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MINIMAL MASS BLOW UP SOLUTIONS FOR A DOUBLE POWER

NONLINEAR SCHRÖDINGER EQUATION

STEFAN LE COZ, YVAN MARTEL, AND PIERRE RAPHAËL

Abstract. We consider a nonlinear Schrödinger equation with double power nonlinearity

i∂tu+∆u+ |u|
4
d u+ ǫ|u|p−1u = 0, ǫ ∈ {−1, 0, 1}, 1 < p <

4

d

in Rd (d = 1, 2, 3). Classical variational arguments ensure that H1(Rd) data with ‖u0‖2 < ‖Q‖2
lead to global in time solutions, where Q is the ground state of the mass critical problem (ǫ = 0).
We are interested by the threshold dynamic ‖u0‖2 = ‖Q‖2 and in particular by the existence of
finite time blow up minimal solutions. For ǫ = 0, such an object exists thanks to the explicit
conformal symmetry, and is in fact unique from the seminal work [22]. For ǫ = −1, simple
variational arguments ensure that minimal mass data lead to global in time solutions. We
investigate in this paper the case ǫ = 1, exhibiting a new class of minimal blow up solutions with
blow up rates deeply affected by the double power nonlinearity. The analysis adapts the recent
approach [31] for the construction of minimal blow up elements.

1. Introduction

We consider the following double power nonlinear Schrödinger equation in Rd

(NLS)

{

i∂tu+∆u+ |u|
4
d u+ ǫ|u|p−1u = 0,

u|t=0 = u0,
1 < p < 1 +

4

d
, ǫ ∈ {−1, 0, 1}. (1)

This model corresponds to a subcritical perturbation of the classical mass critical problem ǫ = 0
which rules out the scaling symmetry of the problem. It is well-known (see e.g [6] and the references
therein) that for any u0 ∈ H1(Rd), there exists a unique maximal solution u ∈ C((−T⋆, T

⋆), H1(Rd))
∩ C1((−T⋆, T

⋆), H−1(Rd)) of (1). Moreover, the mass (i.e. L2 norm) and energy E of the solution
are conserved by the flow where:

E(u) =
1

2
‖∇u‖

2
2 −

1

2 + 4
d

‖u‖
2+ 4

d

2+ 4
d

− ǫ
1

p+ 1
‖u‖

p+1
p+1.

Moreover, there holds the blow up criterion:

T ⋆ < +∞ implies lim
t↑T⋆

‖∇u(t)‖2 = +∞. (2)

In this paper, we are interested in the derivation of a sharp global existence criterion for (1) in
connection with the existence of minimal mass blow up solutions of (1).

1.1. The mass critical problem. Let us briefly recall the structure of the mass critical problem
ǫ = 0. In this case, the scaling symmetry

uλ(t, x) = λ
d
2 u(λ2t, λx)

acts on the set of solutions and leaves the mass invariant

‖uλ(t, ·)‖2 = ‖u(λ2t, ·)‖2.

From variational argument [32], the unique ([3, 14]) up to symmetry ground state solution to

−∆Q+Q− |Q|
4
dQ = 0, Q ∈ H1(Rd), Q > 0, Q radial
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attains the best constant in the Gagliardo-Nirenberg inequality

‖u‖
2+ 4

d

2+ 4
d

≤ C‖u‖
4
d
2 ‖∇u‖22,

so that

∀u ∈ H1(Rd), Ecrit =
1

2
‖∇u‖

2
2 −

1

2 + 4
d

‖u‖
2+ 4

d

2+ 4
d

≥
1

2
‖∇u‖22

[

1−

(

‖u‖2
‖Q‖2

)
4
d

]

. (3)

Together with the conservation of mass and energy and the blow up criterion (2), this implies the
global existence of all solutions with data ‖u0‖2 < ‖Q‖2. In fact, there holds scattering, see [10]
and references therein.
At the threshold ‖u0‖2 = ‖Q‖2, the pseudo-conformal symmetry

1

|t|
d
2

u

(

1

t
,
x

t

)

ei
|x|2

4t (4)

applied to the solitary wave solution u(t, x) = Q(x)eit yields the existence of the following explicit
minimal blow up solution

S(t, x) =
1

|t|
d
2

Q

(

x

|t|

)

e−i
|x|2

4|t| e
i
|t| , ‖S(t)‖2 = ‖Q‖2, ‖∇S(t)‖2 ∼

t∼0−

1

|t|
. (5)

From [22], minimal blow up elements are classified in H1(Rd) in the following sense

‖u(t)‖2 = ‖Q‖2 and T ∗ < +∞ imply u ≡ S

up to the symmetries of the flow. Note that the minimal blow up dynamic (5) can be extended to
the super critical mass case ‖u0‖2 > ‖Q‖2 (see [5]) and that it corresponds to an unstable threshold
dynamics between global in time scattering solutions and finite time blow up solutions in the stable
blow up regime

‖∇u(t)‖2 ∼
t∼T∗

√

log | log |T ∗ − t||

T ∗ − t
. (6)

We refer to [26] and references therein for an overview of the existing literature for the L2 critical
blow up problem.

1.2. The case ǫ = −1. Let us now consider the case of a defocusing perturbation. First, there
are no solitary waves with subcritical mass ‖u0‖2 < ‖Q‖2 from a standard Pohozaev integration
by parts argument. At the threshold, we claim:

Lemma 1 (Global existence at threshold for ǫ = −1). Let ǫ = −1. Let u0 ∈ H1(Rd) with
‖u0‖2 = ‖Q‖2, then the solution of (1) is global and bounded in H1(Rd).

The proof follows from standard concentration compactness argument, see Appendix A. The
global existence criterion of Lemma 1 is sharp in the sense that for all α∗ > 0, we can build an
H1(Rd) finite time blow up solution to (7) with ‖u0‖2 = ‖Q‖2 + α∗ and blow up speed given by
the log-log law (6). This is a consequence of the strong structural stability of the log log regime
and the proof would follow the lines of [28, 29, 30].

1.3. The case ǫ = 1. We now turn to the case ǫ = 1 for the rest of the paper, i.e. we consider the
model

i∂tu+∆u+ |u|
4
d u+ |u|p−1u = 0 where 1 < p < 1 +

4

d
. (7)

First, from mass and energy conservation, using (3) and (72), H1(Rd) solutions with ‖u0‖2 < ‖Q‖2
are global and bounded in H1(Rd). However, large time scattering is not true in general, even for
small L2 solutions, since there exist arbitrarily small solitary waves.

Lemma 2 (Small solitary waves). For all M ∈ (0, ‖Q‖2), there exists ω(M) > 0 and a Schwartz
radially symmetric solution of

∆QM − ω(M)QM +Q
1+ 4

d

M +Qp
M = 0, ‖QM‖2 = M.

The proof follows from classical variational methods, see Appendix B.
The main result of this paper is the existence of a minimal mass blow up solution for (7), in

contrast with the defocusing case ǫ = −1.
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Theorem 1 (Existence of a minimal blow up element). Let d = 1, 2, 3 and 1 < p < 1+ 4
d
. Then for

all energy level E0 ∈ R, there exist t0 < 0 and a radially symmetric Cauchy data u(t0) ∈ H1(Rd)
with

‖u(t0)‖2 = ‖Q‖2, E(u(t0)) = E0,

such that the corresponding solution u(t) of (7) blows up at time T ∗ = 0 with speed:

‖∇u(t)‖2 =
C(p) + ot↑0(1)

|t|σ
(8)

for some universal constants

σ =
4

4 + d(p− 1)
∈
(

1
2 , 1
)

, C(p) > 0.

Comments on the result.

1. On the existence of minimal elements. Since the pioneering work [22], it has long been
believed that the existence of a minimal blow up bubble was related to the exceptional pseudo
conformal symmetry (4), or at least to the existence of a sufficiently sharp approximation of it,
see [2, 16]. However, a new methodology to construct minimal mass elements for a inhomogeneous
(NLS) problem, non perturbative of critical (NLS), was developed in [31], and later successfully
applied to problems without any sort of pseudo conformal symmetry, [4, 12, 19]. More generally, the
heart of the matter is to be able to compute the trajectory of the solution on the soliton manifold,
see [13, 18] for related problems for two solitary waves motion. The present paper adapts this
approach which relies on the direct computation of the blow up speed and the control of non
dispersive bubbles as in [15].

