tx(v,)} converges to
Ti(v) strongly in LP(0,T, Wy *(Q)) for any k > 0.
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In order to apply this Theorem, we need some the following properties concerning approximate measures
of u € M (Qr), see also [7].

Proposition 3.6 Let i = pio+us € My (1), pro € Mo(Qr)NM; (Qr) and ps € Ms(Qr). Let {10}, {p2.n}
be sequences of mollifiers in RN | R respectively. There exists a sequence of measures jin.o = (fu, gn,bn), such
that fr, G, P, fin.s € C°(Qr) and strongly converge to f, g, h in LY(Qz), (L (Q7))N and LP((0,T); Wy P (Q))
respectively, (i, s converges to s € M;r(QT), and p, = pn,0 + tn,s converges to u, in the narrow topology,
and satisfying 0 < pin, < (P1,nP2,n) * @, and

fnllzr@ry + lgnll Lo @ryyn + Nl Lo rwi e )) + Hns(Qr) < 2u(Qr) for any n e N.

Proposition 3.7 Let = po + ps, fin = Hno + fn,s € M;‘(QT) with (o, tn,o € Mo(27) N M;(QT)
and i s, s € MF(Qr) such that {pu,} is nondecreasing and converges to p in My(Qr). Then, {pn.s} is
nondecreasing and converging to s in My(Qr); and there exist decompositions (f, g, h) of o, (fn,Gn, hn) of
fino such that {fn},{gn},{hn} strongly converge to f,g,h in L*(Qr), (L¥ (Qr))N and LP((0,T); Wy *(Q))
respectively, satisfying

||fn||L1(QT) + Hgnll(Lp/((zT))N + ||hn||LP((07T);W01’p(Q)) + :un,S(QT) <2u(Qr) for any neN.

3.3 Proof of Theorem 1.5

Here the crucial point is a result of Liskevich, Skrypnik and Sobol [30] for the p-Laplace evolution problem
without absorption:

Theorem 3.8 Let p > 2, and p € My(Qr). Ifu e C([0,T); L3, .(Q)) N LY

P (0, T,WLP(Q)) is a distribution
solution to equation

ur — Apu=p in Qr,

then there exists C = C(N,p) such that, for every Lebesgue point (x,t) € Qr of u and any p > 0 such that
Qp,pr(x,t) := By(x) X (t — pP, t+ pP) C Qr one has

1
1 1+X(p—1)
u(z,t)] < C 1+ (—W /Q . |u|<“1><P—”> +Pplul(a,) ] (3.7)
p,pP T
where A = min{1/(p—1),1/N} and

Poul(x,t) =Y Dylpi)(x,t),
=0

1 1l(Qp, 7pr (1))
2(p— 1! Y ’
with p; =27p, Qprpr(x,t) = By(z) x (t — T7pP, t + TpP).

D, (pi)(x,t) = 71—2% {(p _ 2)7_,20%2 .

As a consequence, we deduce the following estimate:

18



Proposition 3.9 If u is a distribution solution of problem
ur — Apu = 1 in Qp,
u=0 on 9Q x (0,T),
u(0) =0 in Q,

with data p € Cp(Qr). Then there exists C = C(N,p) such that for a.e. (z,t) € Qr,

Q e
el <0 (104 (L) 4B ) (3.5
where mg and D are defined at (1.6).

Proof. Let xp € Qand Q = Bap(zo)x(—(2D)P, (2D)?). Let U € C(Q)NLP((—(2D)?, (2D)P); Wol’p(BgD(:co)))
the distribution solution of

Ui— AU = xar il 0@,
u=0 on OBap(xg) X (—(2D)P, (2D)P), (3.9)
u(—(2D)?) =0 in Bap(xo),

where for zg € Q. Thus, by Theorem 3.8 we have, for any (z,t) € Qr,

1

1 1+X(p—1)

Uz, t)<e |1+ (DN+P/ |U|(/\+1)(;D—1)> + Pl (z,t) |, (3.10)
Qp,pr(z,t)

where Qp, pe(x,t) = Bp(z) x (t — DP, ¢+ DP).
According to Proposition 4.8 and Remark 4.9 of [7], there exists a constant Cy > 0 such that

p+N

{IUI > 8] < ea(|ul(Qr)) ¥

(P w Ve > 0.

