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Minimal surfaces in finite volume non compact

hyperbolic 3-manifolds

Pascal Collin, Laurent Hauswirth, Laurent Mazet, Harold Rosenberg ∗

June 30, 2014

Abstract

We prove there exists a compact embedded minimal surface in a
complete finite volume hyperbolic 3-manifold N . We also obtain a
least area, incompressible, properly embedded, finite topology, 2-sided
surface. We prove a properly embedded minimal surface of bounded
curvature has finite topology. This determines its asymptotic behavior.
Some rigidity theorems are obtained.

1 Introduction

There has been considerable progress on the study of properly embedded
minimal surfaces in euclidean 3-space. We now know all such orientable
surfaces that are planar domains; they are planes, helicoids, catenoids and
Riemanns’minimal surfaces. Also we understand the geometry of properly
embedded periodic minimal surfaces, that are finite topology in the quotient.

In hyperbolic 3-space, there is no classification of this nature. A contin-
uous rectifiable curve in (the boundary at infinity of H3) is the asymptotic
boundary of a least area embedded simply connected surface.

In this paper we study the existence of periodic minimal surfaces in H3.
More precisely, we consider surfaces in complete non compact hyperbolic
3-manifolds N of finite volume. In the following of the paper, we will refer
to such manifolds N as hyperbolic cusp manifolds. In a closed hyperbolic
manifold (or any closed Riemannian 3-manifold), there is always a compact
embedded minimal surface [10]. They cannot be of genus zero or one, but
there are many higher genus such surfaces. The existence and deformation
theory of such surfaces was initiated by K. Uhlenbeck [15].

∗The authors were partially supported by the ANR-11-IS01-0002 grant.
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Hyperbolic cusp manifolds play an important role in the theory of closed
hyperbolic 3-manifolds. Many link complements in the unit 3-sphere have
such a finite volume hyperbolic structure. Given any V > 0, Jorgensen
proved there are a finite number of such N of volume V . Then Thurston
proved that a closed hyperbolic 3-manifold of volume less than V can be
obtained from this finite number of manifolds N given by Jorgensen, by
hyperbolic Dehn surgery on at least one of the cusp ends (see [2] for details).

We will prove there is a compact embedded minimal surface in any com-
plete hyperbolic 3-manifold of finite volume. Since such a non compact
manifold N is ”not convex at infinity”, minimization techniques do not pro-
duce such a minimal surface. To understand this the reader can verify that
on a complete hyperbolic 3-punctured 2-sphere, there is no simple closed
geodesic. In dimension 3, a min-max technique, together with several max-
imum principles in the cusp ends of N , will produce compact embedded
minimal surfaces.

We will give two existence results of embedded compact minimal sur-
faces.

Theorem A. There is a compact embedded minimal surface Σ in N .

Theorem B. Let S be a closed orientable embedded surface in N which is
not a 2-sphere or a torus. If S is incompressible and non-separating, then
S is isotopic to a least area embedded minimal surface.

Concerning properly embedded non compact minimal surfaces, there are
already existence results due to Hass, Rubinstein and Wang [7] and Ruber-
man [12]. Using different arguments, we give an other proof of Ruberman’s
minimization result.

Theorem. Let S be a properly embedded, non compact, finite topology, in-
compressible, non separating surface in N . Then S is isotopic to a least
area embedded minimal surface.

The surfaces produced by the above theorem have bounded curvature.
Actually the techniques we develop enable us to prove:

Theorem C. Let Σ be a properly embedded minimal surface in N of bounded
curvature. Then Σ has finite topology.

Since stable minimal surfaces have bounded curvature we conclude:

Corollary 1. A properly embedded stable minimal surface in N has finite
topology.
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Finite topology is particularly interesting here due to the Finite Total
curvature theorem below that describes the geometry of the ends of a prop-
erly immersed minimal surface in N of finite topology

Theorem 2 (Collin, Hauswirth, Rosenberg [4]). A properly immersed min-
imal surface Σ in N of finite topology has finite total curvature∫

Σ
KΣ = 2πχ(Σ)

Moreover, each end A of Σ is asymptotic to a totally geodesic 2-cusp end in
an end C of N .

We will make precise these notions.
The simplest example of a surface Σ with finite topology appearing in

the above Theorem is a 3-punctured sphere. Actually, minimal 3-punctured
spheres are totally geodesic.

Theorem D. A proper minimal immersion of a 3-punctured sphere in N
is totally geodesic.

The paper is organized as follows. In Section 2, we make some general re-
marks on the geometry of cusp manifolds stating some results of Jorgensen,
Thurston and Adams. In Section 3, we consider 3-punctured spheres in
hyperbolic cusp manifolds and prove Theorem D. In Section 4, we study
minimal surfaces entering the ends of hyperbolic cusp manifolds N . We
prove two maximum principles which govern the geometry of minimal sur-
faces in the ends of N . We also establish a transversality result which is
used to study annular ends of minimal surfaces. Section 5 proves Theorems
A and B, the existence of compact embedded minimal surfaces in hyper-
bolic cusp manifolds. Section 6 proves the minimization result in the non
compact case. Then in Section 7, we present several examples to illustrate
these theorems.

2 Some discussion of the manifolds N
In this section we recall some facts about the geometry of a non compact
hyperbolic 3-manifold N of finite volume.

Such N are the union of a compact submanifold bounded by mean con-
cave mean curvature one tori, and a finite number of ends, each end isometric
to a quotient of a horoball of H3 by a Z2 group of parabolic isometries leaving
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the horoball invariant. The horospheres in this horoball quotient to mean
curvature one tori in N .

An end of N can be parametrized by M = {(x, y, z) ∈ R3 | z ≥ 1/2}
modulo a group G = G(v1, v2), generated by two translations by linearly
independent horizontal vectors v1, v2 ∈ R2 × {0}.

