Minimal mass blow up solutions for a double power nonlinear Schrödinger equation - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2016

Minimal mass blow up solutions for a double power nonlinear Schrödinger equation

Résumé

We consider a nonlinear Schrödinger equation with double power nonlinearity, where one power is focusing and mass critical and the other mass sub-critical. Classical variational arguments ensure that initial data with mass less than the mass of the ground state of the mass critical problem lead to global in time solutions. We are interested by the threshold dynamic and in particular by the existence of finite time blow up minimal solutions. For the mass critical problem, such an object exists thanks to the explicit conformal symmetry, and is in fact unique. For the focusing double power nonlinearity, we exhibit a new class of minimal blow up solutions with blow up rates deeply affected by the double power nonlinearity. The analysis adapts the recent approach developed by Raphaël and Szeftel for the construction of minimal blow up elements.
Fichier principal
Vignette du fichier
LeCoz-Martel-Raphael-2014-06-21.pdf (298.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01011271 , version 1 (23-06-2014)

Identifiants

Citer

Stefan Le Coz, Yvan Martel, Pierre Raphaël. Minimal mass blow up solutions for a double power nonlinear Schrödinger equation. Revista Matemática Iberoamericana, 2016, 32 (3), pp.795-833. ⟨10.4171/rmi/899⟩. ⟨hal-01011271⟩
627 Consultations
455 Téléchargements

Altmetric

Partager

More