Thus, for any £g > 0,

/|U|<A+1><p-1>dxdt=(A+1)(p—1)/ (OFDE-D-1(7] > ¢}|de
Q 0

eo o0
— (A1) 1) / (ORE=D-1 (17| > g}]de + (A + 1)(p— 1) / (OFDE-D1(117| > £} de
0 Lo

< egDNFPIRTIETY o VO TIER () (0)) R

N+p
Choosing £y = (W\é_%ﬂ) TN e get
(@) EE
/Q|U|(/\+1)(p1)d:cdt < e DNP (“DiNT> , (3.11)
Next we show that
PR(u)(z,t) < (p = 2)D + s3] (. ). (3.12)
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Indeed, we have 3
1 [l (@p, (1))
2(p—1)p~! pN

Dy(pi)(z,t) < (p—2)pi +

where p; = 27°D. Thus,

1 o |1l (Qp, (2, 1))
P u)(z,t) < (p—2)D + 2(p — L)p—1 ;) pY
| pl(@p (1)) dp.

S(p*Q)DJFCs/ T

0 P
So from (3.11), (3.12) and (3.10) we get, for any (z,t) € Qr,

|U(z,t)| < C (1 + D+ (%)ms +H§D[|u|](x,t)> .

By the comparison principle we get |u| < U in Qp, thus (3.8) follows. ]

Proposition 3.10 Let p > 2, and u € My(Qr), 0 € Mp(R). There exists a distribution solution u of
problem
ur — Apu =g in Qr,

u=0 ondQx(0,T), (3.13)
u(0) = o.
which satisfies for any (x,t) € Qrp
al() + |p|(Qr)\™
lu(z,t)| < C (1 + D+ (%) + 37 [|o| ® Sgimoy + |1l] (x,t)) : (3.14)

where C = C(N,p). Moreover, if o € L*(Q), u is a renormalized solution.

Proof. Let {¢1.,}, {¢2.n} be sequences of standard mollifiers in R and R. Let = g+ ps € Myp(Q7),
with pg € Mo(Qr), us € Ms(Qr). By Lemma 3.6, there exist sequences of nonnegative measures fin, 0, =
(Fris Gni» Pnyi) and pin s such that fi, gni, hni € C°(Qr) and strongly converge to some f;, ¢;, h; in
LY(Qq), (L ()N and LP((0,T); Wy P(Q)) respectively, and fin 1, fin 2, fin.s1s fins2 € C°(Qr) converge
to ut, u™, put, py in the narrow topology, With fiy, i = im0, + fin,s,i, for i = 1,2, and satisfying

pg = (f1,91.h1), g = (f2,92,h2) and 0 < pin1 < (Prn@2n) * 11,0 < pina < (P1,np20) * 1

Let 01 n,02., € C(Q), converging to ot and o~ in the narrow topology, and in L*(Q) if o € L(Q), such
that
0< 01 <prnx0,0< 00, <@rpxo .

Set fin, = ptn1 — fn2 and op = 01,5 — O2 5.
Let u,, be solution of the approximate problem

(un)t - Apun = Hn in QT;
u, =0 on 0Q x (0,7T), (3.15)
un(0) = 0, on Q.
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Let gnm(x,t) = on(x) ij Y2.m(s)ds. As in proof of Theorem 2.1 in [34], by Theorem 3.5, there exists a
sequence {Up m }m of solutions of the problem

(un,m)t - A;D'Uln,l,’m = (gn,m)t + XQr Hn in £ x (_Ta T)a
Un,1m =0 ondQx (=T,T), (3.16)
Unm(—=T) =0 on Q,

which converges to u, in Q x (0,7). By Proposition 3.9, there holds, for any (z,t) € Qr,

nl(27) + (1] @ 93,) (2 X (=T, T>>)"“ + B[

[t (2, 8)| < C (1 +D+ ( DN

inl + o] ® m,m]u,t)) .