Observe that the blow up speed (8) is quite surprising since it approaches the self simiar blow

up speed |t|−
1
2 as p →

(

1 + 4
d

)−
.

2. Uniqueness. A delicate question investigated in [4, 19, 31] is the uniqueness of the minimal
blow up element. Such a uniqueness statement should involve Galilean drifts since the Galilean
symmetry applied to (7) is an L2 isometry and automatically induces minimal elements with non
trivial momentum. Uniqueness issues lie within the general question of classifying the compact
elements of the flow in the Kenig-Merle road map [11]. A more limited question is to determine the
global behavior of the minimal element for negative time, which is poorly understood in general.
Here, at least in the case E0 ≥ 0, one can see from Virial type estimates that the solution is global
in negative time.

3. Detailed structure of the singular bubble. The analysis provides the following detailed struc-
ture of the blow up bubble

u(t, x) =
1

λ
d
2 (t)

Q

(

x

λ(t)

)

e−iσ
|x|2

4t eiγ(t) + v (t, x) (9)

where Q is the mass critical ground state, and

lim
t→0

‖v(t)‖2 = 0, λ(t) ∼ Cp|t|
σ as t → 0−,

for some constant Cp > 0. Note also that the dimension restriction d ∈ {1, 2, 3} is for the sake of
simplicity but not essential.

The construction of the minimal blow up element for (1) can be viewed as part of a larger program
of understanding what kind of blow up speeds are possible for (NLS) type models. Let us repeat
that log-log type solutions with super critical mass can be constructed for (1), but then the question
becomes: do these examples illustrate all possible blow up types, at least near the ground state
profile? The recent series of works [19, 20, 21] for the mass critical gKdV equation indicate that this
is a delicate problem, and that the role played by the topology used to measure the perturbation is
essential. More generally, symmetry breaking perturbations are very common in nonlinear analysis,
and while they are expected to be lower order for generic stable blow up dynamics, our analysis
shows that they can dramatically influence the structure of unstable threshold dynamics such as
in our case minimal blow up bubbles.

Aknowldedgments. S. Le Coz is partly supported by the ANR project ESONSE. Y. Martel and
P. Raphaël are partly supported by the ERC advanced grant 291214 BLOWDISOL.
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1.4. Notation. Let us collect the main notation used throughout the paper. For the sake of
simplicity, we work in the radial setting only. The L2 scalar product and Lq norm (q ≥ 1) are
denoted by

(u, v)2 = Re

(∫

Rd

u(x)v̄(x)dx

)

, ‖u‖q =

(∫

Rd

|u|q
)

1
q

.

We fix the notation:

f(z) = |z|
4
d z; g(z) = |z|p−1z; F (z) =

1
4
d
+ 2

|z|
4
d+2; G(z) =

1

p+ 1
|z|p+1.

Identifying C with R
2, we denote the differential of these functions by df , dg, dF and dG. Let Λ

be the generator of L2-scaling i.e.

Λ =
d

2
+ y · ∇.

The linearized operator close to Q comes as a matrix

L+ := −∆+ 1−

(

1 +
4

d

)

Q
4
d , L− := −∆+ 1−Q

4
d .

and the generalized kernel of
(

0 L−

−L+ 0

)

is non-degenerate and spanned by the symmetries of the problem (see [14, 33] for the original
results and [8] for a short proof). It is completely described in H1

rad(R
d) by the relations (we define

ρ as the unique radial solution to L+ρ = |y|2Q)

L−Q = 0, L+ΛQ = −2Q, L−|y|
2Q = −4ΛQ, L+ρ = |y|2Q. (10)

Denote by Y the set of radially symmetric functions f ∈ C∞(Rd) such that

∀α ∈ N
d, ∃Cα, κα > 0, ∀x ∈ R

d, |∂αf(x)| ≤ Cα(1 + |x|)καQ(x).

It follows from the kernel properties of L+ and L−, and from well-known properties of the Helmholtz
kernel (see [1] for the properties of Helmholtz kernel (i.e. Bessel and Hankel functions) and [9,
Appendix A] or proof of Lemma 3.2 in [27] for related arguments) that

∀g ∈ Y, ∃f+ ∈ Y, L+f+ = g, (11)

∀g ∈ Y, (g,Q)2 = 0, ∃f− ∈ Y, L−f− = g. (12)

It is also well known (see e.g. [23, 24, 31, 34]) that L+ and L− verify the following coercivity
property: there exists µ > 0 such that for all ε = ε1 + iε2 ∈ H1

rad(R
d),

〈L+ε1, ε1〉+ 〈L−ε2, ε2〉 ≥ µ‖ε‖2H1 −
1

µ

(

(ε1, Q)22 +
(

ε1, |y|
2Q
)2

2
+ (ε2, ρ)

2
2

)

. (13)

Throughout the paper, C denotes various positive constants whose exact values may vary from line
to line but are of no importance in the analysis. When an inequality is true up to such a constant,
we also use the notation ., & or ≈.

2. Construction of the blow-up profile

In this section, we define the blow-up profile which is relevant to construct the minimal mass
solution – see Proposition 3 below.

2.1. Blow up profile. Let us start with some heuristic arguments justifying the construction. As
usual in blow up contexts, we look for a solution of the following form, with rescaled variables
(s, y):

u(t, x) =
1

λ
d
2 (s)

w(s, y)eiγ(s)−i
b(s)|y|2

4 ,
ds

dt
=

1

λ2
, y =

x

λ(s)
,
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where the function w, and the time dependent parameters λ > 0, b and γ are to be determined
satisfying the following equation

iws +∆w − w + f(w) + λαg(w)

− i

(

b+
λs

λ

)

Λw + (1− γs)w + (bs + b2)
|y|2

4
w − b

(

b+
λs

λ

)

|y|2

2
w = 0, (14)

where

α = 2−
d(p− 1)

2
∈ (0, 2).

Since we look for blow up solutions, the parameter λ(s) should converge to zero as s → ∞.
Therefore,

w(s, y) = Q(y), b+
λs

λ
= bs + b2 = 1− γs = 0 (15)

is a solution of (14) at the first order, i.e. when neglecting λα|w|p−1w. However, the first order
error term λαQp cannot be neglected in the minimal mass blow up analysis (while it could be

neglected easily in the log-log regime where λ ∼ e−e
c
b ). Therefore, starting from Q, we need to

look for a refined blow up ansatz. Actually, to close the analysis for any α ∈ (0, 2), we need to
remove error terms at any order of λα and b in the equation of w. It is important to note that in
the process of constructing the approximate solution, we cannot exactly solve (14) since we need to
introduce new terms in the equation (due to degrees of freedom necessary to construct the ansatz)
that will modify the modulation equations in (15). These terms (gathered in the time dependent
function θ(s) below) are responsible for the specific blow up law obtained in Theorem 1.

Fix K ∈ N, K ≫ 1 (K > 20/α is sufficient in the proof of Theorem 1), and

ΣK = {(j, k) ∈ N
2 | j + k ≤ K}.

Proposition 3. Let λ(s) > 0 and b(s) ∈ R be C1 functions of s such that λ(s) + |b(s)| ≪ 1.
(i) Existence of a blow up profile. For any (j, k) ∈ ΣK , there exist real-valued functions P+

j,k ∈ Y,

P−
j,k ∈ Y and βj,k ∈ R such that P (s, y) = P̃K(y; b(s), λ(s)), where P̃K is defined by

P̃K(y; b, λ) := Q(y) +
∑

(j,k)∈ΣK

b2jλ(k+1)αP+
j,k(y) + i

∑

(j,k)∈ΣK

b2j+1λ(k+1)αP−
j,k(y) (16)

satisfies

i∂sP +∆P − P + f(P ) + λαg(P ) + θ
|y|2

4
P = ΨK

where θ(s) = θ̃(b(s), λ(s)),

θ̃(b, λ) =
∑

(j,k)∈ΣK

b2jλ(k+1)αβj,k

and

sup
y∈Rd

(

e
|y|
2 (|ΨK(y)|+ |∇ΨK(y)|)

)

. λα

(

∣

∣

∣b+
λs

λ

∣

∣

∣+
∣

∣bs + b2 − θ
∣

∣

)

+ (|b|2 + λα)K+2. (17)

