Local and global estimates of solutions of Hamilton-Jacobi parabolic equation with absorption - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Local and global estimates of solutions of Hamilton-Jacobi parabolic equation with absorption

Résumé

We obtain new a priori estimates for the nonnegative solutions of the equation \[ u_{t}-\Delta u+|\nabla u|^{q}=0 \] in $Q_{\Omega,T}=\Omega\times\left( 0,T\right) ,$ $T\leqq\infty,$ where $q>0,$ and $\Omega=\mathbb{R}^{N},$ or $\Omega$ is a smooth bounded domain of $\mathbb{R}^{N}$ and $u=0$ on $\partial\Omega\times\left( 0,T\right) .$ In case $\Omega=\mathbb{R}^{N},$ we show that any solution $u\in C^{2,1}(Q_{\mathbb{R}^{N},T})$ of equation (1.1) in $Q_{\mathbb{R}^{N} ,T}$ (in particular any weak solution if $q\leqq2),$ without condition as $\left\vert x\right\vert \rightarrow\infty,$ satisfies the universal estimate \[ \left\vert \nabla u(.,t)\right\vert ^{q}\leqq\frac{1}{q-1}\frac{u(.,t)}% {t},\qquad\text{in }Q_{\mathbb{R}^{N},T}. \] Moreover we prove that the growth of $u$ is limited by $C(t+t^{-1/(q-1}% )(1+\left\vert x\right\vert ^{q^{\prime}}),$ where $C$ depends on $u.$ We also give existence properties of solutions in $Q_{\Omega,T},$ for initial data locally integrable or even unbounded Radon measures. We give a nonuniqueness result in case $q>2.$ Finally we show that besides the local regularizing effect of the heat equation, $u$ satisfies a second effect of type $L_{loc}^{R}% -L_{loc}^{\infty},$ due to the gradient term.
Fichier principal
Vignette du fichier
Bidaut-Veron-apriori-estimates-11-07-14.pdf (252.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01020161 , version 1 (07-07-2014)
hal-01020161 , version 2 (11-07-2014)

Identifiants

Citer

Marie-Françoise Bidaut-Véron. Local and global estimates of solutions of Hamilton-Jacobi parabolic equation with absorption. 2014. ⟨hal-01020161v2⟩
107 Consultations
102 Téléchargements

Altmetric

Partager

More