Therefore

g (2, 8)] < C (1 + D4+ (Iun|(QT) + (o] (Xl))fvz,m)(ﬂ x (T, T)))’"S)

+ C(p1np2m) * 37 [l + |o| ® by (2, ).
Letting m — oo, we get

Qr) + |oa|
DN

ms
untart) < € (14 D+ (L ) o catn ) B2l + 1ol 9 ol 0) o),
Therefore, by Proposition 3.4 and Theorem 3.5 , up to a subsequence, {u,} converges to a distribution
solution u of (3.13) (a renormalized solution if o € L*(£)), and satisfying (3.14). |
Proof of Theorem 1.5. Step 1. First, assume that o € L'(Q). Because yu is absolutely continuous
with respect to the capacity Capy 4, so are ut and p~. Applying Proposition 2.9 to u, 4™, there exist
two nondecreasing sequences {1} and {u2,} of positive bounded measures with compact support in Qr
which converge to u* and p~ in M, (Q27) respectively and such that 13°[u1 ], 132 [ua,n] € LI(Qr) for all
n € N.
For i = 1, 2, set ,LNLZ'J = Hi,1 and ﬂi,j = Mi,j — Hij—1 Z 0, SO Uin = Z?:l ﬂi,j' We write

Wi = Hin,0 + Min,s, fij = fij,0 + fijs, WIth (5.0, fino0 € Mo(Qr), tin,s, fin,s € Ms(Qr).

Let {¢m} be a sequence of mollifiers in RN¥*1. As in the proof of Proposition 3.10, for any j € N and
i = 1,2, there exist sequences of nonnegative measures fim.,i ;0 = (fm.,ij»Gm.ijsPm,ij) and fm s such
that fon i, Gmijs hmij € C°(Qr) strongly converge to some fi j, gij,hi; in L'(Qr), (LP (7)Y and
LP(0,T, Wy P(Q)) respectively; and fim i j, fim.ij.s € C(Qr) converge to fi;;, flij.s in the narrow topol-
Ogy Wlth [Lm,i,j = ﬂm,i,j,O —+ ,[Lm,i,j,sa Wthh satisfy ‘LNLiyj_’O = (fi,j;gi,j; hi,j)a and

0 < fimij < @m * iy form,i i (1) < 5 (),

[ fm.isller ey + 19midll o @z + Wm.iill oo, wiw )y + Hmiig.s(Qr) < 275 (D). (3.17)
Note that, for any n,m € N,
Z(ﬁm,l,j + fim,2,5) < ©m * (P10 + p2,n) and Z(ﬁm,l,j(QT) + fim,2,5(27)) < |p|(Q7).
j=1 j=1
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For any n,k,m € N, let up i m, Un,k,m € W be solutions of problems

(un,k,m>t - Apun,k,m + Tk(|un,k,m|qilun,k,m> = Z?:l(ﬂﬂ%l,j - [Lmﬁgyj) in QT7
U oym = 0 on 90 x (0,7T), (3.18)
Un kem(0) =Ty (o) = T(c™) on Q,
and
('Un,k,m)t - Ap'Un,lc,m + Tk(vi7k7m> = Z;‘l:l(ﬂm,l,j + ﬂm,?,j) in QT,
Un kym = 0 on 90 x (0,T), (3.19)
Unk,m(0) = Tn(lo]) on Q.

