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Local and global estimates of solutions of Hamilton-Jacobi
parabolic equation with absorption

Marie Francoise BIDAUT-VERON

Abstract
Here we show new apriori estimates for the nonnegative solutions of the equation

ug — Au+ |[Vul?=0

in Qo7 =0 x (0,T), T < oo, where ¢ > 0, and Q = RY | or  is a smooth bounded domain of
RY and u = 0 on 9Q x (0,7).

In case Q = RY, we show that any solution u € C?!(Qg~ 7) of equation (1.1) in Qgv 7 (in
particular any weak solution if ¢ £ 2), without condition as |x| — oo, satisfies the universal
estimate

V(g LD,
q—1 t
Moreover we prove that the growth of u is limited by C(t+¢~1/(@=1)(1+ |z|? ), where C' depends
on u.

We also give existence properties of solutions in Qq 7, for initial data locally integrable or
unbounded measures. We give a nonuniqueness result in case ¢ > 2. Finally we show that besides
the local regularizing effect of the heat equation, u satisfies a second effect of type L{Ec - LS,
due to the gradient term.

in Q]RN T~

Keywords Hamilton-Jacobi equation; Radon measures; initial trace; universal bounds.,

regularizing effects.
A.M.S. Subject Classification 35K15, 35K55, 35B33, 35B65, 35D30
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1 Introduction
Here we consider the nonnegative solutions of the parabolic Hamilton-Jacobi equation
u —vAu+ [Vul|? =0, (1.1)

where ¢ > 1, in Qo7 = 2 x (0,7") , where Q is any domain of RN, v € (0,1]. We study the problem
of apriori estimates of the nonnegative solutions, with possibly rough unbounded initial data

u(z,0) = ug € MHT(Q), (1.2)

where we denote by M () the set of nonnegative Radon measures in €2, and M, (2) the subset
of bounded ones. We say that u is a solution of (1.1) if it satisfies (1.1) in Qgq, 7 in the weak sense
of distributions, see Section 2. We say that u has a trace ug in M™T(Q) if u(.,t) converges to ug in
the weak™* topology of measures:

lim [ u(., t)dx = / Wdug, Vi € Co(Q). (1.3)
Q

t—0 Q

Our purpose is to obtain apriori estimates valid for any solution in Qqr = Q x (0,7"), without
assumption on the boundary of €2, or for large |z| if Q = RY.

Fisrt recall some known results. The Cauchy problem in Qgn~ 1

ug — vAu+ |Vul? =0, in Qgx 7,
(Prv 1) { u(z,0) = ug in RV, (1.4)

is the object of a rich literature, see among them [2],[9], [5], [11], [26],[12], [13], and references
therein. The first studies concern classical solutions, that means u € 02’1(QRN’T), with smooth
bounded initial data ug € Cg (RN ): there a unique global solution such that

[ Ol oo @y = ol ooy > and V(. 0| poo @y = Vol oo (mrvy » in Qv 1,

see [2]. Then universal apriori estimates of the gradient are obtained for this solution, by using the
Bersnstein technique, which consists in computing the equation satisfied by |Vu|? : first from [23],

u oo
[V D)1y S ol

RN =
in Qgn 7, , then from [9],
V(. b < —— 2! (15)
*9 = q _ 1 t bl N
g—1 _ g=1
HV(U ? )('7t)HL°°(RN) =Ct 1/2Hu0HLgo(RN)7 C= C(N=Q=V)- (1'6)

Existence and uniqueness was extended to any ug € Cy, (RY) in [20]; then the estimates (1.6) and
(1.5) are still valid, see [5]. In case of nonnegative rough initial data uy € L% (RN ) , R =1, or
ug € M (RY), the problem was studied in a semi-group formulation [9], [11], [26], then in the



larger class of weak solutions in [12], [13]. Recall that two critical values appear: ¢ = 2, where the
equation can be reduced to the heat equation, and

~N+2

A
Indeed the Cauchy problem with initial value ug = xdg, where g is the Dirac mass at 0 and & > 0,
has a weak solution u"” if and only if ¢ < g, see [9], [12]. Moreover as k — oo, (u") converges to a

unique very singular solution Y, see [25], [10], [8], [12]. And Y (x,t) = t=%?F(|z| /\/t), where

24
_ 1.7
et (17)

and F' is bounded and has an exponential decay at infinity.

In [13, Theorem 2.2] it is shown that for any R > 1 global regularizing L¥-L> properties of
two types hold for the Cauchy problem in Qg~ 1 : one due to the heat operator:

_N
HU(,t)HLoo(RN) § Ct 2R ||u0HLR(RN)? C = C(N, R, V), (18)

and the other due to the gradient term, independent of v (v > 0):

qR

- N “BIN(a—D
e )l e vy < O TG g TEXET, € = C(N,q, R). (19)
A great part of the results has been extended to the Dirichlet problem in a bounded domain
Q:
u —Au+ |Vul? =0, in Qqor,
(Por)S u=0, on 90 x (0,7T), (1.10)
u(z,0) = ug,

where ug € M;"(2), and u(.,t) converges to ug weakly in M;"(2), see [6], [26], [12], [13]. Universal
estimates are given in [16], see also [12]. Note that (1.5) cannot hold, since it contradicts the Hopf
Lemma.

Finally local estimates in any domain € were proved in [26]: for any classical solution u in Qq 7
and any ball B(xo,2n) C €2, there holds in Qp(yyn),T

Vul () SCE T +7 40 7)1 +ul,t), C=C(N,qv). (1.11)

1.1 Main results

In Section 3 we give local integral estimates of the solutions in terms of the initial data, and a first
reqularizing effect, local version of (1.8), see Theorem 3.3.

Theorem 1.1 Let ¢ > 1. Let u be any nonnegative weak solution of equation (1.1) in Qqr, and
let B(zo,2n) CC Q such that u has a trace ug € LE (Q), R =1 and u € C([0,T); LE (Q)). Then
forany0<t<71<T,

sSup u(x’t) é Ct_%(t + HUOHLR(B(xO 77))’ C= C(Naq, v, R,U’T)'
x€B(x0,m/2) ’

If R = 1, the estimate remains true when uy € M™T(Q) (with [woll L1 (B(xo,m) TePlaced by fB(xo ) Quo).



In Section 4, we give global estimates of the solutions of (1.1) in Qg 1, and this is our main

result. We show that the universal estimate (1.5) in RN holds without assuming that the solutions
are initially bounded:

Theorem 1.2 Let ¢ > 1. Let u be any classical solution, in particular any weak solution if
q = 2, of equation (1.1) in Qgn p. Then

1 wu(.,t)
a<_ - U
[Vu(., )| < 1

mn Q]RN,T' (112)

And we prove that the growth of the solutions is limited, in \x!q/ as |x| — oo and in t~1/(@=1)
as t — 0:

Theorem 1.3 Let ¢ > 1. Let u be any classical solution, in particular any weak solution if
q = 2, of equation (1.1) in Qgn 1, such that there exists a ball B(xo,2n) such that u has a trace
ug € MH((B(xg,2n)). Then

1 ’ _ 1
U(,I,t) § C(q)tiﬁ |$ - x0|q + C(t =t 41 +/ duO)’ C= C(N,q,n) (113)
B(zo,m)
In [14], we show that there exist solutions with precisely this type of behaviour of order

t~1/(a=1) |:c|ql as |z|] — oo or t — 0. Moreover we prove that the condition on the trace is
always satisfied for ¢ < gy.

In Section 5 we complete the study by giving existence results with only local assumptions on
up, extending some results of [5] where ug is continuous, and [11], [13], where the assumptions are
global:

Theorem 1.4 Let Q = RY (resp. Q bounded,).