(ii) Rescaled blow up profile. Let

Pb(s, y) := P (s, y)e−i
b(s)|y|2

4 . (18)

Then

i∂sPb +∆Pb − Pb + f(Pb) + λαg(Pb)− i
λs

λ
ΛPb

= −i

(

λs

λ
+ b

)

ΛPb + (bs + b2 − θ)
|y|2

4
Pb +ΨKe−i

b|y|2

4 . (19)

(iii) Mass and energy properties of the blow up profile. Let

Pb,λ,γ(s, y) =
1

λ
d
2

Pb

(

s,
x

λ

)

eiγ .
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Then,
∣

∣

∣

∣

d

ds

∫

|Pb,λ,γ |
2

∣

∣

∣

∣

. λα

(

∣

∣

∣b+
λs

λ

∣

∣

∣+
∣

∣bs + b2 − θ
∣

∣

)

+ (|b|2 + λα)K+2, (20)

∣

∣

∣

∣

d

ds
E(Pb,λ,γ)

∣

∣

∣

∣

.
1

λ2

(

∣

∣

∣
b+

λs

λ

∣

∣

∣
+
∣

∣bs + b2 − θ
∣

∣+ (|b|2 + λα)K+2

)

. (21)

Moreover, for any (j, k) ∈ ΣK , there exist ηj,k ∈ R such that
∣

∣

∣

∣

E(Pb,λ,γ)−

∫

|y|2Q2

8
E(b, λ)

∣

∣

∣

∣

.
(b2 + λα)K+2

λ2
, (22)

where

E(b, λ) =
b2

λ2
−

2β

2− α
λα−2 + λα−2

∑

(j,k)∈ΣK ,j+k≥1

b2jλkαηj,k. (23)

See a similar construction of a blow up profile at any order of b in [27]. One sees in (19) the
impact of the subcritical nonlinearity g(u) on the blow up law bs + b2 − θ = 0, which differs from
the unperturbed equation bs + b2 = 0, and leads to leading order to λα ≈ b2, see (32).

Proof of Proposition 3. Proof of (i). For time dependent functions λ(s) > 0, b(s), we set

P = Q + λαZ where Z =
∑

(j,k)∈ΣK

b2jλkαP+
j,k + i

∑

(j,k)∈ΣK

b2j+1λkαP−
j,k,

θ(s) =
∑

(j,k)∈ΣK

b2j(s)λ(k+1)α(s)βj,k,

where P+
j,k ∈ Y, P−

j,k ∈ Y and βj,k are to be determined. Set

ΨK = i∂sP +∆P − P + |P |
4
dP + λα|P |p−1P + θ

|y|2

4
P.

The objective is to choose the unknown functions and parameters so that the error term ΨK is
controlled as in (17). First,

iPs = i
λs

λ

∑

(j,k)∈ΣK

(k + 1)αb2jλ(k+1)αP+
j,k + ibs

∑

(j,k)∈ΣK

2jb2j−1λ(k+1)αP+
j,k

−
λs

λ

∑

(j,k)∈ΣK

(k + 1)αb2j+1λ(k+1)αP−
j,k − bs

∑

(j,k)∈ΣK

(2j + 1)b2jλ(k+1)αP−
j,k

= −i
∑

(j,k)∈ΣK

(k + 1)αb2j+1λ(k+1)αP+
j,k

− i



b2 −
∑

(j′,k′)∈ΣK

b2j
′

λ(k′+1)αβj′,k′





∑

(j,k)∈ΣK

2jb2j−1λ(k+1)αP+
j,k

+
∑

(j,k)∈ΣK

(k + 1)αb2(j+1)λ(k+1)αP−
j,k

+



b2 −
∑

(j′,k′)∈ΣK

b2j
′

λ(k′+1)αβj′,k′





∑

(j,k)∈ΣK

(2j + 1)b2jλ(k+1)αP−
j,k +ΨPs

where

ΨPs =

(

λs

λ
+ b

)

∑

(j,k)∈ΣK

(k + 1)αb2jλ(k+1)α
(

iP+
j,k − bP−

j,k

)

+
(

bs + b2 − θ
)

∑

(j,k)∈ΣK

b2j−1λ(k+1)α
(

2jiP+
j,k − (2j + 1)bP−

j,k

)

. (24)
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We rewrite

iPs = −i
∑

(j,k)∈ΣK

((k + 1)α+ 2j) b2j+1λ(k+1)αP+
j,k

+ i
∑

j,k≥0

b2j+1λ(k+1)αFPs,−
j,k +

∑

j,k≥0

b2jλ(k+1)αFPs,+
j,k +ΨPs ,

where for j, k ≥ 0, FPs,±
j,k depends on various functions P±

j′,k′ and parameters βj′,k′ for (j′, k′) ∈ ΣK

such that either k′ ≤ k − 1 and j′ ≤ j + 1 or k′ ≤ k and j′ ≤ j − 1. Only a finite number of these
functions are nonzero.

Next, using ∆Q−Q+Q
4
d+1 = 0, we get

∆P − P + |P |
4
dP = −

∑

(j,k)∈ΣK

b2jλ(k+1)αL+P
+
j,k − i

∑

(j,k)∈ΣK

b2j+1λ(k+1)αL−P
−
j,k

+ f(Q+ λαZ)− f(Q)− λαdf(Q)Z.

Let

Ψf = f(Q+ λαZ)−

K
∑

k=0

dkf(Q)(λαZ, . . . , λαZ)

= |Q+ λαZ|
4
d (Q + λαZ)−Q

4
d+1

(

1 +

K+1
∑

n=1

(

2
d
+ 1
) (

2
d

)

. . .
(

2
d
− n+ 2

)

n!

(

λαZ

Q

)n
)

×

(

1 +

K+1
∑

n′=1

(

2
d

) (

2
d
− 1
)

. . .
(

2
d
− n′ + 1

)

n′!

(

λαZ

Q

)n′)

. (25)

Then

∆P − P + |P |
4
dP = −

∑

(j,k)∈ΣK

b2jλ(k+1)αL+P
+
j,k − i

∑

(j,k)∈ΣK

b2j+1λ(k+1)αL−P
−
j,k

+ i
∑

j≥0,k≥1

b2j+1λ(k+1)αF f,−
j,k +

∑

j,k≥0

b2jλ(k+1)αF f,+
j,k +Ψf .

where for j, k ≥ 0, F f,±
j,k depends on Q and on various functions P±

j′,k′ for (j′, k′) ∈ ΣK such that

k′ ≤ k − 1 and j′ ≤ j.

Using a similar argument for λα|P |p−1P , we obtain

λα|P |p−1P = i
∑

j≥0,k≥1

b2j+1λ(k+1)αF g,−
j,k +

∑

j≥0,k≥1

b2jλ(k+1)αF g,+
j,k +Ψg,

where

Ψg = λα

(

|Q+ λαZ|p−1(Q+ λαZ)−Q
p
2+1

(

1 +

K+1
∑

n=1

(

p
2

) (

p
2 − 1

)

. . .
(

p
2 − n+ 1

)

n!

(

λαZ

Q

)n
)

×

(

1 +

K+1
∑

n=1

(

p
2 − 1

) (

p
2 − 2

)

. . .
(

p
2 − n

)

n!

(

λαZ

Q

)n
))

,

and where for j, k ≥ 0, F g,±
j,k depends on Q and on various functions P±

j′,k′ for (j′, k′) ∈ ΣK such

that k′ ≤ k − 1 and j′ ≤ j.

Finally,

θ
|y|2

4
P =





∑

(j,k)∈ΣK

b2jλ(k+1)αβj,k





|y|2

4
Q

+ i
∑

j,k≥0

b2j+1λ(k+1)αF θ,−
j,k +

∑

j,k≥0

b2jλ(k+1)αF θ,+
j,k ,
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where F θ,±
j,k depends on Q and on various functions P±

j′,k′ or parameters βj′,k′ for (j′, k′) ∈ ΣK

such that k′ ≤ k − 1 and j′ ≤ j.
Combining these computations, we obtain

ΨK = −
∑

(j,k)∈ΣK

b2jλ(k+1)α
(

L+P
+
j,k − F+

j,k − βj,k|y|
2Q
)

− i
∑

(j,k)∈ΣK

b2j+1λ(k+1)α
(

L−P
−
j,k − F−

j,k + ((k + 1)α+ 2j)P+
j,k

)

+Ψ>K +ΨPs +Ψf +Ψg,

where
F±
j,k = FPs,±

j,k + F f,±
j,k + F g,±

j,k + F θ,±
j,k ,

and

Ψ>K =
∑

j,k>0, (j,k) 6∈ΣK

b2jλ(k+1)αF+
j,k + i

∑

j,k>0, (j,k) 6∈ΣK

b2j+1λ(k+1)αF−
j,k.