By the comparison principle and Proposition 2.9 we have for any m, k the sequences {vp k.m }n is increasing
and

W) ) + 137 [T (lo]) ®5{t—0ﬂ>

+ c1om * 132 [u1.n + p2n] -

|un,k,m| S Un,k,m S C1 (1 + D + (

Moreover,

/ To(v . )dwdt < |ul(©r) + |o](©).
Qr

As in [7, Proof of Lemma 6.4], thanks to Proposition 3.4 and Theorem 3.5, up to subsequences, {tn k,m }m
converge to a renormalized solutions wy, ; of problem

(un,k)t - A;Dun,k + Tk(|unak|q_1un,k) = Hin — M2n in QT;
Upk =0 on 02 x (0,7,
Un,k(o) = Tn(o+) - Tn(o'i) on (2,

relative to the decomposition (Z?:l fl,j 72?:1 f2,ja E?:l 91,]' 72?:1 gQ,jﬂ E?:l hl,j 72?:1 h21j) Of /Ll,n,Of
12.0,0; and {Vp k. m }m converge to a solution v, j of

(n k)t = Dpvn g + T (v} ) = pr1n + p2n in Qr,
Upk =0 on 02 x (0,7,
Unk(0) =Ty (lo]) on €.

relative to the decomposition (37, f1,;+3 271 f2,5, 21 91,5+ 2 j=1 9235 2jm1 P+ 25—y h2,j) of 1m0+
H2.5.0. And there holds

|o(€) + |ul

Q s
unsd < v <€ (14 D+ (OO0 (1, 01) 0.602] ) + CB i+ ]

Observe that 13°[u1,, + p2.,] € LY(Qr) for any n € N. Then, as in [7, Proof of Lemma 6.5], thanks to
Proposition 3.4 and Theorem 3.5, up to a subsequence, {un i} {vn k}x converge to renormalized solutions
Uy, Uy Of problems

(un)t - Apun + |un|q_1un = Hi,n — H2,n in QT;

Up =0 on 99 x (0,7T), (3.20)

Un(o) = Tn(o+) - Tn(o—i) in Q,
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()t — Apvp + V) = p1,n + pl2n in Qr,
v, =0 on 02 x (0, T), (3_21)
ve(0) =T,(Jo]) in £,

which still satisfy

Q)+ |pl(Qr)\™

and the sequence {vy,}, is increasing and
[ otdedt <|ul(@r) + lol(®.
Qr

Note that from (3.17) we have

||fi7j||L1(QT) + HgiJ”(LP’(QT))N + ||hi7]—||LP(01T1W01’p(Q)) < 2f;,5(Qr),

which implies

1>~ fiiller@ey + 1 gl ey~ + I Zhi,j”LP(O,T,WOl'T)(Q)) < 215 (1) < 2|pl(Qr).

Jj=1 Jj=1 Jj=1

Finally, as in [7, Proof of Theorem 6.3], from Proposition 3.4, Theorem 3.5 and the monotone convergence
Theorem, up to subsequences {up }n, {vUn}n converge to a renormalized solutions u, v of problem

u — Apu+ |u|Tu=p in Qp,
u=0 on 02 x (0,7,
u(0) =0 in Q,

relative to the decomposition (377 f1,j — D272 fo,55 D501 01,5 — Die1 92,45 2o gy P1g — 252y hayj) of po.
And

v — Apv+ [T o = |u| in Qr,

v=20 on 082 x (0,7,

v(0) = o] in Q,
relative to the decomposition (Z_C;il fl,j + Z_C;il f2.,j7 Z_C;il 91,5 + Z_C;il 92,5, Z]Oil hl,j + Z_C;il hgyj) of |/L0|
respectively; and

al(Q) + |u|(Qr)\™
zvze(ips (POEBON o s )

Remark that, if ¢ = 0 and supp(u) C Q x [a,T], a > 0, then u = v = 0in Q x (0, a), since Uy = vy = 0 in
Q% (0,a).

Step 2. We consider any 0 € M;(Q) such that o is absolutely continuous with respect to the capacity
Capg, o In€2. So, u+0®d;=0y is absolutely continuous with respect to the capacity Cap, ; , in {2x (=T,T).

q
As above, we verify that there exists a renormalized solution u of

uy — Apu+ u|i u = xopp+ 0 @ p—oy in Qx (=T,T)
u=0 on 90 x (=T1.T),
u(=T)=0 on £,
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satisfying w = 0 in Q x (—T7,0) and (1.5). Finally, from Remark 3.2 we get the result. This completes the
proof of the Theorem. ™
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