(i) If 1 < q < qx, then for any ug € M™ (]RN) (resp. M™(Q)), there exists a weak solution u
of equation (1.1) (resp. of (Dq,r)) with trace .

(ii) If g < q < 2, then existence still holds for any nonnegative ug € L}, (RN) (resp. L} . (Q)).
And then uw € C([0,T); L}, (RY) (resp. w € C([0,T); L}, ().

loc loc
(iti) If q > 2, existence holds for any nonnegative ug € L}, (RY) (resp. L}, (Q)) which is
limit of a nondecreasing sequence of continuous functions.

Moreover we give a result of nonuniqueness of weak solutions in case ¢ > 2 :
Theorem 1.5 Assume that ¢ > 2, N > 2.Then the Cauchy problem (Pgx o) with initial data

N—l)q—N))ﬁ

S0 Gl s _a—1(
Ux) =Clz" e C (RY), C=

admits at least two weak solutions: the stationary solution U, and a radial self-similar solution of
the form
U, t) =t f(|z] V), (1.14)

where f is increasing on [0,00), £(0) > 0, and lim, ., n~19"2f(n) = C.



Finally we give in Section 6 a second type of regularizing effects giving a local version of (1.9).

Theorem 1.6 Let ¢ > 1, and let u be any nonnegative classical solution (resp. any weak solution
if ¢ < 2) of equation (1. 1) in Qar, and let B(zg,2n) C Q. Assume that ug € L (Q) for some
RZ21,R>q—1, and u € C([0,T);LE (Q)). Then for any e > 0, and for any 7 € (0,T), then

loc

there exists C = C(N,q, R,n,e,7) such that

___ N __Rg —
supg, yu(.+t) < C TN (1 -+ [Jug|l s, TN + O [lug| S5 (115)

If g < 2, the estimates for R =1 are also valid when u has a trace ug € M (Q), with HuoHLl(Bn)

replaced by an dug.

In conclusion, note that a part of our results could be extended to more general quasilinear
operators, for example to the case of equation involving the p-Laplace operator

u — vApu + |Vul! =0

with p > 1, following the results of [13], [4], [21], [19].

2 Classical and weak solutions
We set Qq,sr = Q x (s,7), for any 0 < s < 7 = 00, thus Qo7 = Qo0.7-

Definition 2.1 Let ¢ > 1 and Q be any domain of RY. We say that a nonnegative function u
is a classical solution of (1.1) in Qo if u € C*(Qqr). We say that u is a weak solution
(resp. weak subsolution) of (1.1) in Qar, if u € C((0,T); L}, .(Qa,r)) N Li,.((0,T); VVlOc (Q)),
|Vul? € L}, .(Qar) and u satisfies (1.1) in the distribution sense:

T
/ /(—utpt —vulp + |Vullp) =0, Vo € D(Qa,r), (2.1)
0 Jo
(resp.
T
| [ (cue—vuse+ 19upo) S0, Ve e D Qar).) (2:2)

And then for any 0 < s <t <T, and any ¢ € C1((0,T),CL(Q)),

/Q(wp)(., 5 - /Q(W / / (—upy + VY0V + [Vul'p) = 0 (resp. < 0). (2.3)

Remark 2.2 Any weak subsolution w is locally bounded in Qqor. Indeed, since u is v-subcaloric,
there holds for any ball B(zg,p) CC Q and any p> <t < T,

sup u< C(N,v)p~ N+ / / u. (2.4)
2 — £ JB(zo,p)

B(xo,5)% [tf%,t]

Any nonnegative function u € L}, (Qar), such that |Vul|? € L}, (Qar), and u satisfies (2.1), is a
weak solution and |Vu| € L2 (Qar)),u € C((0,T); L; (Qa,r)),Vs = 1, see [12, Lemma 2.4)].



Next we recall the regularity of the weak solutions of (1.1) for g < 2, see [12, Theorem 2.9], [13,
Corollary 5.14]:

Theorem 2.3 Let1 < g < 2. Let Q be any domain in RN . Let u be any weak nonnegative solution
of (1.1) in Qqor. Then u € CQ+7’1+7/2(QQ7T) for some v € (0,1), and for any smooth domains

loc

wCCw CCQ and0<s <7 <T, [|ullgesrivrzq,, ) i bounded in terms of [lull (g , )
Thus for any sequence (un) of nonnegative weak solutions of equation (1.1) in Qqr, uniformly

locally bounded, one can extract a subsequence converging in CIQ()’CI(QQT) to a weak solution u of

(11) m QQ7T.

Remark 2.4 Let ¢ > 1. From the estimates (1.11), for any sequence of classical nonnegative
solutions (uy) of (1.1) in Qq,r, uniformly bounded in L;S (Qqr), one can extract a subsequence
converging in CIQO’CI(QRN,T) to a classical solution w of (1.1).

Remark 2.5 Let us mention some results of concerning the trace, valid for any q > 1, see [12,
Lemma 2.14]. Let u be any nonnegative weak solution w of (1.1) in Qqr. Then u has a trace ug

in M*(Q) if and only if u € L52.([0,T); L}, (), and if and only if |Vu|? € L}, .(Q x [0,T)). And

loc loc

then for any t € (0,T), and any ¢ € Ccl(Q x [0,T)), and any ¢ € C’Cl(Q),

/Qu(.,t)wdx + /Ot /Q(—uapt +vVu.Vo + |Vu|lp) = /Qap(.,O)duo, (2.5)

t
a0y —
/Qu(.,t)<+/0 /Q(uvu.vg+|w| ()_/diuo. (2.6)
If ug € L}, (), then u € C([0,T); Li,.(Q)).

Finally we consider the Dirichlet problem in a smooth bounded domain :

u — Au+ |Vul! =0, in Qqr,

(Da.r) { u=0, ondQx(0,T). 27)

Definition 2.6 We say that a function u is a weak solution of (Dqr) if it is a weak so-
lution of equation (1.1) such that uw € C((0,T); L' (Q)) N L} ((O,T);V[/'Ol’1 (Q)), and |Vul|? €

loc

LL.((0,T); L* (). We say that u is a classical solution of (Do,r) if u € C*H(Qar)NCHY (2 x (0,T)).

3 Local integral properties and first regularizing effect

3.1 Local integral properties

Lemma 3.1 Let Q be any domain in RY, ¢ > 1, R > 1. Let u be any nonnegative weak subsolution
of equation (1.1) in Qq.r, such that u € C((0,T); LE (Q)). Let £ € C((0,T); CL(2)), with values

loc

in [0,1]. Let A > 1. Then there exists C = C(q, R, \), such that, for any 0 < s <t =71 <T,
1 (/7 -1 (7
fou 06+ 5 [ [ am a4 Tt [ ungape
s JQ s Q

t t
< fQuR(.,s)§A+)\R/ /QuR£>‘_1|£t|+C/ /QuR—lgk—q/Naq’. (3.1)




Proof. (i) Let R = 1. Taking ¢ = &* in (2.3), we obtain, since v < 1,

/Qu(.,t)gu/t/ Ve §/u(s,.)g)‘+)\/t/5)‘_1u£t+)\l//t/§>‘_1Vu.V£
< [, @H//g“ &l + 2 //Wuﬁ&ucq, //@waq

hence (3.1) follows.

(ii) Next assume R > 1. Consider us,, = ((u + J) * ¢y, ), where (p,) is a sequence of mollifiers,
and § > 0. Then by convexity, us, is also a subsolution of (1.1):

(Usn)t — VAUs p + [Vus,|? S 0.