(Note that the series in the expression of Ψ>K contains only a finite number of terms.) Now, for
any (j, k) ∈ ΣK , we want to choose recursively P±

j,k ∈ Y and βj,k to solve the system

(Sj,k)

{

L+P
+
j,k − F+

j,k − βj,k|y|
2Q = 0

L−P
−
j,k − F−

j,k + ((k + 1)α+ 2j)P+
j,k = 0,

where F±
j,k are source terms depending of previously determined P±

j′,k′ and βj′,k′ . We argue by a

suitable induction argument on the two parameters j and k. For (j, k) = (0, 0), we see that the
system writes

L+P
+
0,0 −Qp − β0,0|y|

2Q = 0

L−P
−
0,0 + αP+

0,0 = 0,

(the term Qp in the first line is coming from Ψg). By (12), for any β0,0 ∈ R, there exists a unique

P+
0,0 ∈ Y so that L+P

+
0,0 −Qp − β0,0|y|

2Q = 0. We choose β0,0 ∈ R so that

(

P+
0,0, Q

)

2
= −

1

2

(

L+P
+
0,0,ΛQ

)

2
= −

1

2

(

Qp + β0,0
|y|2

4
Q,ΛQ

)

2

= 0

(recall from (10) that L+ΛQ = −2Q), which gives

β := β0,0 = −
4 (Qp,ΛQ)2
(|y|2Q,ΛQ)2

=
2d(p− 1)

p+ 1

‖Q‖
p+1
p+1

‖yQ‖
2
2

> 0. (26)

By (12), there exists P−
0,0 ∈ Y (unique up to the addition of cQ) such that L−P

−
0,0 + αP+

0,0 = 0.

Now, we assume that for some (j0, k0) ∈ ΣK , the following assertion is true:

H(j0, k0) : for all (j, k) ∈ ΣK such that either k < k0, or k = k0 and j < j0, the system (Sj,k) has
a solution (P+

j,k, P
−
j,k, βj,k), P

±
j,k ∈ Y.

In view of the definition of F±
j0,k0

, H(j0, k0) implies in particular that F±
j0,k0

∈ Y. We now solve

the system (Sj0,k0) as before. By (12), for any βj0,k0 ∈ R, there exists a unique P+
j0,k0

∈ Y so that

L+P
+
j0,k0

− F+
j0,k0

− βj0,k0 |y|
2Q = 0. We uniquely choose βj0,k0 ∈ R so that
(

−F−
j0,k0

+ ((k0 + 1)α+ 2j0)P
+
j0,k0

, Q
)

2
= 0.

By (12), there exists P−
j0,k0

∈ Y (unique up to the addition of cQ) such that L−P
−
j0,k0

− F−
j0,k0

+

((k0 + 1)α + 2j0)P
+
j0,k0

= 0. In particular, we have proved that if j0 < K, then H(j0, k0) implies

H(j0+1, k0), and H(K, k0) implies H(1, k0+1). This is enough to complete an induction argument
on the two parameters (j, k). Therefore, system (Sj,k) is solved for all (j, k) ∈ ΣK .
It remains to estimate ΨK and ∇ΨK . It is straightforward to check that

sup
y∈Rd

(

e
|y|
2

(

|ΨPs(y)|+ |∇ΨPs(y)|
)

)

. λα

(∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+
∣

∣bs + b2 − θ
∣

∣

)

.
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Next, we claim

|Ψf | .
(

λ(K+2)α + λαb2K+2
)

Q. (27)

Indeed, first, if y is such that
∣

∣

∣λα Z(y)
Q(y)

∣

∣

∣ < 1
2 then the result follows from (25) and a order Taylor

expansion of orderK+1 of (1+ λαZ
Q

)
2
d+1 and (1+ λαZ

Q
)

2
d . Second, if on the contrary,

∣

∣

∣λα Z(y)
Q(y)

∣

∣

∣ ≥ 1
2 ,

then, since Z ∈ Y, we have, for such y,

Q(y) ≤ 2λα|Z(y)| . λα(1 + |y|κ)Q(y) and so Q(y) + |Z(y)| . e−
1
2λ

α/κ

,

which completes the proof of (27). The proofs of estimates for ∇Ψf , Ψg and ∇Ψg are similar.
Finally the following estimates for Ψ>K and ∇Ψ>K are clear:

|Ψ>K |+ |∇Ψ>K | .
(

λ(K+2)α + λα|b|2K+2
)

Q
1
2 .

The result follows from K ≥ 20
α
.

Proof of (ii). This is a straightforward computation which is left to the reader.
Proof of (iii). To prove (20), we hit (19) with iPb and compute using the critical relation (P,ΛP )2 =
0:

1

2

d

ds
‖Pb‖

2
2 = (i∂sPb, iPb)2 = (ΨKe−i

b|y|2

4 , iPb)

and (20) follows from (17). For (21), we have from scaling:

E(Pb,λ,γ) =
1

λ2

(

1

2

∫

|∇Pb|
2 −

∫

F (Pb)− λα

∫

G(Pb)

)

=:
1

λ2
Ẽ(λ, Pb)

Therefore,

d

ds
E(Pb,λ,γ) =

1

λ2

(

−2
λs

λ
Ẽ(λ, Pb) +

〈

Ẽ′(λ, Pb), ∂sPb

〉

− αλα λs

λ

∫

G(Pb)

)

. (28)

Using the equation (19) of Pb, we compute:

〈

Ẽ′(λ, Pb), ∂sPb

〉

=
λs

λ

〈

Ẽ′(λ, Pb),ΛPb

〉

−

(

λs

λ
+ b

)

〈

Ẽ′(λ, Pb),ΛPb

〉

+ (bs + b2 − θ)

〈

iẼ′(λ, Pb),
|y|2

4
Pb

〉

+

〈

iẼ′(λ, Pb),ΨKe−i
b|y|2

4

〉

. (29)

We now integrate by parts to estimate

〈

Ẽ′(λ, Pb),ΛPb

〉

=

∫

|∇Pb|
2 − 2

∫

F (Pb)−
d(p− 1)

2

∫

G(Pb) = 2Ẽ(λ, Pb) +αλα

∫

G(Pb), (30)

where we have used α = 2− d(p−1)
2 , from which:

d

ds
E(Pb,λ,γ) =

1

λ2

[

−2
λs

λ
Ẽ(λ, Pb)− αλα λs

λ

∫

G(Pb) +
λs

λ

[

2Ẽ(λ, Pb) + αλα

∫

G(Pb)

]]

+
1

λ2
O

(∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

+ |bs + b2 − θ|+ (b2 + λα)K+2

)

.

The estimate (21) on the time-derivative of the energy then follows from (28), (29), (30), and (17).
Next,

λ2E(Pb,λ,γ) =
1

2

∫

|∇Pb|
2 −

∫

F (Pb)− λα

∫

G(Pb)

=
1

2

∫

|∇P |2 +
b2

8

∫

|y|2|P |2 −

∫

F (P )− λα

∫

G(P ).
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Thus, replacing P = Q+ λαZ,

λ2E(Pb,λ,γ) =
1

2

∫

|∇Q|2 −

∫

F (Q) +
b2

8

∫

|y|2Q2 − λα

∫

G(Q)

+ λα

∫

(−∆Q− f(Q))ReZ − λ2α

∫

g(Q)ReZ +
b2

4
λα

∫

|y|2QReZ

+
λ2α

2

∫

|∇Z|2 +
b2λ2α

8

∫

|y|2|Z|2 −

∫

{F (Q+ λαZ)− F (Q)− λαf(Q)ReZ}

− λα

∫

{G(Q+ λαZ)−G(Q)− λαg(Q)ReZ} .