The end C = M/G is endowed with the quotient of the hyperbolic metric
of M :

gH =
1

z2
(dx2 + dy2 + dz2) =

1

z2
dX2.

The horospheres {z = c} quotient to tori T (c), of mean curvature one
with respect to the unit normal vector z∂z. The vertical curves {(x, y) =
constant} are geodesics orthogonal to the tori T (c), with arc length given
by s = ln z. The induced metric on T (c) is flat and lengths on T (c) decrease
exponentially as s→∞.

We will denote by T (a, b) the subset {a ≤ z ≤ b} of C.
The Euclidean planes {ax + by = c} are totally geodesic surfaces in C.

When they are properly embedded in C, they are the totally geodesic 2-cusp
ends in C that appears in the Finite Total Curvature Theorem above.

Define Λ(C) = max{|v1|, |v2|} with |v| the Euclidean norm. We notice
that we have made a choice of generators v1, v2 of the group G, so the value
Λ(C) depends on this choice (we can minimize the value of Λ among all
choices but it is not important in the following).

Remark 1. The above notations are well adapted to study the geometry close
to z = 1. For z0 larger than 1, let H be the map (x, y, z) 7→ (z0x, z0y, z0z)
which sends M to R2 × [z0/2,+∞). This map gives us then a chart of
C ′ = {z ≥ z0/2} ⊂ C parametrized by {z′ ≥ 1/2} with Λ(C ′) = Λ(C)/z0.
So, considering a part of the end that is sufficiently far away, we can always
assume that Λ(C) is small.

We mention two theorems concerning the manifolds N .

Theorem 3 (Jorgensen). Given V > 0, there exist a finite number of such
manifolds N whose volume is equal to V .

Theorem 4 (Thurston). Any compact hyperbolic 3-manifold M3, ∂M3 =
∅, with V ol(M) < V is obtained from the finite number of N given by
Jorgensens’ theorem, by hyperbolic Dehn surgery on at least one of the cusp
ends.

Concerning surface theory in N , we mention one theorem that inspired
Theorem D.
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Theorem 5 (Adams [1]). Let Σ be a properly embedded 3-punctured sphere
in N , Σ incompressible. Then Σ is isotopic to a totally geodesic 3-punctured
sphere in N .

3 Minimal 3-punctured spheres are totally geodesic

In this section we prove that, under some hypotheses, a minimal surface is
totally geodesic. We first have the following result.

Theorem D. A proper minimal immersion of a 3-punctured sphere in N
is totally geodesic. Moreover, it is π1 injective.

Proof. Let Σ ⊂ N be a properly immersed minimal 3-punctured sphere in
N . Let x0 ∈ Σ and α, β, γ be three loops at x0 that are freely homotopic to
embedded loops in the different ends of Σ.

Let π : H3 → N be a universal covering map and x̃0 be in π−1(x0).
Let Σ̃ be the lift of Σ passing through x̃0. The choice of x̃0 induces a
monomorphism ϕ : π1(Σ, x0) → Isom+(H3). Σ̃ is then a proper immersion
of the quotient of the universal cover of Σ by kerϕ. Let Γ be the image of
the monomorphism ϕ. As a consequence Σ̃ is properly immersed in H3.Let
us denote by Tα , Tβ and Tγ the maps in Γ associated by ϕ to [α], [β], [γ].

By the Finite Total Curvature Theorem 2, we know each end is asymp-
totic to µ × R+ where µ is a geodesic in some T (c) in a cusp end of N ;
µ×R+ is a totally geodesic annulus in this cusp end. The inclusion of T (c)
into N induces an injection of the fundamental group of T (c) into that of
N . Hence α, β and γ are sent to non zero parabolic elements of Isom+(H3)
by ϕ.

Next we will prove the limit set of Σ̃ is a circle C in ∂∞H3 ' S2. Then
the maximum principle yields that Σ̃ is the totally geodesic plane P bounded
by C, thus proving Theorem C. More precisely, foliate H3∪∂∞H3 minus two
points by totally geodesic planes and their asymptotic boundaries so that
P is one leaf of the foliation. This foliation at ∂∞H3 is a foliation by circles
with two ”poles” p and q. The circles close to p bound hyperbolic planes Q
in H3 that are disjoint from Σ̃. As the circles in the foliations of ∂∞H3 go
from p to C, there can be no first point of contact of the planes with Σ̃ (Σ̃
is proper and the limit set of Σ̃ is C). Hence Σ̃ is in the half space of H3 \P
containing q. The same argument with planes coming from q to C shows
that Σ̃ = P . So Σ̃ is simply connected which implies kerϕ = {1} and Σ is
π1 injective.

Let us now prove the existence of C. We have the following claim whose
proof is based on Adams work [1].
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Claim 1. There is a circle C in ∂∞H3 which is invariant by Γ. The limit
set of Σ̃ is C.

Proof. Using the half space model for H3 with ∞ the fixed point of Tα and
using the SL2(C) representation of Isom+(H3) we can write,

Tα =

(
1 w
0 1

)
Tβ =

(
a b
c d

)
with w ∈ C∗, a, b, c, d ∈ C such that ad − bc = 1 and a + d = 2. Then

Tγ = Tα · Tβ =

(
a+ cw b+ dw
c d

)
is parabolic so it must satisfy to λ =

a+ cw + d = ±2.
Since a+ d = 2 we have c = 0 if λ = 2 or c = −4/w if λ = −2. If c = 0,

Tα, Tβ and Tγ would fix the point∞ and all elements in Γ would have∞ as
fixed point and {∞} is the limit set of Γ. We will rule out this possibility
below.