Multiplying by uf; LeA and integrating between s and ¢, and going to the limit as & — 0 and
n — 0o, see [13], we get with different constants C' = (N, ¢, R, \), independent of v,

/ T +v(R _1// TP+ // P
/ £A+A// gMRyg\HV// ] [TE
/ §A+A//§A13’§‘

+§/s /Q“Rl\vu!quC(A,R)/S /Qum@q/‘wq,’

and (3.1) follows again. n

A ==

I
o= ==

Then we give local integral estimates of u(.,t) in terms of the initial data:

Lemma 3.2 Let ¢ > 1. Let n > 0. Let u be any nonnegative weak solution of equation (1.1) in
Qa,r, with trace ug € MT(Q), and let B(xo,2n) CC Q. Then for any t € (0,T),

/ u(z,t) < C(N, )Vt +/ duy. (3.2)
B(zo,n) B(x0,2n)
Moreover if ug € L (Q) (R > 1), and u € C([0,T); LE_(2)), then
[ Ol L (B my) = C NG, Ryt + luoll Lr(B(zo,2n)) - (3.3)
If u € C(B(x0,2n) x [0,T)), then
1w ) oo (Blaomy) = CON @MVt + 0| oo (8o 20)) - (3.4)

Proof. We can assume that 0 € Q and 9 = 0. We take & € C}(Q), independent of ¢, with
values in [0,1], and R =1in (3.1), A =¢'. Then for any 0 < s <t < T,

[utner 3 [ [1vurer < [utoe sow [ [ 1ver < [utoel +car [ wer.

7



Hence as s — 0, we get

[utne’+3 [ t [ vure’ < c@e [ verr+ [ e aw. (3.5)

Then taking £ = 1 in B,, with support in By, and |V¢| < Co(N)/n,

/ u(z,t) £ C(N, @)Vt + £7 duy, (3.6)
By Bay

hence we get (3.2). Next assume ug € L (Q) (R > 1), and v € C([0,T); LE (Q)). Then from

loc loc

(3.1), forany 0 < s <t <7 < T, we find,
1 (7 t ) )
fQuR(.,t)fA—{—§/ /uR1|Vu|q£>\ éfQUR(-,S)gA‘F/ /ungAq |v£|q
s Q s JQ
t ¢
< Jou"(L8)€* + ¢ / / w47 h / R |vg| R
s Bay, s Bay,

Taking A = Rq’, and £ as above, we find
t / /
/ ufi(, e < / Wi 8)E™ e / / Wl 4 RO GG (N1,
Bay, Bay, s JBay
Next we set w(t) = SUPg s, f32n UR(.7O')§Rq/. Then
() S [ )™ el - )m(t) + RO (N
Bay,

Taking € = 1/2t, we get

7!

2 /B

Then going to the limit as s — 0,

ufi(, 1R < / uB(,$) + C(N)CES (NN B R

2n B2n

/ ult(z,t) < C(N)CF (NN~ 1 417 1 / uftehe (3.7)
By Bay

thus (3.3) follows.
If u € C(Bg, x [0,T)), then (3.7) holds for any R = 1, implying

1 ' N_
lul, Ol Lrs,) = CTN)CE (N)nE =Tt + [[uoll Lr(s,,) »

and (3.3) follows as R — oo. ]



3.2 Regularizing effect of the heat operator

We first give a first regularizing effect due to the Laplace operator in Qq 7, for any domain (2, for
classical or weak solutions in terms of the initial data.

Theorem 3.3 Let ¢ > 1. Let u be any nonnegative weak subsolution of equation (1.1) in Qq,r,
and let B(xg,2n) C Q such that u has a trace ug € M™(B(z0,2n)). Then for any 7 < T, and any
te(0,7],

sup  u(zx,t) < Ct_%(t + / duyg), C =C(N,q,v,n,T). (3.8)
z€B(z0,n/2) B(zo,m)
Moreover if ug € LE () (R > 1), and u € C([0,T); LE (Q)), then
N
sup u(x’t) § Ctiﬁ(t_i_ HUOHLR(B(mO,n)))? C= C(N’q’ v, R’U’T)‘ (39)

x€B(z0,m/2)

Proof. We still assume that o =0 € . Let £ € Ccl(Bgn) be nonnegative, radial, with values in
[0,1], with £ =1 on By, and |V&| = Cy(IV)/n. Since u is v-subcaloric, from (2.4), for any p € (0,7)

such that p? <t < T,
¢
sup u(.,t) = C(N, V)p_(N+2)/ / u, (3.10)
B t—p2/4J B,

n/2

hence from Lemma 3.2,

sup u(.,t) < C(N,q,v)p N (N7t —i—/B duy).

By /2 2n

Let kg € N such that kyn?/2 = 7. For any ¢t € (0,7], there exists k € N with & < kg such that
t € (kn?/2,(k + 1)n?/2] . Taking p* = ¢/(k + 1), we find

sup, ,u(t) < C(N,q,v) (ko +1) 2t (N7t + /B duo)

2n

< CWLg ) E + 0 E 0 [ ), (3.11)
B

2n

Thus we obtain (3.8). Next assume that u € C([0,T); LE (Ba,)), with R > 1. We still approximate
u by us, = (u+9) * ¢, where (¢,) is a sequence of mollifiers, and ¢ > 0. Since u is v-subcaloric,

then u5Rn is also v-subcaloric. Then for any p € (0,7) such that p?> <t < 7, we have

t
SuanM”ﬁn("t) = C(N, V)pi(NjLQ) /t 2/4/]3 /2 u(]fn’
—p P

hence as § — 0 and n — oo, from Lemma (3.2),
_ _ N —Rd’
supp, ,u’'(-,1) £ C(N,v)p~ "+ / / < C(N,q,v, R)(n N2 +1) (N R Ry / uf)-
t—p?/4 Bp/2 Bg(n )
3.12
We deduce (3.9) as above. |



4 Global estimates in RY

We first show that the universal estimate of the gradient (1.12) implies the estimate (1.13) of the
function:

Theorem 4.1 Let ¢ > 1. Let u be a classical solution of equation (1.1) in Qgn 7. Assume that
there exists a ball B(xq,2n) such that u has a trace ug € M*((B(xg,2n)). If u satisfies (1.12), then
for any t € (0,7T),

u(et) S C@ETT o —wl +CET 4 es [ dw) C=COVam), (@)
B(zo,m)
If up € LE(Q), R=1 and u € C([0,T); LE (Q)), then

_ 1 / _N
u(z,t) £ C(g)t a1 |z —mo|” + Ct 2R (E+ ol prprag ) C=C(N.q,Ryvm).  (4.2)

1 / __1_
U(l',t) g C(Q)t ! ‘.%' - xo’q + C(t =t 41+ HU’OHLR(B(xQ,n)))? C= C(N7q7R7 77) (43)

Proof. Estimate (1.12) is equivalent to

=

(L) < %t_%, in Qpw 1 (4.4)

Then with constants C'(q) only depending of g,

‘V(ui)

W (1) < u (20,t) + Cla)t 7 |z — ol (4.5)
then ) /
u(@,t) £ Clg)(u(wo, t) +1 77 & — ao|"), (4.6)

and, from Theorem 3.3,
u(wo, t) < C(N, q, By, )t 3 (¢ + [0l 1 (3 ag my))-
Therefore (4.2) follows. Also, interverting x and xg, for any R = 1,
uR(a0,t) £ Cla, R (a,t) + 4777 [z — a0 ™).
Integrating on B(xg,n/2), we get

Nl (o, 1) < C(q, R) / W) TN,
B(zo,m/2)

using Lemma 3.2, we deduce

w(zo,t) < O(N, ¢, Ryt 77 + 1+ /B L dw)
xo,n

and if ug € L (Q),

loc
1
u(xo, t) = C(N7 ¢ R, W)(t -ttt HUOHLR(B(mO,n)))7

and the conclusions follow from (4.6). ]

