Minimal surfaces in finite volume non compact hyperbolic $3$-manifolds - Archive ouverte HAL
Journal Articles Transactions of the American Mathematical Society Year : 2017

Minimal surfaces in finite volume non compact hyperbolic $3$-manifolds

Abstract

We prove there exists a compact embedded minimal surface in a complete finite volume hyperbolic $3$-manifold $\mathcal{N}$. We also obtain a least area, incompressible, properly embedded, finite topology, $2$-sided surface. We prove a properly embedded minimal surface of bounded curvature has finite topology. This determines its asymptotic behavior. Some rigidity theorems are obtained.
Fichier principal
Vignette du fichier
Collin_2017.pdf (438.08 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01015056 , version 1 (16-12-2022)

Identifiers

Cite

Pascal Collin, Laurent Hauswirth, Laurent Mazet, Harold Rosenberg. Minimal surfaces in finite volume non compact hyperbolic $3$-manifolds. Transactions of the American Mathematical Society, 2017, 369 (6), pp.4293-4309. ⟨10.1090/tran/6859⟩. ⟨hal-01015056⟩
154 View
131 Download

Altmetric

Share

More