If c = −4/w, the fixed point of Tβ is xβ = w(d−a)
8 and the fixed point of

Tγ is xγ = w(d−a)
8 + w

2 . Tα leaves invariant the circle C = {w(d−a)
8 + tw, t ∈

R} ∪ {∞}. Also we have

Tβ(∞) = −wa
4

=
w(d− a)

8
=
w

4
∈ C

Tβ(xγ) = T−1
α (xγ) =

w(d− a)

8
− w

2
∈ C

Hence Tβ leaves C invariant. Thus Γ leaves C invariant. Actually, C is the
limit set of Γ.

Now let us see that the limit set of Σ̃ is the limit set ∂Γ of Γ. We split
Σ in the union of a compact part K containing x0 and three cusp ends Ci.
So Σ̃ split in the union of the lift K̃ of K and the union of pieces contained
in disjoint horoballs Hα with boundary along the horoball. Because of the
asymptotic behavior of Σ, the lift gi of ∂Ci in ∂Hα is not homeomorphic
to a circle. Thus there is a non trivial γ ∈ Γ that leaves gi and then Hα

invariant. So the center of Hα belongs to ∂Γ.
If ∂Γ is only one point (case c = 0) it means that there is only one

horoball Hα: it is {z ≥ c}. Since any point in K̃ is at a finite distance from
Hα and K̃ is periodic, the z function reaches its minimum somewhere. The
maximum principle then get a contradiction. So c 6= 0 and ∂Γ = C.

Let (pi) be a proper sequence of points in Σ̃ and assume it converges to
some point p∞ ∈ ∂∞H3. If all the pi belong to K̃, there is a sequence of
elements γi ∈ Γ such that the distance between pi and γi · x̃0 stays bounded.
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So (pi) and (γi · x̃0) have the same limit so p∞ is in the limit set of Γ so in
C.

So we can assume that pi ∈ Hαi for all i. If the sequence (αi) is finite;
p∞ is a center of one of the Hα so it is in C. If the sequence (αi) is not finite
the the distance from x̃0 to Hαi goes to ∞. There is a neighborhood Nm of
C in H3 ∪ ∂∞H3 that contains all horoballs centered on C whose distance
to x̃∞ is larger than m and such that ∩m>0Nm = C. So p∞ ∈ C.

The proof of the preceding result is based on the study of the group
representation ϕ. It can be controlled under some other hypotheses.

Proposition 6. Let S0 and S1 be two properly immersed minimal surfaces
in N such that the immersions are homotopic. If S0 is totally geodesic, then
S0 = S1.

Proof. Let ft : S × [0, 1] → N be the homotopy between the two minimal
immersions. Let x0 ∈ S and x̃0 be a point in π−1(f0(x0)) where π : H3 → N
is a covering map. Let gt : S̃ × [0, 1] → N be the lift of ft such that
g0(x0) = x̃0. This defines a group representation ϕ : π1(S × [0, 1], (x0, 0)) =
π1(S, x0) → Isom+(H3) such that g is ϕ-equivariant. Since f0(S) is totally
geodesic, g0(S̃) is a totally geodesic disk. This implies that the image of ϕ
has a circle C as limit set. As in the proof of Claim 1, it implies that g1(S̃)
has C as asymptotic boundary. Then, as in the proof of Theorem C, g1(S̃)
is totally geodesic and equals g0(S̃). So f0(S) = f1(S).

4 Minimal surfaces in the cusp ends of N
In this section, we will analyse the behaviour of embedded minimal surfaces
that enter cusp ends of N . In dimension 2, the situation is simple. If N2 is
a 2-cusp (i.e. a quotient of a horodisk of H2 by a parabolic isometry leaving
the horodisk invariant) then a geodesic that enters N2 either goes straight
to the cusp (i.e. it is an orthogonal trajectory of the horocycles of the cusp)
or it leaves N2 in a finite time. In dimension 3, for the moment we know
that a properly immersed minimal annulus that enters a cusp end of N 3 is
asymptotic to a 2-cusp of the end (γ× [c,∞), γ a compact geodesic of T (c)),
or the intersection of the minimal annulus with the end of N is compact.

We will establish two maximum principles in the ends of N which will
control the geometry of embedded minimal surfaces in the ends.
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Let C = M/G(v1, v2) be an end of N , parametrized by the quotient of
M = {(x, y, z) ∈ R3|z ≥ 1/2} as in Section 2, with Λ(C) = Λ(v1, v2) the
diameter of T (1). Recall that we can make Λ(C) as small as we wish by
passing to a subend C ′ of C defined by z ≥ z0, z0 large.

We modify the metric on C introducing smooth functions Ψ : [1/2,∞)→
R satisfying Ψ(z) = z for 1/2 ≤ z ≤ 1, and Ψ non decreasing. There will be
other conditions on Ψ as we proceed.

Let gΨ = 1
Ψ2(X)

dX2 be a new metric on C; gΨ is the hyperbolic metric

of N for 1/2 ≥ z ≥ 1.
The mean curvature of the torus T (z) in the metric gΨ equals Ψ′(z), with

respect to the unit normal Ψ(z)∂z (so points towards the cusp: perhaps it
is zero). The sectional curvatures for gΨ are:

KgΨ =

{
−Ψ′(z)2 for the (∂x, ∂y) plane

Ψ(z)Ψ′′(z)−Ψ′(z)2 for the (∂x, ∂z) and (∂y, ∂z) planes

We will always introduce Ψ’s such that |Ψ′| and |ΨΨ′′| are bounded by
some fixed constant. Hence the sectional curvatures of the new metrics will
be uniformly bounded as well. Then given ε0 > 0, there is a k0 > 0 such
that a stable minimal surface in (C, gΨ) has curvature bounded by k0 at all
points at least at a distance ε0 from the boundary. The bound k0 depends
only on the bound of the sectional curvatures and ε0 not on the injectivity
radius [11]

Remark 2. The pull back of the gΨ by the map H defined in Remark 1 is
H∗gΨ = gΨz0

where Ψz0(z) = 1
z0

Ψ(z0z). This modification does not change
the estimates on Ψ′ and ΨΨ′′.