10



Remark 4.2 In particular, the estimates (4.1)-(4.3) hold for solutions with ug € Cy(RY), and
more generally for limits a.e. of such solutions, that we can call reachable solutions. Inegality
(4.5) was used in [5, Theorem 3.3] for obtaining local estimates of classical of bounded solutions.in

Qry 7

In order to prove Theorem 1.2, we first give an estimate of the type of (1.13) on a time interval
(0, 7], with constants depending on T and v, which is not obtained from any estimate of the gradient.
Our result is based on the construction of suitable supersolutions in annulus of type Q Bs,\By,00°
p > 0. For the construction we consider the function ¢ € (0,00) — ¥y (t) € (1,00), where h > 0 is
a parameter, solution of the problem

(¢h)t + h(T/);qL - T,Z)h) =0 in (Oa OO) ) ¢h(0) = 00, ¢h(OO) =1, (47)
given explicitely by v, (t) = (1 — e_h(q_l)t)_q—%; hence ¢} — ¢, 2 0, and for any ¢ > 0,

((g—1)ht) a1 <oy (t) £ 201 (1 + (g — 1)ht) 1), (4.8)

since, for x >0, x(1 —z/2) £ 1—e* <z, hence /2 < 1—e* <z, for x < 1.

Proposition 4.3 Let ¢ > 1. Then there exists a nonnegative function V defined in Qp;x (0,005
such that V' is a supersolution of equation (1.1) on QB3\B_100” and V' converges to co as t — 0,

uniformly on Bs and converges to oo as x — 0Bs, uniformly on (0,7) for any 7 < co. And V' has
the form
V(z,t) = e'®(|z|)vn(t) in QBy,00 (4.9)

for some h = h(N,q,v) > 0, where ¢y, is given by (4.7), and ® is a suitable radial function
depending on N, q,v, such that

VAP + O+ VO[T 20 in Bs. (4.10)

Proof. We first construct ®. Let ¢ > 0, such that 0 =2 a = (2 —¢q)/(¢ — 1). Let ¢1 be the first
eigenfunction of the Laplacian in Bs such that ¢1(0) = 1, associated to the first eigenvalue A;, hence
1 is radial ; let m; = ming- 1 > 0 and M; = 1rninB—3\B1 [Vr1]|. Let us take & = & = &g + K,
where ®) = vp; 7, K > 0 and v > 0 are parameters Then

—VAD+ &+ VD! = F(d) + K,  with

F(®o) = 71 T (14 0%V 1T 4 (1= wod)p? — va(o + 1)),

There holds lim,_,3 |¢]| = ¢1 > 0 from the Hopf Lemma. Taking o > a we fix v = 1, and then
lim, 3 F(®g) = oo. If ¢ < 2 we can also take o = a, we get

F(®0) = v¢; Y (v 1a |4 [T + (1 — var)et — ag' o),

hence fixing v > v(N, ¢,v) large enough, we still get lim,_,3 F'(®g) = oo. Thus F has a minimum
win Bs. Taking K = K(N,q,v) > |p| we deduce that ® satisfies (4.10), and lim,_,3 ® = oc.
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Observe that ®'7/d = anq/(wgo?ra(qfl) + Kgp({(wrl)) is increasing, then myg = mg(N,q,v) =
ming 5 [®']? /@ = [®'(1)|? /®(1) > 0. We define V by (4.9) and compute
Vi = VAV + [VV |1 = (D4, + D(¢n)r — vAD) 4 e [V O[T}l
2 e (PYp + Py — VAR + [VO|T91) = e (7 — ) (|VO|! — hd).

We take h = h(N,q,v) < mg. Then on B3\B; we have |[V®|? — h® > 0, and )7 = ¢y, then V is a
supersolution on Bs\Bj. Moreover V is radial and increasing with respect to |z|, then

SUpV(@,) = supV (a,) = e P()n(t) < 27T ¢ B(2)(1+ (g — Dht) ™)
B2 B
< C(N,q,v)e®(2)(1 + ¢ 7). (4.11)

Theorem 4.4 Let u be a classical solution, (in particular any weak solution if ¢ < 2) of equa-
tion (1.1) in Qgn p . Assume that there exists a ball B(xo,2n) such that u admits a trace
ug € MY (B(xg,2n)).
(i) Then for any T € (0,T), and t < T,
U(,I,t) é Cv(tiﬁ |'I_x0|q/ —|—t];f(t—|—/ duO))’ C= C(Na q, I/,’I’],’T), (412)
B(zo,m)

(ii) Also if u € C([0,T); Li}.(B(o,2n))),

u(xat) g C’(tiﬁ ’1’ - xo’q, + ti%(t + HUOHLR(B(mO,n))))a C= C(Na q,v, Rﬂ?ﬂ'% (413)

if ue C([0,T) x B(xg,2n)), then
u(z,t) < C’(t_q+1 |z — mo\q, +t+ sup up), C =C(N,q,v,n,T). (4.14)
B(wo,m)

Proof. We use the function V constructed above. We can assume zg = 0. For any p > 0, we
consider the function V, defined in Bs, x (0,00) by

Vi, t) = poV (oL, p720).
It is a supersolution of the equation (1.1) on Bs,\B, x (0,00), infinite on dBs, x (0,00) and on
Bs, x {0}, and from (4.11)
T
sup Vj(z,t) = sup V,(x,t) < Ci(N,q,v)p “er* ®(2)(1 + p#t_qul)
Ba, 9By
pot 2 1
< (N, qu)p e? (p 77 + ¢ 77). (4.15)
(i) First suppose that u € C([0,T) x RY)). Let 7 € (0,T), and C(1) = Supg,, . U- Then

w = C(7) + V), is a supersolution in @ = (Bs,\B,) x (0,7], and from the comparison principle we
obtain u < C(7) + V, in that set. Indeed let € > 0 small enough. Then there exists 7. < € and
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re € (3p — €,3p), such that w(.,s) = maxBfapu(.,e) for any s € (0,7, and w(z,t) = maxpg— (o]
for any ¢ € (0,7] and 7. < |z| < 3p. We compare u(x,t + €) with w(z,t + s) on [0,7 — €] x B, \B,.
And for |z| = p, we have u(z,t +¢) < C(r) < w(x,t + s). Then u(.,t +¢€) < w(.,t+ s) in
B, \B, x (0,7 —¢€]. As s,e — 0, we deduce that v < w in Q.

Hence in By, x (0,7), we find from (4.15)

7 T
u = C(1) +supVy(z,t) = C(1) + CopTer?
Bz,

(p 7T+t 7). (4.16)

Making ¢ tend to 7, this proves that

|+

1

2
(77T 47T

[V

sup u < sup u+ Cop?er
QBQP,T QBP,T

By induction, we get

[ S - __2 _ 1
sup u S sup u+ Co2™ pTer? ((20p) a1 7 @ 1)

@Bynt1,T @Bgn T

1

i 1 et

< sup w4 G2 pT er?
@Byn T

/ ’ R _ 1
sup uSsupu+Co(l+27 +..+2" )pTer?(p a1 + 7 a-1)

@Bynt1 o7 @B,

1

(p T 47 ).

