The peaking phenomenon and singular perturbations - Archive ouverte HAL
Article Dans Une Revue Revue Africaine de Recherche en Informatique et Mathématiques Appliquées Année : 2008

The peaking phenomenon and singular perturbations

Résumé

We study the asymptotic behaviour, when the parameter ε tends to 0, of a class of singularly perturbed triangular systems x˙ = f(x, y), y˙ = G(y, ε). We assume that all solutions of the second equation tend to zero arbitrarily fast when ε tends to 0. We assume that the origin of equation x˙ = f(x, 0) is globally asymptotically stable. Some states of the second equation may peak to very large values, before they rapidly decay to zero. Such peaking states can destabilize the first equation. The paper introduces the concept of instantaneous stability, to measure the fast decay to zero of the solutions of the second equation, and the concept of uniform infinitesimal boundedness to measure the effects of peaking on the first equation. Whe show that all the solutions of the triangular system tend to zero when ε → 0 and t → +∞. Our results are formulated in both classical mathematics and nonstandard analysis.
Fichier non déposé

Dates et versions

hal-01019722 , version 1 (07-07-2014)
hal-01019722 , version 2 (23-02-2016)

Identifiants

  • HAL Id : hal-01019722 , version 1

Citer

Claude Lobry, Tewfik Sari. The peaking phenomenon and singular perturbations. Revue Africaine de Recherche en Informatique et Mathématiques Appliquées, 2008, 9 (Spécial issue of Claude Lobry), pp.487-516. ⟨hal-01019722v1⟩

Collections

AGROPOLIS
401 Consultations
1078 Téléchargements

Partager

More