4.1 Maximum principles

In the section we prove maximum principles for a cusp end C endowed with
a metric gΨ. The following estimates will depend on an upper-bound on |Ψ′|
and |ΨΨ′′|.

We have a first result.

Proposition 7 (Maximum principle I). Let k0, ε0 > 0. There is a Λ0 =
Λ(k0, ε0) such that if Σ is an embedded minimal surface in (C, gΨ) with
|AΣ| ≤ k0 and Λ(C) ≤ Λ0. Then if p ∈ Σ is at least an intrinsic distance ε0

from ∂Σ and if z(q) ≤ z(p) for all q in the intrinsic ε0-disc centered at p,
then Σ = {z = z(p)} and Ψ′(z(p)) = 0.
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Proof. Let π : M → C be the covering projection and Σ̃ = π−1(Σ). We may
suppose p = π(0, 0, z(p)).

Since the curvature of Σ̃ is bounded by k0, Σ̃ is a graph of bounded
geometry in a neighborhood of p. Hence the exists µ = µ(k0, ε0) and a
smooth function u : Dµ(0, 0)→ R, Dµ(0, 0) = {x2 + y2 ≤ µ}, u(0, 0) = z(p)

and the graph of u in M is a subset of Σ̃. µ can be chosen such that, if
q ∈ graph(u), dΣ(π(q), p) < ε0. Hence z(p) is a maximum value of u in
Dµ(0, 0).

Now Σ̃ is invariant by G(v1, v2) so if Λ0 < µ/2, we have v1, v2 ∈
Dµ/2(0, 0). So Dµ(0, 0) ∩Dµ(v1) = D 6= ∅.

Let u1 : D → R, be u1(q) = u(q − v1); the graph of u1 is contained in
Σ̃. Then u1(v1) = u(O) ≥ u(v1) since u reaches its maximum at O = (0, 0).
Also O ∈ D, u1(O) = u(−v1) ≤ u(O). Thus the graphs of u and u1 over D
must intersect and since Σ̃ is embedded, u = u1 on D. Hence u1 is a smooth
continuation of u to Dµ(O) ∪Dµ(v1). Repeating this with G = Zv1 + Zv2,
we see that u extends smoothly to an entire minimal graph contained in
Σ̃. This graph is periodic with respect to G hence bounded below. The
maximum principle at a minimum point of u implies that u is constant.
Hence u = u(0, 0) = z(p) and T (z(p)) is minimal so Ψ′(z(p)) = 0.

Next we use the maximum principle I to prove a compact embedded
minimal surface can not go far into a cusp end; no a priori curvature bound
assumed. More precisely we have the following statement.

Proposition 8 (Maximum principle II). Let 0 < t0 < 1/2. There is a
Λ0 = Λ0(t0) such that if Λ(C) ≤ Λ0 and Σ is a compact embedded minimal
surface in (C, gΨ) with ∂Σ ⊂ T (1 − t0) (Σ being transverse to T (1 − t0))
then Σ ⊂ {z ≤ 1}.

Proof. First suppose Σ is a stable minimal surface. Then by curvature
bounds for stable surfaces [11], we know there is a k0 such that |AΣ| ≤ k0

on Σ ∩ {z ≥ 1− t0/2}; k0 depends on our assumed bounds on Ψ′,ΨΨ′′. By
the maximum principle I, there is a Λ0, only depending on t0, such that if
Λ(C) ≤ Λ0 then z has no maximum larger than 1. Hence Σ ⊂ {z ≤ 1}.

Now suppose that Σ is not stable. Choose c0 and c so that z < c0 < c
on Σ and consider Σ ⊂ X = {1/2 ≤ z ≤ c}. We remark that Σ separates
◦
X, the interior of X. Indeed any loop in

◦
X is homologous to a loop in T (c0)

which does not intersect Σ. So the intersection number mod 2 of a loop
with Σ is always 0. Then denote by A the connected component of X \ Σ
which contains {z = c}. A priori the boundary of A is mean convex except
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for {z = c}. But we can modify the function Ψ for c0 ≤ z ≤ c such that
Ψ′(c) = 0 and keeping Ψ non-decreasing and the bounds on Ψ′ and ΨΨ′′ (c
should be assumed very large). Then T (c) is now minimal and A has mean
convex boundary. In A, there exist a least area surface Σ̃ with ∂Σ = ∂Σ̃ .
Now the maximum of the z function on Σ̃ is larger than the one on Σ. Since
Σ̃ is stable we already know that Σ̃ ⊂ {z ≤ 1}, so Σ as well.

4.2 Transversality

Now we will see that embedded minimal surfaces of bounded curvature are
”strongly transversal” to T (c) in C endowed with the hyperbolic metric.

Proposition 9. Let k0, ε0 > 0 be given. There exist constants Λ0 and
θ0 such that if Σ is an embedded minimal surface in (C, gH), Λ(C) ≤ Λ0,
|AΣ| ≤ k0, with ∂Σ at an intrinsic distance distance greater than ε0 of the
points of Σ in T (1), then the angle between Σ and T (1) is at least θ0. The
constant Λ0 and θ0 only depend on k0 and ε0.

Proof. If this proposition fails, there exists Σn, pn ∈ Σn∩T (1) in a hyperbolic
cusp Cn satisfying the hypotheses, such that Λ(Cn) and the angle between
Σn and T (1) at pn goes to zero. Lift Σn to M so that pn = (0, 0, 1). The
curvature bound gives the existence of a disk D = Dµ(0, 0) ⊂ R2 and smooth
functions un on D whose graphs are contained in Σn (for large n). These
functions have bounded C2,α norm by the curvature bound and the fact
that their gradient at (0, 0) converges to zero. Hence a subsequence of the
un converges to a minimal graph u over D and the graph of u is tangent to
T (1) at (0, 0, 1).