< sup u+ C'QQ(I/(Q",o)q/e/JL2

QBP,T

For any = € RY such that |z| 2 p, there exists n € N* such that © € Byn+1,\Ban,, then

w(z,7) < sup u+ Cp27 |z|? eﬂ%(/f% + qufll) (4.17)
@B, T
thus . ) .
sup u S sup u+ Co279 |x|? er? (p a1 + 7 0 1). (4.18)
QgN,T QB,T

(ii) Next we consider any classical solution v in Qg~  with trace ug in B(zo,2n). We still
assume g = 0. Then for 0 < e £t < 7, from (3.4) in Lemma 3.2, there holds

sup u(z,t) < C(N,q)n 7t + supu(z, e).
By/2 By

Then from (4.18) with p = 7/2, we deduce that for any (z,t) € Qgw .,

w(z,t) < C(N, @) Tt + sup u(,e) + C(1+ (t—e) 7 7) [a]?
Bn/Q
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with C' = C(N, q,v,n, 7). Next we take ¢ = ¢/2. Then for any ¢ € (0, 7], from (3.8) in Theorem 3.3,

u(w,t) £ C(N,qn)t + Ct 101 |z]¢ +Cf]2v(t+/ dug).

By
with C = C(N, ¢q,v,n,7) and we obtain (4.12). And (4.13), (4.14) follow from (3.9) and (3.4). =

Next we show our main Theorem 1.2. We use a local Bernstein technique, as in [26]. The idea is
to compute the equation satisfied by the function v = u(9~1/9 | introduced in [9], and the equation
satisfied by w = |Vv|?, to obtain estimates of w in a cylinder Q By, s M > 0. The difficulty is that
this equation involves an elliptic operator w +— wy; — Aw + b.Vw, where b depends on v, and may
be unbounded. However it can be controlled by the estimates of v obtained at Theorem 4.4. Then
as M — oo, we can prove nonuniversal L estimates of w. Finally we obtain universal estimates
of w by application of the maximum principle in Qg~ 7, valid because w is bounded. First we give

a slight improvement of a comparison principle shown in [26, Proposition 2.2].
Lemma 4.5 Let Q2 be any domain of RN, and 7,k € (0,00), A,B € R. Let U € C([0,7); L3 .(Q))

such that Us, Vu, D?>u € L? _(Q x (0,7)), ess supg,, . U < 0o, U < B on the parabolic boundary of
QQ,Ta and

loc

U — AU S k(1 + |z|) VU + f in Qa.r

where f = f(z,t) such that f(.,t) € L2 (Q) fora.e.t € (0,7) and f <0 on{(z,t) € Qqar : U(z,t) = A}.
Then esssupg,, U = max(4, B).

loc

Proof. We set p(z,t) = At +In(1 + |z[*), A > 0. Then Vo = 2z2/(1 + |z*), 0 £ Ap <
ON/(1 + |z|*) £ 2N. Let e > 0 and Y = U — max(A, B) — ep. Taking A = 2v/2x + 2N, we obtain

—AY — f— (1 + o)) [VY] £ e(K(1+ [2]) [Vio| — g0 + Ag) < £(2VZk + 2N — A) = 0.

Since esssupg,, U < oo, for R large enough, and any ¢ € (0,7), we have Y(.,£) = 0 a.e. in QN
{lz| > R}. And Y+ € C([0,7); L>(Q)NW12((0,7); L2(R)), YH(0) = 0 and Y F(., ) € W123(QNBR)
for a.e. t € (0,7), and fYT(.,t) £ 0. Then

:‘<L2 2
%%(/ Y2, /|VY+ ’+r1(1+R) /\VY HIY (., )é#/ﬂfﬂ(wt%

hence by integration ¥ < 0 a.e. in Qq . We conclude as € — 0. ]
Proof of Theorem 1.2. We can assume o = 0. By setting u(x,t) = v9/2U(z/\/v,t), for
proving (4.4) we can suppose that w is a classical solution of (1.1) with v = 1. We set

S+u=vii,  5e(0,1).

(i) Local problem relative to |Vu|?. Here u is any classical solution u of equation (1.1) in
a cylinder @p,, 7 with M > 0. Then v satisfies the equation

_AU:—

) —cv|Vol?, c= (). (4.19)

1 Vol
v
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Setting w = |[Vo|?, we define

9 2 1)Vv.

Lw = w; — Aw + b.Vw, b= (gcow
qg—1v

Differentiating (4.19) and using the identity Aw = 2V (Aw). ol? , we obtain the equation

9 2
Lw+ 2e0™F + 2| D) +j% — 0. (4.20)
As in [26], for s € (0,1), we consider a test function ¢ € C?(Bsyy/4) with values in [0,1], ¢ = 0
for || > 3M/4 and |V¢| < C(N,s)¢*/M and |AC| + |VC[? /¢ £ C(N,s)¢*/M? in Bsp/s. We set
z = w(. We have

Lz=(Lw~+wL—2Vw.V( < (Lw+wl(+ |D% { ¢ + 4w ’VCC‘
It follows that in @p,, T,
2 w? CC%w CCSw% a=2 2 1 w ww's wh
I E—— s
£z+2cw2C+ cquw 2 1o :CC(M2+ % +MU)’

_ZC— M2 + M
<

with constants C = C(N,q,s). Since ¢ 1, from the Young inequality, taking s = max(q +

1),3)/(q + 2), for any € > 0,

a+2
%Csvw% = %Cg%gs*%vw% < ECwu + C(N,q, )]\i[qH,
and o )
a+2
WCSU} é €<’U) 2+ C(N,q,&) 2(q+2) ?
M«
3
C w2 1 3 3 3 a+2 1
__<_3 R s D 2 < = + C(N - -
Then with a new C' = C(N,q,9)
q+2 1 1
Lz4ex™s <O(— + +——). (4.21)

q+2 2(q+2) a+2
M M «q Ma-1

(ii) Nonuniversal estimates of w. Here we assume that u is a classical solution of (1.1) in whole
Qg 7, such that u € C(RN x [0,T)). From Theorem 4.4, for any 7 € (0,7), there holds in Qg ,

w(z,t) = (6 +u(z, )T < (t*$|x|+(t+s;puo)q7), C = C(N,q.1n,7). (4.22)

hence for M = M(q,supB% ug, 7) 2 1, we deduce
1
v(x,t) S 2Ct < M, in Qp,,.r
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Then with a new constant C' = C(N, q,n,7,9), there holds in ®@Byprjarr

Lz+cz2 SCt 9. (4.23)

Next we consider W(t) = Kt~%/9. It satisfies

q+2

+2
U+l = (K2 — 20 'Kt 2ot

if K 2 K =K(N,q,n,7,0). Fixing € € (0,T) such that 7 + ¢ < T, there exists 7. € (0, ¢) such that
U (0) = supp,, 2(.,€) for any 6 € (0,7c). We have

2e(t+e€) —Az(,t+€)+b(.,t+€).V(z,t+e€)+ cz¥(t +¢)

q+2 q+2

SO+ T SCOU+0)"7 SU(t+60)+ U5 (t+6).
Therefore, setting Z(.,t) = z(.,t +€) — ¥(t + ), there holds
Z(t) — AZ(,t) +b(, t+€).VZ(,t) £0

on the set V = {(x,t) € QByyprjarte Z(x,t) 2 0} ; otherwise Z(.,t) < 0 for sufficiently small ¢ > 0,

and Z = 0 on 0Bzyr/4 x [0,7]. Then from Lemma 4.5, we get z(.,t +¢€) = U(t +0) in Qpyy, s

since |b| = (qcvw% + q_%%wl/z), hence bounded on @p;,,/, +¢. Going to the limit as §,e — 0, we

deduce that z(.,t) < Ft_g in @By, 4,7 thus w(.,t) < Ft_% in @B, ,,r- Next we go to the limit as
— 2

M — oo and deduce that w(.,t) = Kt ¢ in Qg~ , , namely

B |Vu|?