On the one hand, we recall that from Pohozaev identity,

1

2

∫

|∇Q|2 −

∫

F (Q) = 0,

and from the definition (26) of β0,0,
∫

G(Q) =
β

2d(p− 1)

∫

|y|2Q2 =
β

4(2− α)

∫

|y|2Q2

and moreover
∆Q+ f(Q) = Q.

On the other hand, we observe, since
∫

P+
0,0Q = 0,

λα

∫

ZQ = λα
∑

(j,k)∈ΣK ,j+k≥1

b2jλkαηIj,k,

for some ηIj,k ∈ R;

λ2α

∫

Zg(Q) = λα
∑

(j,k)∈ΣK ,k≥1

b2jλkαηIIj,k,

for some ηIIj,k ∈ R;

λαb2
∫

|y|2QReZ = λα
∑

(j,k)∈ΣK ,j≥1

b2jλkαηIIIj,k,

for some ηIIIj,k ∈ R;

λ2α

∫

|∇Z|2 +
b2λ2α

8

∫

|y|2Z2 = λα
∑

(j,k)∈ΣK ,j≥1,k≥0

b2jλkαηIVj,k,

for some ηIVj,k ∈ R. Moreover, by Taylor expansion as before, for some ηVj,k, η
IV
j,k ∈ R

∣

∣

∣

∣

∣

∣

∫







F (Q + λαZ)− F (Q)− λαf(Q)ReZ − λα
∑

(j,k)∈ΣK ,k≥1

b2jλkαηVj,k







∣

∣

∣

∣

∣

∣

. λ(K+2)α,

∣

∣

∣

∣

∣

∣

λα

∫







G(Q + λαZ)−G(Q)− λαg(Q)ReZ − λα
∑

(j,k)∈ΣK ,k≥2

b2jλkαηVI
j,k







∣

∣

∣

∣

∣

∣

. λ(K+2)α.

Gathering these computations, we obtain (22). �

2.2. Approximate blow up law. For simplicity of notation, we set

β = β0,0 =
2d(p− 1)

p+ 1

‖Q‖p+1
p+1

‖yQ‖
2
2

.

First, we find a relevant solution to the following approximate system

bs + b2 − βλα = 0, b+
λs

λ
= 0. (31)

Indeed, for |b|+ λ ≪ 1, βλα is the main term in θ, and the only term in θ that will modify at the
main order the blow up rate.
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Lemma 4. Let

λapp(s) =

(

α

2

√

2β

2− α

)− 2
α

s−
2
α , bapp(s) =

2

αs
. (32)

Then (λapp(s), bapp(s)) solves (31) for s > 0.

Proof. We compute:
(

b2

λ2

)

s

= 2
b

λ

bs + b2

λ
= −2β

λs

λ
λα−2,

and so
b2

λ2
−

2β

2− α
λα−2 = c0. (33)

Taking the constant c0 = 0, and using b = −λs

λ
> 0, we find

λs

λ1+α
2
=

√

2β

2− α
.

Therefore,

λ(s) =

(

α

2

√

2β

2− α

)− 2
α

s−
2
α , b(s) = −

λs

λ
(s) =

2

α

1

s

is solution of (31). �

Remark 1. We now express this solution in the time variable tapp related to λapp. Let

dtapp = λ2
appds =

(

α

2

√

2β

2− α

)− 4
α

s−
4
α ds.

Therefore (with the convention that tapp → 0− as s → +∞)

tapp = −Css
− 4−α

α where Cs =
α

4− α

(

α

2

√

2β

2− α

)− 4
α

. (34)

As a consequence, we obtain for tapp < 0,

λapp(tapp) = Cλ|tapp|
2

4−α where Cλ =

(

4− α

α
C

− α
4−α

s

)
1
2

, (35)

bapp(tapp) = Cb|tapp|
α

4−α , where Cb =
2

α
C

− α
4−α

s . (36)

Now, we choose suitable initial conditions b1 and λ1 for b(s) and λ(s) at some large time s1,
first to adjust the value of the energy of Pb,λ,γ (up to the small error term in (22)) and second
to be able to close the perturbed dynamical system of (λ, b) at the end of the proof (see proof of
Lemma 16 below). Let E0 ∈ R and

C0 =
8E0

∫

|y|2Q2
.

Fix 0 < λ0 ≪ 1 such that 2β
2−α

+ C0λ
2−α
0 > 0. For λ ∈ (0, λ0], let

F(λ) =

∫ λ0

λ

dµ

µ
α
2 +1
√

2β
2−α

+ C0µ2−α

. (37)

Note that the function F is related to the resolution of the system (33) for c0 = C0, see proof of
Lemma 16.

Lemma 5. Let s1 ≫ 1. There exist b1 and λ1 such that
∣

∣

∣

∣

∣

λ
α
2
1

λ
α
2
app(s1)

− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

b1
bapp(s1)

− 1

∣

∣

∣

∣

. s
− 1

2
1 + s

2− 4
α

1 , (38)

F(λ1) = s1, E(b1, λ1) = C0. (39)
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Proof. First, we choose λ1. Note that F is a decreasing function of λ satisfying F(λ0) = 0 and
limλ↓0 F(λ) = +∞. Thus, there exists a unique λ1 ∈ (0, λ0) such that F(λ1) = s1.

For λ ∈ (0, λ0],
∣

∣

∣

∣

∣

∣

F(λ)−
2

α
√

2β
2−α

λ
α
2

∣

∣

∣

∣

∣

∣

. 1 +

∣

∣

∣

∣

∣

∣

∫ λ0

λ

dµ

µ
α
2 +1





1
√

2β
2−α

+ C0µ2−α

−
1

√

2β
2−α





∣

∣

∣

∣

∣

∣

. 1 +

∫ λ0

λ

dµ

µ1+α
2 −(2−α)

.

Thus,
∣

∣

∣

∣

∣

∣

F(λ)−
2

α
√

2β
2−α

λ
α
2

∣

∣

∣

∣

∣

∣

.







1 for α ∈ (0, 4
3 ),

| logλ| for α = 4
3 ,

λ2− 3α
2 for α ∈ (43 , 2).

To simplify, we will use the non sharp but sufficient estimate
∣

∣

∣

∣

∣

∣

F(λ)−
2

α
√

2β
2−α

λ
α
2

∣

∣

∣

∣

∣

∣

. λ−α
4 + λ2− 3α

2 . (40)

Applied to λ1, it gives
∣

∣

∣

∣

∣

∣

s1 −
2

α
√

2β
2−α

λ
α
2
1

∣

∣

∣

∣

∣

∣

. λ
−α

4
1 + λ

2− 3α
2

1 and thus

∣

∣

∣

∣

∣

λ
α
2
1

λ
α
2
app(s1)

− 1

∣

∣

∣

∣

∣

. s
− 1

2
1 + s

2− 4
α

1 .

Second, we choose b1. From the definition of E , we have

h(b) := λ2
1E(b, λ1) = b2 −

(

2

αs1

)2

−
2β

2− α

(

λα
1 − λα

app(s1)
)

+ λα
1

∑

(j,k)∈ΣK , j+k≥1

b2jλ−kα
1 ηj,k

= b2 −

(

2

αs1

)2

+O(s
− 5

2
1 ) +O(s

− 4
α

1 ).

Observe that

|h(bapp(s1))| . s
− 4

α
1 , |h′(bapp(s1))| ≥ 2bapp(s1) +O(s−3

1 ) ≥ s−1
1 .

Since λ2
1 ≈ s

− 4
α

1 , it follows that there exists a unique b1 such that

|b1 − bapp(s1)| . s
− 3

2
1 + s

1− 4
α

1 , h(b1) = C0λ
2
1,

and so E(b1, λ1) = C0. �

3. Existence proof assuming uniform estimates

This section is devoted to the proof of Theorem 1 by a compactness argument, assuming uniform
estimates on specific solutions of (7). These estimates are given in Proposition 7.

3.1. Uniform estimates in rescaled time variable. The rescaled time depending on a suitable
modulation of the solution u(t), we first recall without proof the following standard result (see e.g.
[24]).