Let vn1 , v
n
2 be the generator of the group leaving Cn invariant. Let v0

be in D. Since Λ(Cn) → 0, there is a sequence (an1 , a
n
2 )n∈N in Z2 such that

an1v
n
1 +an2v

n
2 → v0. The graph of un(·− (an1v

n
1 +an2v

n
2 )) over D+an1v

n
1 +an2v

n
2

is also a part of a lift of Σn. Since Σn is embedded, its lift is also embedded.
So, for any n, we have either un(·) ≤ un(· − (an1v

n
1 + an2v

n
2 )) or un(·) ≥

un(· − (an1v
n
1 + an2v

n
2 )). Thus at the limit, u(·) ≤ u(· − v0) or u(·) ≥ u(· − v0)

on D ∩ (D + v0).
Let S be the totally geodesic surface in M tangent to {z = 1} at (0, 0, 1).

Over D, S can be described as the graph of a radial function h. We have
h(0, 0) = 1 and there is α > 0 such that, over D, h((x, y) ≤ 1− α(x2 + y2).
The functions u and h are two solutions of the minimal surface equation
with the same value and the same gradient at the origin. So the function
u− h looks like a harmonic polynomial of degree at least 2.
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If the degree is 2, one can find v0 ∈ D \{(0, 0)} such that (u−h)(v0) < 0
and (u− h)(−v0) < 0. Then we have

u(v0) < h(v0) < h(0, 0) = u(v0 − v0)

u((0, 0)− v0) < h(−v0) < h(0, 0) = u(0, 0)

This contradicts u(·) ≤ u(·−v0) or u(·) ≥ u(·−v0) on the whole D∩(D+v0).
If the degree is larger than 3, the growth at the origin of h implies that

there is a disk D′ centered at the origin included in D such that u < 1 in
D′ \ {(0, 0)}. So if v0 ∈ D′ \ {(0, 0)} we have

u(v0) < u(0, 0) = u(v0 − v0) and u((0, 0)− v0) = u(−v0) < u(0, 0)

This gives also a contradiction u(·) ≤ u(· − v0) or u(·) ≥ u(· − v0) on the
whole D ∩ (D + v0).

We notice that Remark 1 can be used to get strong transversality with
T (c) for c ≥ 1.

A consequence of Proposition 9 is then the following result.

Theorem C. Let Σ be a properly embedded minimal surface in N of bounded
curvature. Then Σ has finite topology.

Proof. If k0 is an upper bound of the norm of the second fundamental form
of Σ, Proposition 9 gives a constant Λ0. Now N can be decomposed as
the union of a compact part K and a finite number of cusp-ends Ci with
Λ(Ci) ≤ Λ0. Since Σ is transversal to the tori Ti(c), Σ has the same topology

as Σ ∩
◦
K; so it has finite topology.

5 Existence of compact embedded minimal sur-
faces in N

Producing minimal surfaces is often done by minimizing the area in a certain
class of surfaces. In order to ensure the compactness of our surface in N , a
min-max argument is more suitable in our proof of the following existence
result.

Theorem A. There exists a compact embedded minimal surface in any N .

Proof. Let C1, · · · , Ck be the cusp ends of N . Let zi be the z-coordinates
in Ci and assume that Λ(Ci) ≤ Λ0, for 1 ≤ i ≤ k; Λ0 the constant given by
the maximum principle II. This can always be realized by Remarks 1 and 2.
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Now we change the hyperbolic metric in each end Ci as follows. Let
Ψ : [1/2,∞) → R satisfy Ψ(z) = z for 1/2 ≤ z ≤ 1, Ψ′(z) > 0 and
limz→∞Ψ(z) = 3/2.

Let L be large (to be specified later) and modify the metric gΨ in [L,L+1]
so the new metric gives a compactification of Ci by removing {zi ≥ L} and
attaching a solid torus to T (L). The precise way to do this will be explained
below. With this new metric, for L ≤ z ≤ L + 1 the mean curvature of
the tori Ti(z) is increasing; going from Ψ′(L) at z = L to ∞ as z → L + 1.
z = L+1 corresponds to the core of the solid torus. We do this in each cusp
and get a compact manifold Ñ without boundary endowed with a certain
metric. We notice that the manifold does not depend on L but the metric
does.

Now we can choose a Morse function f on Ñ such that all the tori Ti(z),
1/2 ≤ z ≤ L, 1 ≤ i ≤ k, are level surfaces of f .

This Morse function f defines a sweep-out of the manifold Ñ and

M0 = max
t∈R
H2(f−1(t))

essentially does not depend on L (in fact it can decrease when L increases)
(H2 is the 2-dimensional Hausdorff measure).

Almgren-Pitts min-max theory applies to this sweep-out and gives a
compact embedded minimal surface Σ in Ñ whose area is at most M0 (see
theorem 1.6 in [3]). Let us see now that Σ actually lies in the hyperbolic
part of Ñ so in N .

Since Ψ → 3/2, the metric on Ti(k, k + 1) is uniformly controlled and
close to being flat. As a consequence of the monotonicity formula for minimal
surfaces (see Theorem 17.6 in [13]), if Σ ∩ Ti(k + 1/2) 6= ∅ (1 ≤ k ≤ L− 1),
the area of Σ∩ Ti(k, k+ 1) is at least c0 > 0. The constant c0 only depends
on the ambient sectional curvature bound and the vij ’s (the vectors in the
end Ci).

This monotonicity formula gives at least linear growth for Σ. More
precisely, if a connected component of Σ intersect Ti(1) and Ti(L) is has
area at least c0(L − 1). So by choosing, L larger than M0/c0 there is no
component of Σ meeting both Ti(1) and Ti(L).