(@)1 Vol )7 = =2

(Lysct™l,  C=C(N,qn,d,1).

In turn for any e as above, there holds w € L*(Qgw~ . 7), that means [Vv| € L (Qg~ ;).
(iii) Universal estimate (4.4) for u € C(RY x [0,T)) : we prove the universal estimate (4.4).
Taking again W(t) = Kt~2/9, with now K = K(N,q) = ¢ 2(q¢ — 1)>/7, we have
+2
U, +200% 2 (2K — 27 K)t e 2 0.
And Lw+2cw*s < 0 from (4.20). Moreover there exists 7. € (0,7) such that ¥(6) = supg~y w(., €)

for any 6 € (0, 7). Setting y(.,t) = w(.,t+¢)—¥(.,t+0), hence on the set U = {(x,t) € Qn , : y(x,t) 2 0},
there holds in the same way

y(,t) — Ay(,t) +b(., t +¢€).Vy(.,t) = 0.
Here we only have from (4.22)

-1 2 1
bl < (qevw’ + ﬁgwlﬂ) S Ke(1+z)
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on Qgw . -, for some k. = K (N, q,n, supp,, o, T, €). It is sufficient to apply Lemma 4.5. We deduce
that w(.,t+¢) < U(t+0) on (0,7). As 0, ¢ — 0 we obtain that w(.,t) < W(t) = ¢~ 2(q—1)¥/1t2/9,
which shows now that in (0,7)

q
_q1 V1

Vol hl7 = ()1

() S ¢ %g— 1l

As § — 0, we obtain (4.4).

(iv) General universal estimate. Here we relax the assumption u € C(RY x [0,7)) : For
any € € (0,T) such that 7 + ¢ < T, we have u € C(RY x [¢,7 + ¢€)), then from above,

1 1

Vou(.,t 1< ——-

Voot +9 £ g
and we obtain (4.4) as e — 0, on (0, 7) for any 7 < T, hence on (0,7). ]
Proof of Theorem 1.3. It is a direct consequence of Theorems 1.2 and 4.1. ]

5 Existence and nonuniqueness results

First mention some known uniqueness and comparison results, for the Cauchy problem, see [11,
Theorems 2.1,4.1,4.2 and Remark 2.1 ],[13, Theorem 2.3, 4.2, 4.25, Proposition 4.26 |, and for the
Dirichlet problem, see [1, Theorems 3.1, 4.2], [6], [13, Proposition 5.17], [24].

Theorem 5.1 Let Q = RN (resp. Q bounded). (i) Let 1 < q < qx, and ug € My(RY)(resp.
ug € Mp(2)). Then there exists a unique weak solution w of (1.1) with trace ug (resp. a weak
solution of (Dq,r), such that lim;_,ou(.t) = up weakly in My(2))). If vo € Mp(Q) and ug < wo,
and v is the solution associated to vy, then u < v.

(ii) Letug € LR (Q), 1< R< c0. If1 < g < (N+2R)/(N+R), orif ¢ = 2, R < oo, there exists
a unique weak solution u of (1.1) (resp. (D)) such that u € C([0,T); L7 (Q) and u(0) = ug. If
vy € LT (RN) and uy < vy, then uw < v. If ug s nonnegative, then for any 1 < q < 2, there still
exists at least a weak nonnegative solution u satisfying the same conditions.

Next we prove Theorem 1.4. Our proof of (ii) (iii) is based on approximations by nonincreasing
sequences. Another proof can be obtained when ug € Llloc (RN ) and ¢ < 2, by techniques of
equiintegrability, see [22] for a connected problem.

Proof of Theorem 1.4. Assume 2 = RY (resp. Q bounded).
(i) Case 1 < ¢ < gx, up € MT (]RN) (resp. MT (Q)): Let ugn = uoL By, (resp. ug, = uo\_Q’l/n,
where Q,, = {x € Q:d(x,00) > 1/n}, for n large enough). From Theorem 5.1, there exists a

unique weak solution w,, of (1.1) (resp. of (Dgq 1)) with trace ug,, and (uy) is nondecreasing; and
un € C*'(Qgw 1) since ¢ < 2. From (3.1), (3.5), for any £ € C2T(€),

/Qun(.,t)gq/+%/Ot/ﬂywnyq§q’ g(}t/g\vqu’Jr/ng’duo. (5.1)
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Hence (u,) is bounded in L2, ([0,T); L},.(€)) , and (|[Vu,|?) is bounded in L}, ([0,T);L},.(Q)) .
In turn (u,) is bounded in LjS. ((0, ) L (), from Theorem 3.3. From Theorem 2.3, up to
a subsequence, (u,) converges in Cl 'Q rN ) (resp. ZOC(QQ,T) NCH (2% (0,T))) to a weak

solution u of (1.1) in Qg~ r (resp. of (Dqo,r)). Also from [3, Lemma 3.3], for any k € [1,¢*) and
any 0 < s <7 <T,

lunll i (s, myminy) = Ckw)([[unls, L1y + IVunl! + [Vun| + unllprg, . .)),  YwCC
(vesp. [uall o o iy S OO D)8y + NIVl 1))
hence (uy) is bounded in LE ([0,T);WL*(RN)) (resp. LF ([O,T);Wol’k(Q))). Since ¢ < g,

loc loc loc

(|Vun|?) is equiintegrable in Qp,, » for any M > 0 (resp. in Qq ) and 7 € (0,T), then (|[Vu|?) €
L}, ([0,T); L}, .(€)). From (2.6),

loc loc
/Qun(t, .)£+/Ot/Q|Vun|q£:—/Ot/QVun.VE%—/Qfduo. (5.2)

As n — oo we obtain

/Qu(t, .){—i—/ot/Q]Vu\qu—/Ot/QVu.V§+/Q§duO.

Thus lim¢0 [ou(.,t)é = [, &duo, for any & € C1T(€2), hence for any & € CF(Q); hence u admits
the trace ug.
(ii) Case g« < q = 2. Let us set ug, = min(ug,n)xp, (resp. ug, = min(ug,n)xq — for n large
1/n

enough). Then ug, € L*(Q) for any R 2 1. From Theorem 5.1, the problem admits a solution u,,
, and it is unique in C([0,T) ; LT (Q)) for any R > (2—¢q)/N(g— 1) and then (un) is nondecreasing.
As above, (uy) is bounded in L2, ([0,T); L1, (), (|[Vu,|?) is bounded in L}, ([0,T); L}, .(Q)),

loc ’
(un) is bounded in L3S ((0,7"); L72.(2)) from Theorem 3.3. From Theorem 2.3, (u,) converges in

(
loc (QQ ) to a weak solution u of (1.1) in Qq,r, such that uw € L2 ([0,T); L}, .(Q)) and |[Vu|! €
Lige (0,7 ; Lip (7))

loc

Then from Remark 2.5, u admits a trace pg € MT(Q2) as t — 0. Applying (5.2) to u,, since

up < u, we get
i [ a6 = [ €duo 2 tim [ un0)e = [ cduo,
t—0 QO Q t—0 Q Q

for any ¢ € CH(Q); thus ug < pg. Moreover

/Qun(t, .){—i—/ot/Q]Vun]q{:/Ot/ﬂunAgdx—i-/Qfduo.

And (u,,) is bounded in L¥(Q,, ) for any k € (1, ¢.) ; then for any domain w CC Q, (u,) converges
strongly in Ll(QW) ; then from the convergence a.e. of the gradients, and the Fatou Lemma,

/RNu(t,.)§+/0t/RN\Vu]qgg/ot/RNuAgdx_F/RNgduO.