Lemma 6 (Modulation). Let u(t) ∈ C(I,H1(Rd)) for some interval I, be such that

sup
t∈I

inf
λ0>0,γ0

∥

∥

∥λ
d
2
0 u(t, λ0y)e

iγ0 −Q(y)
∥

∥

∥

H1
≤ δ, (41)

for δ > 0 small enough. Then, there exist C1 functions λ ∈ (0,+∞), b ∈ R, γ ∈ R on I such that
u admits a unique decomposition of the form

u(t, x) =
1

λ
d
2 (t)

(

Pb(t) + ε(t, y)
)

eiγ(t), y =
x

λ(t)
(42)

where ε satisfies the following orthogonality conditions on I (ρb(t, y) = ρ(y)e−i
b(t)|y|2

4 )

(ε, iΛPb)2 =
(

ε, |y|2Pb

)

2
= (ε, iρb)2 = 0. (43)
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See (18) for the definition of Pb.

Let E0 ∈ R. Given t1 < 0 close to 0, following Remark 1, we define the initial rescaled time s1
as

s1 :=
∣

∣C−1
s t1

∣

∣

− α
4−α .

Let λ1 and b1 be given by Lemma 5 for this value of s1. Let u(t) be the solution of (7) for t ≤ t1,
with data

u(t1, x) =
1

λ
d
2
1

Pb1

(

x

λ1

)

. (44)

As long as the solution u(t) satisfies (41), we consider its decomposition (λ, b, γ, ε) from Lemma 6
and we define the rescaled time s by

s = s1 −

∫ t1

t

1

λ2(τ)
dτ. (45)

The heart of the proof of Theorem 1 is the following result, giving uniform backwards estimates
on the decomposition of u(s) on [s0, s1] for some s0 independent of s1.

Proposition 7 (Uniform estimates in rescaled time). There exists s0 > 0 independent of s1
such that the solution u of (7) defined by (44) exists and satisfies (41) on [s0, s1]. Moreover, its
decomposition

u(s, x) =
1

λ
d
2 (s)

(Pb + ε) (s, y) eiγ(s), y =
x

λ(s)
,

satisfies the following uniform estimates on [s0, s1],

‖ε(s)‖H1 . s−(K+1),

∣

∣

∣

∣

∣

λ
α
2 (s)

λ
α
2
app(s)

− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

b(s)

bapp(s)
− 1

∣

∣

∣

∣

. s−
1
2 + s2−

4
α . (46)

In addition,

|E(Pb,λ,γ(s)) − E0| ≤ O(s−6).

Let us insist again that the key point in Proposition 7 is that s0 and the constants in the
estimates are independent of s1 → +∞.

3.2. Proof of Theorem 1 assuming Proposition 7. First, we convert the estimates of Propo-
sition 7 in the original time variable t. We claim:

Lemma 8 (Estimates in the t variable). There exists t0 < 0 such that under the assumptions of
Proposition 7, for all t ∈ [t0, t1],

b(t) = Cb|t|
α

4−α (1 + ot↑0(1)), λ(t) = Cλ|t|
2

4−α (1 + ot↑0(1)) (47)

‖ε(t)‖H1 . |t|
(K+1)α

4−α (48)

|E(Pb,λ,γ(t))− E0| = ot↑0(1) (49)

Proof of Lemma 8. Using (46), (45), for all large s < s1,

t1 − t(s) =

∫ s1

s

λ2(σ)dσ =

∫ s1

s

λ2
app(σ)

[

1 +O(σ− 1
2 ) +O(σ2− 4

α )
]

dσ.

Recall that tapp given by (34) corresponds to the normalization

tapp(s) = −

∫ +∞

s

λ2
app(σ), tapp(s1) = t1,

from which we obtain

t(s) = tapp(s)(1 + o(1)) = −Css
− 4−α

α [1 + o(1)] .

The estimates of Lemma 8 now follow directly follow from (32) and Proposition 7 (see the definition
of Cλ and Cb in (35) and (36)). �

Now, we finish the proof of Theorem 1 assuming Proposition 7.
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Proof of Theorem 1. Let (tn) ⊂ (t0, 0) be an increasing sequence such that limn→∞ tn = 0. For
each n, let un be the solution of (7) on [t0, tn] with final data at tn

un(tn, x) =
1

λ
d
2 (tn)

Pb(tn)

(

x

λ(tn)

)

, (50)

where λ(tn) = λ1 and b(tn) = b1 are given by Lemma 5 for s1 = |C−1
s tn|

− α
4−α , so that un(t)

satisfies the conclusions of Proposition 7 and of Lemma 8 on the interval [t0, tn]. The minimal
mass blow up solution for (7) is now obtained as the limit of a subsequence of (un). In a first step,
we prove that a subsequence of (un(t0)) converges to a suitable initial data. Indeed, from Lemma
8, we infer that (un(t0)) is bounded in H1(Rd). Hence there exists a subsequence of (un(t0)) (still
denoted by (un(t0)) and u∞(t0) ∈ H1(Rd) such that

un(t0) ⇀ u∞(t0) weakly in H1(Rd) as n → +∞.

Now, we obtain strong convergence in Hs (for some 0 < s < 1) by direct arguments. Let χ :
[0,+∞) → [0, 1] be a smooth cut-off function such that χ ≡ 0 on [0, 1] and χ ≡ 1 on [2,+∞). For
R > 0, define χR : Rd → [0, 1] by χR(x) = χ(|x|/R). Take any δ > 0. By the expression of un(tn)
in (50), we can choose R large enough (independent of n) so that

∫

Rd

|un(tn)|
2χRdx ≤ δ. (51)

It follows from elementary computations that

d

dt

∫

Rd

|un|
2χRdx = 2 Im

∫

Rd

∇χR · ∇un ūndx.

Hence from the geometrical decomposition

un(t, x) =
1

λ
d
2
n (t)

(

Pbn(t) + εn)(t, y)
)

eiγn(t), y =
x

λn(t)
,

and the smallness (47)-(48) of εn and λn we infer
∣

∣

∣

∣

d

dt

∫

Rd

|un(t)|
2χRdx

∣

∣

∣

∣

≤
C

λn(t)R

(

e−
R

2λn(t) + ‖εn(t)‖
2
H1

)

≤
C

R
|t|(−

2
α+K+1) α

4−α .

Integrating between t0 and tn, we obtain
∫

Rd

|un(t0)|
2χRdx ≤

C

R
|t0|

(− 2
α+K+1) α

4−α+1 +

∫

Rd

|un(tn)|
2χRdx.

Combined with (51), for a possibly larger R, this implies
∫

Rd

|un(t0)|
2χRdx ≤ 2δ.

We conclude from the local compactness of Sobolev embeddings that for 0 ≤ s < 1:

un(t0) → u∞(t0) strongly in Hs(Rd), as n → +∞.

Let u∞(t) be the solution of (7) with u∞(t0) as initial data at t = t0. From [6, 7] there exists
0 < s0 < 1 such that the Cauchy problem for (7) is locally well-posed in Hs0(Rd). This implies
that u∞ exists on [t0, 0) and for any t ∈ [t0, 0),

un(t) → u∞(t) strongly in Hs0(Rd), weakly in H1(Rd), as n → +∞.

Moreover, since limn→∞

∫

u2
n(tn) =

∫

Q2, we have
∫

u2
∞ =

∫

Q2. By weak convergence in H1(Rd)
and the estimates from Lemma 8 applied to un, u∞(t) satisfies (41), and denoting (ε∞, λ∞, b∞, γ∞)
its decomposition, we have by standard arguments (see e.g. [24]), for any t ∈ [t0, 0),

λn(t) → λ∞(t), bn(t) → b∞(t), γn(t) → γ∞(t), εn(t) ⇀ ε∞(t) H1(Rd) weak, as n → ∞.

The uniform estimates on un from Lemma 8 give, on [t0, 0),

b∞(t) = Cb|t|
α

4−α (1 + ot↑0(1)) , λ∞(t) = Cλ|t|
2

4−α (1 + ot↑0(1)) , ‖ε∞(t)‖H1 . |t|
(K+1)α

4−α , (52)

b∞(t)

λ2
∞(t)

=
Cb

C2
λ

|t|
α

4−α− 4
4−α (1 + ot↑0(1)) =

2

4− α

1

|t|
(1 + ot↑0(1)) =

σ

|t|
(1 + ot↑0(1)) , (53)
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which justifies the form (9) and the blow up rate (8). Finally, we prove that E(u∞) = E0. Let
t0 < t < 0. We have by (49) and (22),

E(bn(t), λn(t)) −
8E0

∫

|y|2Q2
= ot↑0(1)

where the ot↑0(1) is independent of n, and thus

E(b∞(t), λ∞(t))−
8E0

∫

|y|2Q2
= ot↑0(1)

Using (22), we deduce

E(Pb∞,λ∞,γ∞(t)) − E0 = ot↑0(1)

and thus, by (52),

E(u∞(t))− E0 = ot↑0(1).

