Non-Local Isoperimetric Problems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Non-Local Isoperimetric Problems

Résumé

We characterize the volume-constrained minimizers of a nonlocal free energy given by the difference of the $t$-perimeter and the $s$-perimeter, with $s$ smaller than $t$. Exploiting the quantitative fractional isoperimetric inequality, we show that balls are the unique minimizers if the volume is sufficiently small, depending on $t-s$, while the existence vs. nonexistence of minimizers for large volumes remains open. We also consider the corresponding isoperimetric problem and prove existence and regularity of minimizers for all $s,\,t$. When $s=0$ this problem reduces to the fractional isoperimetric problem, for which it is well known that balls are the only minimizers.
Fichier principal
Vignette du fichier
dinoruva2014_final.pdf (388.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01016191 , version 1 (28-06-2014)

Identifiants

Citer

Agnese Di Castro, Berardo Ruffini, Novaga Matteo, Enrico Valdinoci. Non-Local Isoperimetric Problems. 2014. ⟨hal-01016191⟩
247 Consultations
97 Téléchargements

Altmetric

Partager

More