But from Remark 2.5,

[ utaes [ [ wure= [ [ wasars [ cano
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then pp < wug, hence pg = wup. Finally we prove the continuity: Let £ € DT(Q) and w CC Q
containing the support of £. Then z = u€ is solution of the Dirichlet problem

Zt — Az = g, in Qw,T7
z=0, onodwx(0,T),
lim; 0 2(., ) = Eup, weakly in My (w),

with ¢ = — |Vu|? € + v(—Ay) — 2Vu.Vy € LY(Q, 7). The solution is unique, see [6, Proposition
2.2]. Since ug € Lj,. (), there also exists a unique solution such that z € C([0,T), L' (w)) from
[3, Lemma 3.3], hence u € C([0,T), L}, .(2)).

(ili) Case g > 2. We get the existence as above, by taking for (ug,) a nondecreasing sequence
in Cy (RN) (resp. in Cp (£2)), converging to ug, and using Remark 2.4 for classical solutions. [ |

Next we show the nonuniqueness of the weak solutions when ¢ > 2 : here the coefficient a
defined at (1.7) is negative, and |a| = (¢ — 2)/(¢ — 1) < 1.

Proof of Theorem 1.5. Since ¢ > 2 and N > 2, the function U is a solution in D’ (]RN ) of
the stationary equation
—Au+|Vul!=0

Indeed U € Wlf)’cq RM)N Wlicl (RN) because N > ¢/, and U is a classical solution in R\ {0} . Then

it is a weak solution of (Pgy ), and U ¢ CH(Qgr~ o). Since U € C(RY), from Theorem ??, or
from [5], there exists also a classical solution Ug € C*!(Qgn ) of the problem, thus Ug # Up.
More generally, for any C' > 0, there exists a classical solution Ug with trace C |ac||a|. And
Uc is obtained as the limit of the nondecreasing sequence of the unique solutions U, ¢ with
trace min(C|x|‘a| ,n), then it is radial. Moreover for any A > 0, the function U, c(z,t) =
AU, c(Az, A?t) admits the trace min(C |ac||a‘ ,nA~?). Therefore, denoting by k) ,, the integer part
of nA™%, there holds Uy, = ¢ < Upcx < Uy, 41 from the comparison principle. And U, ¢ (z,t)
converges everywhere to AUg(Az, A%t), thus Ug(z,t) = A~*Uc(Az, A2t), that means Ug is self-
similar. Then Uc has the form (1.14), where f € C2([0,00)), £(0) 2 0, f'(0) = 0, lim,, 0 771272 f (1)
C, and for any n > 0,
o+ G D - s - 1w =o (5.9
From the Cauchy-Lipschitz Theorem, we find f(0) > 0, since f # 0, hence f”(0) > 0. The function
f is increasing: indeed if there exists a first point g > 0 such that f’(ng) = 0, then f”(n9) > 0,
which is contradictory. [

6 Second local regularizing effect

Here we show the second regularizing effect. We prove an estimate, playing the role of the sub-
caloricity estimate (2.4). Our proof follows the general scheme of Stampacchia’s method, developped
by many authors, see [17] and references there in, and [19].

First we write estimate (3.1) in another form, and from Gagliardo estimate, we obtain the
following;:
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Lemma 6.1 Let ¢ > 1. Let n > 0,7 = 1. Let u be any nonnegative weak subsolution of equation
(1.1) in Qar. Let By, CCQ,0<60 <7 <T, and &£ € CH(0,T),CL(Q)), with values in [0,1], such
that £(.,t) =0 fort < 0. Let A = max(2,¢).

Then for any v € (0,1],

[t s fior N RE0

9q
(SuPteeT fQ urgq“ N

sup
[0,7]

§ C/ /(ur |£t| + ur—l |Vf|q/ +uq+r—1 |v£|Q)’
6 JQ

(6.1)
where p=rq/(q+r—1), C =C(N,q,r,N).

r—1
Proof. From Remark 2.2, u € Lj (Qq)), and hence u* 5% € Wh(Qq ) and

t g+r—1 X
| [ivateh -
o Jo 0
t
<ol [wwure+ [ / utt V),
0 JQ 0 JQ
with C' = C(q,r,\). From (3.1), since v < 1, we get
sup/ )EN + / /|V
[6,7]

where C' = C(q,r,A\). Next we use a Galliardo type estimate, see [17, Proposition 3.1]: for any

-1 r—1 A gtr=1 A—g
atr UQ£QVu+ u a

g éC/G /Q(urlél +u" VT + ut T VE), (6.2)

l oc

| [etoysed[ [iverncse [ c=cwa.
0 JO 0 JQ telo,7]

gtr—1 A

Takingw=u ¢« & and pu=gqr/(q+r—1)2r =1, setting s =1+ p/N, it comes

// (a+r= 155/\5<C/ /\Vw\ sup/ ré‘qﬁr—r—l)%7
tE[GT

hence (6.1) follows. ]

Theorem 6.2 Let ¢ > 1. Let u be any nonnegative weak solution of equation (1.1) in Qqr. Let
B(xg,p) CC Q. Let R > q—1 (in particular any R 2 1 if ¢ < 2). Then there exists C = C(N,q, R)
such that, for any t,0 such that 0 <t —20 <t <T,

sup us 0O TRENGD D ( / qR+N(q 0
t—20 (zo,p)

B(zo,5)x[t—6,t]
_ N+q R 1 _ _N+gq t R 1
—|—Cp (a— 1)(R+N+1) U )R+N+1 +Cp R+1—q( U )R+1—q_
t—20 J B(zo,p) t—20 J B(zo,p)

(6.3)
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Proof. Since u € C((0,T); LE (Qa1)), by regularization we can assume that u is a classical
solution in Qq 7. Let ¢,0 such that 0 <t —20 <t <T. We can assume zg = 0 € (). By translation
of t — 6, we are lead to prove that for any solution in Qg _;/2,/2 (7 <T),

Sup u < Ca qR+N(q 1) / / qR+N(q 1)
QB /27 7 Bp

_}_Cp(ql)](\;;;qzvm(/ / u R+N+1 +Cp R+1 q / / R+1 q. (6.4)
-6JB, B,

For given k > 0 we set u, = (u—k)" . Then ug € C(0,T); LE (Qa.7)), and uy, is a weak subsolution
of equation (1.1), from the Kato inequality. We set

pn=(1+27")p/2, th=—(1+27")0/2,
Qn = Bpn X (tnae), QO = Bp X (_959)’ QOO = Bp/2 X (_9/2?9)’
k=1 =270 Nk k= (ky + knp1)/2.

and set M, = supg__ u, M = supg, u. Let &(z,t) = & (2)&2(t) where & € CH(Q), & € CHR), with
values in [0, 1], such that

=1 onBy,, &=0 mRNB,, |V&a<C(N)2""/p;
& =1 on [0,41,00), & =0 on (—00,0,], |€24] £ C(N)2" /6.

From Lemma 6.1 we get, with u=gqr/(¢+r —1),

fé) [ (Q+7’ DI+%)
tnt1 JBp, 1 k”‘H

9
(SUPte[tn,e} prn Ukn) N

sup
te tn+1 )

u2n+1( t) + é CXn, Where

Pn+1

x= [ / (0 I+ 02, IVEIT a7 [€0).