Also, no connected component lies entirely in {zi ≥ 1}. Indeed, the
zi would have a minimum on the component which is impossible by the
classical maximum principle and the sign of the mean curvature on Ti(z).
Thus Σ stays out of {zi ≥ L}. Hence by the maximum principle II, Σ does
not enter in any {zi ≥ 1} which completes the proof.
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Let us now give the definition of the new metric on [L,L + 1]. The
tori Ti(c) are the quotient of R2 by vi1, v

i
2 so they can be parametrized by

u
vi1
2π + v

vi2
2π where (u, v) ∈ S1× S1. With this parametrization, the metric gΨ

on Ci is then

1

4π2Ψ(zi)2
(|v1|2du2 + 2(v1, v2)dudv + |v2|2dv2 + dz2

i ) =

1

Ψ(zi)2
(a2du2 + 2bdudv + c2dv2 + dz2

i )

Let ϕ be a smooth non increasing function on [L,L+ 1] such that ϕ(z) = 1
near L and ϕ(z) = ((L+ 1)− z)/a near L+ 1. We then change the metric
on {L ≤ zi ≤ L+ 1} by

1

Ψ2(zi)
(dz2

i + a2ϕ(zi)
2du2 + 2bϕ(zi)dudv + c2dv2) (1)

Actually, this change consists in cutting {zi ≥ L} from the cusp end Ci
and gluing a solid torus along T (L). To see this, let D be the unit disk
with its polar coordinates (r, θ) ∈ [0, 1] × S1 and let us define the map
h : D×S1 → S1×S1× [L,L+ 1] by (r, θ, v) 7→ (θ, v, L+ 1− r). The induced
metric by h from the one in (1) for r near 0 is

1

Ψ2(L+ 1− r)
(dr2 + a2 r

2

a2
dθ2 + 2b

r

a
dθdv + c2dv2)

=
1

Ψ2(L+ 1− r)
(dr2 + r2dθ2 + 2

b

a
rdθdv + c2dv2)

This is a well defined metric on the solid torus D × S1.
With this new metric, the tori Ti(c) = {zi = c} (c ∈ [L,L + 1)) have

constant mean curvature Ψ′(c)− ϕ′(c)
2ϕ(c)Ψ(c) > 0 with respect to Ψ(z)∂z.

A minimization argument can be done under some hypotheses to produce
compact minimal surfaces.

Theorem B. Let S be a closed orientable embedded surface in N which is
not a 2-sphere or a torus. If S is incompressible and non-separating, then
S is isotopic to a least area embedded minimal surface.

Proof. Let C1, · · · , Ck be the cusp ends of N . Let zi be the z-coordinates
in Ci such that the surface S does not enter in {zi ≥ 1}. We assume that
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Λ(Ci) ≤ Λ0, for 1 ≤ i ≤ k; Λ0 the constant given by the maximum principle
II for the function Ψ below.

Let Ψ : R∗+ → R be a smooth increasing function such that Ψ(z) = z on
(0, 1] and Ψ′(2) = 0.

For each a ≥ 1, let N (a) be N with each cusp end truncated at zi =
a; i.e. N (a) = N \ ∪1≤i≤k{zi > a}. We remark that the N (a) are all
diffeomorphic to each other.

Let n be an integer. In each cusp end Ci, we change the metric on N (2n)
by using a function Ψn : [1/2, 2n]→ R; z 7→ nΨ( zn). So Ψn(z) = z on [1/2, n]
and Ψ′n(2n) = 0; the torus Tj(2n) minimal. We notice that the metric on
N (n) is not modified.

Let us minimize the area in the isotopy class of S in the manifold
with minimal boundary N (2n). By Theorem 5.1 and remarks before Theo-
rem 6.12 in [8], there is a least area surface Σn in N (2n) which is isotopic to
S. Theorem 5.1 in [8] can be applied becauseN (2n) is P 2-irreducible (N (2n)
is orientable and its universal cover is diffeomorphic to R3). Moreover the
minimization process does not produce a non-orientable surface since, in
that case, S would be isotopic to the boundary of the tubular neighborhood
of it, hence S would separate N . Finally Σn is not one connected component
of ∂N (2n) since S is not a torus.

In N (2n), ({z = c})c∈[1,2n] is a mean convex foliation so Σn ∩N (1) 6= ∅.
By the maximum principle II, it implies that Σn ⊂ N (1) so in a piece of N
where the metric never changes. A priori, the surfaces Σn could be different.
But, since they all lie in N (1), they all appear in the minimization process
in N (2) so they all have the same area. So Σ1 is a least area surface in the
isotopy class of S in N with the hyperbolic metric.

Remark 3. We can notice that there is a uniform lower bound for the area
of minimal surfaces in manifolds N . The point is that the thick part of such
a manifold N is not empty. So at each point in the thick part there is an
embedded geodesic ball of radius ε3/2 centered at that point where ε3 is the
Margulis constant of hyperbolic 3-manifolds.

Each connected component of the thin part is either a hyperbolic cusp
or the tubular neighborhood of a closed geodesic. So it is foliated by mean
convex surfaces and a minimal surface Σ can not be included in such a
component. So there is x ∈ Σ in the thick part. Thus we can apply a
monotonicity formula (see [13]) to conclude that the area of the part of Σ
inside the geodesic ball of radius ε3/2 and center x is larger than a constant
c3 > 0 that depends only on the geometry of the hyperbolic ε3/2 ball.

When the compact minimal surface Σ is stable, we can be more precise
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(see [6] where Hass attributes this estimates to Uhlenbeck). Applying the
stability inequality to the constant function 1. We get that∫

Σ
−(Ric(N,N) + |A|2) ≥ 0.

Since |A|2 = −2(KΣ + 1), the Gauss-Bonnet formula gives

Area(Σ) ≥ −1

2

∫
Σ
KΣ = −1

2
χ(Σ) = 2π(g − 1)

with g the genus of Σ. Morover, by Gauss formula KΣ ≤ −1, so the Gauss-
Bonnet formula gives Area(Σ) ≤ 4π(g − 1).