Thus, by conservation of energy and passing to the limit t ↑ 0, we obtain E(u∞(t)) = E0. �

3.3. Bootstrap estimates. The rest of the paper is devoted to the proof of Proposition 7. We
use a bootstrap argument involving the following estimates:

‖ε(s)‖H1 < s−K ,

∣

∣

∣

∣

∣

λ
α
2 (s)

λ
α
2
app(s)

− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

b(s)

bapp(s)
− 1

∣

∣

∣

∣

< s−δ(α) (54)

for some small enough universal constant δ(α) > 0. The following value is suitable in this paper

δ(α) = min

(

1

4
,
2

α
− 1

)

> 0. (55)

For s0 > 0 to be chosen large enough (independently of s1), we define

s∗ = inf{τ ∈ [s0, s1]; (54) holds on [τ, s1]}. (56)

Observe from (38) that
∣

∣

∣

∣

∣

λ
α
2
1

λ
α
2
app(s1)

− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

b1
bapp(s1)

− 1

∣

∣

∣

∣

. s
− 1

2
1 + s

2− 4
α

1 ≪ s
−δ(α)
1 ,

for s1 large, and hence by the definition (44) of u(s1), s∗ is well-defined and s∗ < s1. In §5, §6 and
§7, we prove that (46) holds on [s∗, s1]. By a standard continuity argument, provided that s0 is
large enough, we obtain s∗ = s0 which implies Proposition 7. The main lines of the proof are as
follows: first, we derive modulation equations from the construction of Pb, second we control the
remaining error using a mixed Energy/Morawetz functional first derived in [31].

4. Modulation equations

In this section, we work with the solution u(t) of Proposition 7 on the time interval [s∗, s1] (see
(54)-(56)). We justify that the dynamical system satisfied by the modulation parameters λ, b is at
the main order given by (31). Define

Mod(s) =





b+ λs

λ

bs + b2 − θ
1− γs



 .

Lemma 9 (Modulation equations and additional orthogonality). For all s ∈ [s∗, s1],

|Mod(s)| .
1

sK+2
, (57)

| (ε(s), Q)2 | .
1

sK+1
. (58)
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Proof of Lemma 9. The proofs of the two estimates are combined. Since ε(s1) ≡ 0, we may define

s∗∗ = inf{s ∈ [s∗, s1]; | (ε(τ), Pb)2 | < τ−(K+2) holds on [s, s1]}.

We work on the interval [s∗∗, s1].
Since Pb verifies equation (19), we obtain the following equation for ε:

iεs +∆ε− ε+ ibΛε+ (f(Pb + ε)− f(Pb)) + λα(g(Pb + ε)− g(Pb))

− i

(

b+
λs

λ

)

Λ(Pb + ε) + (1− γs)(Pb + ε) + (bs + b2 − θ)
|y|2

4
Pb

= −Ψe−i
b|y|2

4 . (59)

where Ψ := ΨK . Recall that equation (59) combined with the orthogonality conditions chosen on
ε – see (43) – contains the equations of the modulation parameters. Technically, one differentiates
in time the orthogonality conditions for ε, then uses the equation (59) on ε and the estimate (17)
on the error term Ψ. Here, as in [31], the orthogonality conditions are chosen to obtain quadratic
control in ε. Since it is a standard argument (see e.g. [25, 28, 31]), we only sketch relevant
computations.

Consider for example the orthogonality condition (ε, iΛPb)2 = 0. Differentiating in s, we obtain
〈εs, iΛPb〉+ 〈ε, i∂s(ΛPb)〉 = 0. Since

d

ds
(ΛPb) =

(

(ΛP )s − i
bs
4
|y|2ΛP

)

e−i b
4 |y|

2

,

and

(ΛP )s = λα

(

α
λs

λ

(

Z +
∑

(j,k)∈ΣK

kb2jλkα−1(P+
j,k + bP−

j,k)

)

+ bs

(

∑

(j,k)∈ΣK

2jb2j−1λkαP+
j,k +

∑

(j,k)∈ΣK

(2j + 1)b2jλkαP−
j,k

)

)

,

proceeding as in the proof of Proposition 3, and using the properties of the functions P±
j,k, we note

that

sup
y∈R

(

e
y
2

∣

∣

∣

∣

d

ds
(ΛPb)(y)

∣

∣

∣

∣

)

. |Mod(s)|+ b2(s) + λα(s).

Thus, by (54),

| (ε, i∂s(ΛPb))2 | . ‖ε(s)‖2
(

|Mod(s)|+ b2(s) + λα(s)
)

. s−2|Mod(s)|+ s−(K+2).

Next, we write 〈εs, iΛPb〉 = −〈iεs,ΛPb〉 and we use the equation of ε. We start by the contribution
of the first line of (59). Remark that by (54),

f(Pb + ε)− f(Pb) = e−ib
|y|2

4

(

f

(

P + eib
|y|2

4 ε

)

− f(P )

)

= e−ib
|y|2

4 df(P )

(

eib
|y|2

4 ε

)

+O(|ε|2)

= e−ib
|y|2

4 df(P )

(

eib
|y|2

4 ε

)

+O(s−2|ε|),

λα (g(Pb + ε)− g(Pb)) = O(λα|ε|) = O(s−2|ε|),

and

∆ε+ ibΛε = e−ib
|y|2

4 ∆

(

eib
|y|2

4 ε

)

+ b2
|y|2

4
ε, ΛPb = e−ib

|y|2

4

(

ΛP − ib
|y|2

2
P

)

.
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Therefore, using (54) and P = Q+OH1 (s−2) (see the definition of P in (16)), we have

〈−∆ε+ ε− ibΛε− (f(Pb + ε)− f(Pb)) + λα (g(Pb + ε)− g(Pb)) ,ΛPb〉

=

〈

−∆

(

eib
|y|2

4 ε

)

+ eib
|y|2

4 ε− pQp−1

(

eib
|y|2

4 ε

)

,ΛQ− ib
|y|2

2
Q

〉

+O(s−2‖ε‖2)

=

〈

L+

(

eib
|y|2

4 ε

)

,ΛQ

〉

−
b

2

〈

L−

(

eib
|y|2

4 ε

)

, i|y|2Q

〉

+O(s−2‖ε‖2)

=

〈

eib
|y|2

4 ε, L+(ΛQ)

〉

−
b

2

〈

eib
|y|2

4 ε, iL−(|y|
2Q)

〉

+O(s−2‖ε‖2)

= −2

(

ε, e−ib
|y|2

4 Q

)

2

+ 2b

(

ε, ie−ib
|y|2

4 ΛQ

)

2

+O(s−2‖ε‖2)

= −2 (ε, Pb)2 + 2b (ε, iΛPb)2 +O(s−2‖ε‖2) = O(s−(K+2)).

Note that we have used algebraic relations from (10), then (54), (ε, iΛPb)2 = 0 and the definition
of s∗∗.

The part corresponding to the second line of (59) gives

(

−i

(

b+
λs

λ

)

Λ(Pb + ε) + (1 − γs)(Pb + ε) + (bs + b2 − θ)
|y|2

4
Pb,ΛPb

)

2

= −(bs + b2 − θ)‖yPb‖
2
2 +O(|Mod(s)|‖ε‖2)

= −(bs + b2 − θ)(‖yQ‖
2
2 +O

(

s−2)
)

+O(s−2|Mod(s)|).

Finally, from the estimate (17) on Ψ, we have
∣

∣

∣

∣

(

Ψ,ΛP − ib
|y|2

2
P

)

2

∣

∣

∣

∣

. s−2|Mod(s)|+ s−2(K+2).

Combining the previous estimates, we find

|bs + b2 − θ| . s−2|Mod(s)|+ s−(K+2).

Using the other orthogonality conditions in (43) in a similar way, together with (10), we find

|Mod(s)| . s−2|Mod(s)|+ s−(K+2).