Let us define

6
1
Yn—/ / q+r Zp = sup / uzn, Wn:/ / X{u=kn}-
tn B te[ty“e} B tn Bpn

Pn
Thus, from the Holder inequality,

+
Tnir + Zo YW RV < ox,,. (6.5)

Morever, for any v, 5 > 0,

/ / ’Y+5>/ / (kn — knt1)? X{uéknﬂ}
tn JBp, tn /By

0
> (kg(n+2))“/+5/ / XfuZkn 1) > (kQ(nJrz))wﬁ/ / XfuZkn 1}
tn J Bp, th+1 /B

Pn+1
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and from the Holder inequality,

’ v v+ﬁ T o :
u = )7+ ( / / X{u>k, )7+8
/25;1 /;pn k:n+1 /25;1 /B n+1 t {U_ +1}
/ / v-i—ﬁ 19 n+2) / / q/—I—B LB
tn B tn B

k712(n+2))6 / / u"/+5
tn BPn
Thus in particular

2n+1 1 o 2n+1 . 6 1 2n+1
Wn+1 < C( k )q Yna / / k; é k )q Yn? / / uk‘n+1 § C( ]C )an
tn J By, tn J Bp,

A

II/\

Otherwise (6.6)
X, < /:/B (2”“9*1112”“ +2q'("+1)pfq zwll +2q(n+1)p Z:L 1),
then from (6.6),
Xn, S Cbyf(0,p,k)Ys where f(0,p, k) = (¢ kq{I qu —7 4 ), (6.7)

for some by depending on ¢,r. Then from (6.5), (6.6) and (6.7),

q 2n+1

Znis S COF(0.p. k)Y, Yol < CZF(

1+N
= k *

JITTTIRBEf (0. p, )Y

Since Y41 £ Yj,setting a = ¢/(N + p) and denoting by by, b some new constants depending on
N’ q’ ’,"’

Yoo = CZ,ivfbenHk (=1 N“‘f]”“ (0,p,k)Yni1

< Cbyf(9,p, k)Y, )N+ub"+1k (@tr =) w5 fra (6, p, k)Y,

< o At Dty PRyl

From [17, Lemma 4.1], Y,, — 0 if

N+q

ygol/e < pmt = o gl UN T pN

that means

: 1 1
B 2 V(07 g+ o )V (6.8)

For getting (6.8) it is sufficient that

g a=D(N+q) > Cyag-(N+q)  L(r+N+q) > (= )l/qyop ey
= 2 0 9 =

5 , and k" = %Y(],of(NJrq).
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Thus we deduce that

supu = < Ca qr+(N+q)(q 1) / / uq+7’ 1 q1"+(N+q)(q 1)
By

Qoo
—|—Cp (q— 1)77‘th+¢]) / / uq+r 1 7‘+N+‘1 —|—Cp . (/ / uq+r 1)%
B, 0JB,

If we set ¢ +r — 1 = R, we obtain (6.4) for any R = q.

Next we consider the case R < ¢. From (6.9) we get

__ N+q 0 . a
sup u g CH q+(g—1)(N+q) ( uQ)q+(q—1)(N+q)
B

Bopx(—0/2,0)
N+4q 0 1 0
—|—Cp_(q—1)(1+N_+q)(/ / u?) THN+e +Cp(N+q)/ / ud
-6 JB, B,

__ N+4g __4(@—R)
< Co q+(q*1)(N+q)( sup u q+ q+(g—1)(N+q) N+¢1) / / q+(q 1)(N+q)
B,x0,0) B,

__ N+4g 9(¢—R)
+Cp (q—l)(1+N+q)( sup u 1+N+q) / / 1+N+q
BPXOG Bp

+ Cp NFD( gup )@~ R/ /
B, x0,0) B,

We define
prn=(1+ 27(n+1))p’ On = —(1+ 27(n+1))9’ Qn = Bj, x (0n,0), M,, = supu,
Qn
hence My = SUPE ., x(~0/2,0) U- We find
__4q(g—R)
M < lol' 7q+ (a—1)( N*‘I)M(H q—1)( N+q) / / q+ q— 1) N+q)
By
a(q—R)
+Cp = 1)(1+N+Q)M1+N+q / / 1+N+q +Cp (N+q) Mq R/ /
B, B,
We set
I =C0 ata— 1) N+q) / / q+(q 1)(N+q)
By
J = Cp*(Nqu) / / uR, L =Cp @ Du+~+a 1)(1+N+q) / / 1+N+q
0o JB, B,
Note that R > ¢ — 1, that means ¢ — R < 1. Then from Holder inequality,
1 - g+ (qg—1)(N +4q) 1+ N+g
M, < - C(I% + L° + J7Ti- = ==
n S gMun + CU7+ 17+ o N(g—1)+qR ~ R+N+1
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Thus My < 2" M, + 2C(I° + L° + J7Fi=1), and finally

I ___N+q
My =supu = C(I° + L+ JE+1=a) = C§ Na-D+aR ( / / N@=DTR
Qo B

P
0
N+ 1
+Cp @ DRINTD) (/ / uR) RFENFT 4 Cp~ R_qu (/ / uR) yies e ’
-0JB, -0JB,

which shows again (6.4). Then (6.4) holds for any R > ¢ — 1, in particular for any R =2 1 if ¢ < 2.m

Now we prove our second regularing effect due to the effect of the gradient:
Proof of Theorem 1.6. We assume zy = 0. Let k > 0 be a parameter. From (6.3), for any
p € (0,m) such that p* <t < T,

__R(N+q) _
sup  u < Cp aR+HNGE-D ( qR+N(q D
t—p*~ Bp

By x[t—pr.1]
+C,0 (¢—D)(R+N+1) 1)(R+N+1) / / R+N+1 +C,0 R+1 q / / R+1 a,
B, t—pt J By

where C' = C(N, ¢, R). Now from estimate (3.3) of Lemma 3.2,

___ &N N __  Rqg
suan/2u(.,t) < Cp aRFNGD (nR™Tt + ||u0HLR(Bn))qR+N(q71)

+ Cp TRINE T (4 4 ugl ) AT
—(N+

Q+r N / R
+Cp B (nr= Tt + |luoll Lr(p,)) e

Let 7 < T, and ko € N such that kgn™/2 = 7. For any ¢ € (0, 7], there exists k € N with k& < kg such
that t € (kn" /2, (k + 1)n"/2]. taking p* = t/(k+1), we find for any 0 < t < 7, and C = C(N, ¢, R),

1+n "1
t
qfl
14+n~ T)f@(q—)

N , Cm
supp ,u(-t) = C( )aRFNG=D) (7t 4 HUOHLR(Bn))qRW?q—n

+ O(——) R (Rt o ) T
14 n "k Ntq_,
O T (5T ol v, ) TS (6.10)

If we choose « such that ke(N + q)¢’ 2 1, we obtain, with C = C(N,q, R,n,e,7),

v R
supg, (., 1) £ CLTNG (¢ + [lug]| s, ) TN D

1—e¢ R 1—¢ R
+ CURENFL (L A [|uo| pr(p,)) FENFT 4 CERFT=4 (E + [[uol| Lr(p,)) FF1= (6.11)

And in fact the second term can be absorbed by the first one, with a new constant depending on
7, and we finally obtain (1.15). ]
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Remark 6.3 These estimate in t—N/(@BANG=D) jmproves the estimate in t—N/2Rof the first reg-
ularizing effect when q > q.. And it appears to be sharp. Indeed consider for example the partic-
ular solutions given in [25] of the form uc(x,t) = Ct=%2f(|z| /\/t), where n — f(n) is bounded,
f1(0) = 0 and limy oo n®f (n) = C. Then uc is solution of (1.1) in Qrx\(o},00, With initial data
C|z|™". When a < N, that means q > qx, then |z|~% € LE_(RY) for any R € [1,N/a), and uc is

solution in Qgn . We have supg, u(.,t) = Cf(0)t=%2. Taking N/R = a(1 4+ 6), for small § > 0
our estimate near t = 0 gives suppg, u(.,t) < Cst=2(1F9),
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