6 Existence of non compact embedded minimal
surfaces in N

In [7], Hass, Rubinstein and Wang construct proper minimal surfaces in
manifolds N by a minimization argument in homotopy classes. In [12],
Ruberman constructs least area surfaces in the isotopy class. Here we make
use of results in Section 4 to give a different approach on the proof of this
second result.

First we remark that, in manifolds N , there is always a ”Seifert” surface.
N is topologically the interior of a compact manifold N with tori boundary
components and each boundary torus is incompressible. By Lemma 6.8 in
[9], there is a compact embedded surface S in N with non empty boundary
which is incompressible and 2-sided; moreover it is non-separating. Then
S = S ∩N is a properly embedded smooth surface in N , S incompressible,
of finite topology, non compact, non-separating and 2-sided.

The result is the following statement.

Theorem 10. Let S be a properly embedded, non compact, finite topology,
incompressible, non separating surface in N . Then S is isotopic to a least
area embedded minimal surface.

Proof. S has a finite number of annular ends A1, · · · , Ap, each one being
included in one cusp end Ci of N . Since Aj is incompressible in Ci, we can
isotope S so that each annular end Aj is totally geodesic in the end Ci it
enters. We still call S this new surface and we notice that its area is finite
for the hyperbolic metric.

Let Ψ : R∗+ → R be a smooth increasing function such that Ψ(z) = z
on (0, 1] and Ψ′(4/3) = 0. Let Λ0 be the constant given by the Maximum
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principle II and the transversality lemma (Propositions 8 and 9). Assume
the ends of N are chosen so that Λ(Ci) ≤ Λ0 for each end Ci.

As in the proof of Theorem B, we denote N (a) = N \ ∪1≤i≤k{zi > a}.
We remark that N (a) is diffeomorphic to N .

Let n be a large integer. In each cusp end Ci, we change the metric on
N (4n) by using a function Ψn : [1/2, 4n]→ R; z 7→ 3nΨ( z

3n). So Ψn(z) = z
on [1/2, 3n] and Ψ′n(4n) = 0; the torus Tj(4n) minimal. We notice that the
metric on N (3n) is not modified.

Let S(4n) = S∩N (4n); the area of S(4n) is bounded by some constant A
independent of n. By Theorem 6.12 in [8], there is a least area surface Σ(4n)
in N (4n), isotopic to S(4n) and ∂Σ(4n) = ∂S(4n). We remark that Σ(4n)
is stable so has bounded curvature away from its boundary (independent of
n) (see [11]).

In each cusp end Ci, Proposition 9 implies Σ(4n) is transverse to the
tori T1(a), 1 ≤ a ≤ 2n (see Remark 1, in order to apply Proposition 9). So
each intersection Σ(4n) ∩ T1(a) is composed of the same number of Jordan
curves for 1 ≤ a ≤ 2n. The next claims prove that this number is equal to
the number of boundary components of Σ(4n) on T1(4n).

Claim 2. Let Ω be a domain in Σ(4n) with boundary in T1(a) (1 ≤ a ≤ n).
Then Ω does not enter in any {zi ≥ a}.

Proof. If Σ enters in one {zi ≥ a}, by transversality, it enters in {zi ≥ 2n}.
So the function zi will have a maximum larger than 2n which is impossible
by Proposition 8 (see also Remark 1).

Claim 3. Let γ be a connected component of Σ(4n) ∩ T1(a) (1 ≤ a ≤ n).
Then γ is not trivial in π1(T1(a)).

Proof. Assume that γ is trivial in π1(T1(a)). Since Σ(4n) is incompressible,
γ bounds a disk ∆ in Σ(4n). By Claim 2, ∆ stays in N (a) where the metric
is still hyperbolic. So we can lift ∆ to a minimal disk ∆′ in R2 × R+ (with
the hyperbolic metric) with boundary in z1 = a and entirely included in
{z1 ≤ a}. This is impossible by the maximum principle since {z1 = s} has
constant mean curvature one.

Claim 4. Let Σ be a connected component of Σ(4n)∩{n ≤ z1 ≤ 4n}. Then
Σ is an annulus with one boundary component in T1(n) and one in T1(4n).

Proof. Let us first prove that the inclusion map of Σ in {n ≤ z1 ≤ 4n} is
π1-injective. So let γ be a loop in Σ which bounds a disk in {n ≤ z1 ≤ 4n}.
Since Σ(4n) is incompressible, there is a disk ∆ in Σ(4n) bounded by γ. If
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∆ is in Σ, we are done. If not, there is a subdisk ∆′ of ∆ with boundary in
T1(n); but this is impossible by Claim 3. So the inclusion map is π1-injective.
We notice that π1({n ≤ z1 ≤ 4n}) is Abelian, so π1(Σ) is Abelian. This
implies that Σ is topologically a sphere, a disk, an annulus or a torus. The
sphere and the torus are not possible since Σ has a non-empty boundary.
Claim 2 implies that Σ must have a boundary component on T1(4n). If the
whole boundary of Σ is in T1(4n), the z1 function admits a minimum on Σ
that is impossible by the maximum principle since the T1(c) have positive
mean curvature. So Σ is an annulus with one boundary component in T1(n)
and one in T1(4n).

With these claims, we have thus proved that Σ(4n) ∩ N (n) is isotopic
to S ∩ N (n) (here, we allow the boundary to move). We also notice that
because of the curvature estimate on Σ(4n) and the transversality estimate
given by Proposition 9, the intersection curves Σ(4n) ∩ T1(a) (1 ≤ a ≤ n)
have bounded curvature. So they have a well controlled geometry far in the
cusp. More precisely, there is a0 such that Σ(4n)∩{a0 ≤ z1 ≤ n} is a graph
over S ∩ {a0 ≤ z1 ≤ n}. So the sequence Σ(4n) ∩ N (n) is a sequence of
surfaces with uniformly bounded area and curvature whose behavior in the
cusps is well controlled. Thus a subsequence converges to a minimal surface
Σ. This convergence says that Σ(4n)∩N (k) can be written as a graph or a
double graph over Σ∩N (k). In the first case, the surface Σ is then isotopic
to S. In the second case, Σ(4n) ∩ N (k) is isotopic to the boundary of a
tubular neighborhood of Σ ∩N (k) in N (k); this implies that Σ(4n) ∩N (k)
is a separating surface which is impossible by the properties of S.

We notice that the area estimate given in Remark 3 are also true for
non compact minimal surface. Indeed, because of the asymptotic behaviour
of a stable minimal surface, the constant function 1 can be used as a test
function even in the non compact case.

7 Some examples

In this section, we give some ”explicit” examples that illustrate the above
theorems.

H. Schwarz and A. Novius constructed periodic minimal surfaces in R3

by constructing minimal surfaces in a cube possessing the symmetries of the
cube. These surfaces then extend to R3 by symmetry in the faces.

K. Polthier constructed periodic embedded minimal surfaces in H3 in an
analogous manner. Let P be a finite side polyhedron of H3 such that sym-
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metry in the faces of P tessellate H3. If Σ0 is an embedded minimal surface
in P , meeting the faces of P orthogonally and with the same symmetry as
P . Then Σ extends to an embedded minimal surface in H3 by symmetry
in the faces. Polthier makes this work for many polyhedron P ; e.g. for all
the regular ideal Platonic solids whose vertices are on the spheres at infin-
ity. Among these examples, one can obtain examples in complete hyperbolic
3-manifolds of finite volume.

We first describe how this technique yields an embedded genus 3 compact
minimal surface in the figure eight knot complement N .

Let T be an ideal regular tetrahedron of H3; all the dihedral angles are
2π/3. In the Klein model of H3 (the unit ball of R3), T is a regular Euclidean
tetrahedron with its four vertices on the unit sphere. Label the faces of T
and two vertices of T , as in Figure 1a. Then identify face A with face B by
a rotation by 2π/3 about v , and identify D with C by a rotation by 2π/3
about w.

The quotient of T by these face matchings, produces a non orientable
hyperbolic 3-manifold of finite volume. There is one vertex and its link is a
Klein bottle. This manifold N was discovered by Giesekind in 1912.

The orientable 2-sheeted coverN ′ of the Giesekind manifold is diffeomor-
phic to the complement of the figure eight knot in S3 ; hence is a complete
hyperbolic manifold of finite volume. In [14], Thurston explains how N ′ is
homeomoprhic to the complement of the figure eight knot (see also [5]).

We construct an embedded compact minimal surface in N that lifts to
a surface of genus 3 in N ′.

The geodesics from each vertex of T to its opposite face, all meet at one
point p in T . Join p to each edge of T by the minimizing geodesic. Also join
p to each vertex of T by a geodesic. This produces the edges of a tessellation
of T by 24 congruent tetrahedra.

Consider the tetrahedron T1 of this tessellation as in Figure 1b. By a
conjugate surface technique, Polthier proved there exists an embedded min-
imal disk D1 in T1 meeting the boundary of T1 orthogonally as in Figure 1c.
Symmetry by the faces of T1 (and the faces of the symmetric tetrahedron of
the tessellation of T ) extend D1 to an embedded minimal surface S meeting
each face of T in one embedded Jordan curve in the interior of the face. S
is topologically a sphere minus 4 points.

The face identification on T send S ∩ A to S ∩ B and S ∩D to S ∩ C.
Hence S passes to the quotient inN to a compact embedded minimal surface
whose topology is the connected sum of two Klein bottles. The lift of this
to N ′ is a genus 3 compact embedded minimal surface.

A Seifert surface for the figure eight knot is an incompressible surface
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Figure 1: a minimal surface in the Giesekind manifold

homeomorphic to a once punctured torus. Applying Theorem 10 gives a
properly embedded minimal one punctured torus in the complement of the
figure eight knot.

Theorem 4 of C. Adams [1] yields many totally geodesic properly em-
bedded 3-punctured spheres in complete hyperbolic 3-manifolds N of finite
volume. Suppose N arises as a link or knot complement that contains an
embedded incompressible 3-punctured sphere (so by Adams, it is isotopic
to a totally geodesic one). For example if the link or the knot contains a
part as in Figure 2a such that the disk D with 2 punctures is a 3-punctured
incompressible sphere in N . An example is the Whitehead link (Figure 2b).
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(a)

D
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Figure 2: Incompressible 3-punctured sphere in general position and in the
complement of Whitehead link

The Borromean rings is also a hyperbolic link. Its complement contains
an embedded incompressible thrice punctured sphere (Figure 3a) and an
embedded once punctured torus (Figure 3b) which is isotopic to a properly
embedded minimal once punctured torus by Theorem 10.

It will be interesting to estimate the areas of the minimal surfaces ob-
tained by Theorems A, B and 10 as in Remark 3. For examples, consider
the figure eight knot complement N . We know there is a properly embed-
ded minimal once punctured torus Σ in N by Theorem 10 (Figure 3c). The
Finite Total Curvature Theorem 2 and the Gauss equation tells us the area
of Σ is strictly less than 2π (there are no embedded totally geodesic surfaces
in N ).

What is the area of Σ ? What is the properly embedded, non compact,
minimal surface of smallest area (it exists) in N ? And in all such manifolds
N ?
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Figure 3: Incompressible 3-punctured sphere and 1-punctured torus in the
complement of Borromean rings and an incompressible 1-punctured torus in
the figure eight knot complement

23