We deduce that for all s ∈ [s∗∗, s1],

|Mod(s)| . s−(K+2). (60)

By conservation of the L2 norm and (44), we have

‖u(s)‖
2
2 = ‖u(s1)‖

2
2 = ‖Pb(s1)‖

2
2.

Thus, by (42),

(ε(s), Pb)2 =
1

2

(

‖u(s)‖
2
2 − ‖Pb(s)‖

2
2 − ‖ε(s)‖

2
2

)

= −
1

2
‖ε(s)‖

2
2 +

1

2

(

‖Pb(s1)‖
2
2 − ‖Pb(s)‖

2
2

)

.

Moreover, by (20), (54) and (60),

d

ds

∫

|Pb|
2 . s−(K+4).

Integrating and combining the previous estimates with (54), we obtain, for all s ∈ [s∗∗, s1],

| (ε(s), Pb)2 | . s−(K+3). (61)

Therefore, s∗∗ = s∗ and the estimates (60) and (61) are proved on [s∗, s1]. Since |Pb−Q| . Q
1
2 s−1,

we obtain (58). �
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5. The mixed energy Morawetz monotonicity formula

In this section, following [31], we introduce a mixed Energy/Morawetz functional to control the
remaining part of the solution in H1(Rd). First, define the energy of ε

H(s, ε) :=
1

2
‖∇ε‖

2
2 +

1

2
‖ε‖

2
2 −

∫

Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε)dy

− λα

∫

Rd

(G(Pb + ε)−G(Pb)− dG(Pb)ε)dy.

Note that as in [31], the time derivative of the linearized energy H for ε cannot be controlled alone,

and one has to add a virial type functional such as b
2 Im

∫

Rd ∇
(

|y|2

2

)

∇εε̄dy. In practice, due to

the lack of control on ‖yε‖2, we replace 1
2 |y|

2 by a function whose gradient is bounded, which we
introduce now.
Let φ : R → R be a smooth even and convex function, nondecreasing on R+, such that

φ(r) =







1

2
r2 for r < 1,

3r + e−r for r > 2,

and set φ(x) = φ(|x|). Let A ≫ 1 to be fixed. Define φA by φA(y) = A2φ
(

y
A

)

and

J(ε) =
1

2
Im

∫

Rd

∇φA · ∇εε̄dy.

Finally, set

S(s, ε) =
1

λ4(s)
(H(s, ε) + b(s)J(ε(s))).

The relevance of the functional S lies on the following two properties.

Proposition 10 (Coercivity of S). For any s ∈ [s∗, s1],

S(s, ε(s)) &
1

λ4(s)

(

‖ε(s)‖2H1 + O(s−2(K+1)
)

.

Proposition 11. For any s ∈ [s∗, s1],

d

ds
[S(s, ε(s))] &

b

λ4(s)

(

‖ε(s)‖
2
H1 + O(s−2(K+1)

)

.

The rest of this section is organized as follows. We first prove Proposition 10 in §5.1. In §5.2
we compute the time derivative of H and in §5.3, the time derivative of J . We finish the proof of
Proposition 11 in §5.4.

5.1. Coercivity of S. We prove Proposition 10. We first claim a coercivity property for H ,
consequence of the properties of L+ and L− (see (13)) and of the orthogonality conditions of ε (see
(43)).

Lemma 12 (Coercivity of H). For all s ∈ [s∗, s1],

H(s, ε) & ‖ε‖
2
H1 +O(s−2(K+1)).

Proof. From the orthogonality conditions (43), (58), and estimates (54), the following holds:
(

ε, |y|2Q
)

2
=
(

ε, |y|2Pb

)

2
+O(|b|‖ε‖2) +O(λα‖ε‖2) = O(s−1‖ε‖H1),

(ε, iρ)2 = (ε, iρb)2 + O(|b|‖ε‖2) = O(s−1‖ε‖H1),

(ε,Q)2 = O(s−(K+1)).

From (54), we have

λα

∫

Rd

(G(Pb + ε)−G(Pb)− dG(Pb)ε)dx = O(s−2‖ε‖
2
H1).

Next, (denoting ε = ε1 + iε2),
∣

∣

∣

∣

F (Pb + ε)− F (Pb)− dF (Pb)ε−

(

1 +
4

d

)

Q
4
d ε21 −

1

2
Q

4
d ε22

∣

∣

∣

∣

. e−
1
2 |y||ε|3 + |ε|2+

4
d + |ε|2(|b|+ λα).
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Thus, from (54),
∣

∣

∣

∣

∫

F (Pb + ε)− F (Pb)− dF (Pb)ε−

(

1 +
4

d

)

Q
4
d ε21 −

1

2
Q

4
d ε22

∣

∣

∣

∣

. O(s−1‖ε‖
2
H1 ),

and
∣

∣

∣

∣

H(s, ε)−
1

2
〈L+ε1, ε1〉 −

1

2
〈L−ε2, ε2〉

∣

∣

∣

∣

. O(s−1‖ε‖
2
H1 ).

Combining these estimates with the coercivity properties of L+, L− (see (13)), we obtain the
result. �

Since

|bJ(ε)| ≤ |b|‖∇φA‖∞‖ε‖
2
H1 . O(s−1‖ε‖

2
H1)

(from (54)), Lemma 12 implies Proposition 10.

For future reference, we also claim the following localized coercivity property (see similar state-
ment in [17] and [31]).

Lemma 13. There exists A0 > 1 such that for any A > A0,

1

2

∫

Rd

∇εT∇2φA∇ε̄dy +
1

2
‖ε‖

2
2 −

∫

Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε)dx & ‖ε‖
2
2 +O(s−2(K+1)).

For now on, we consider A > A0.

5.2. Time variation of the energy of ε.

Lemma 14. For all s ∈ [s∗, s1],

d

ds
[H(s, ε(s))] =

λs

λ

(

‖∇ε‖22 − 〈f(Pb + ε)− f(Pb),Λε〉
)

+O(s−(2K+3)) +O(s−2‖ε‖2H1 ).

Proof of Lemma 14. The time derivative for H separates into two parts:

d

ds
[H(s, ε(s))] = DsH(s, ε) + 〈DεH(s, ε), εs〉 ,

where Ds (respectively, Dε) denotes differentiation of the functional with respect to s (respectively,
ε). In particular,

DsH(s, ε) = −

∫

(Pb)s (f(Pb + ε)− f(Pb)− df(Pb)ε)− λα

∫

(Pb)s (g(Pb + ε)− g(Pb)− dg(Pb)ε)

− α
λs

λ
λα

∫

(G(Pb + ε)−G(Pb)− dG(Pb)ε) .

Note that

ei
b|y|2

4 (Pb)s = Ps − ibs
|y|2

4
P = Ps − i

(

bs + b2 − βλα
) |y|2

4
P + i

(

b2 − βλα
) |y|2

4
P.

By (24), (54) and Lemma 9, we obtain

|(Pb)s| . s−2e−
|y|
2 and

∣

∣

∣

∣

λs

λ

∣

∣

∣

∣

λα . s−3.

Thus,

|DsH(s, ε)| . s−2‖ε‖2H1 .

Now, we compute 〈DεH(s, ε), εs〉. Note that (59) rewrites

iεs −DεH(s, ε) +Modop(s)Pb − i
λs

λ
Λε+ (1− γs)ε+ e−ib

|y|2

4 Ψ = 0, (62)

where

Modop(s)Pb := −i

(

b +
λs

λ

)

ΛPb + (1− γs)Pb + (bs + b2 − θ)
|y|2

4
Pb.
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Using (62), since 〈iDεH(s, ε), DεH(s, ε)〉 = 0, we have

〈DεH(s, ε), εs〉 = 〈iDεH(s, ε), iεs〉 = −〈iDεH(s, ε),Modop(s)Pb〉+
λs

λ
〈iDεH(s, ε), iΛε〉

− (1− γs) 〈iDεH(s, ε), ε〉 −

〈

iDεH(s, ε), e−ib
|y|2

4 Ψ

〉

. (63)

From the proof of Lemma 9

DεH(s, ε) = −∆ε+ ε− (f(Pb + ε)− f(Pb))− λα(g(Pb + ε)− g(Pb))

= e−ib
|y|2

4

(

L+Re

(

eib
|y|2

4 ε

)

+ iL−Im

(

eib
|y|2

4 ε

))

+ ibΛε+ b2
|y|2

4
ε+O(s−2|ε|).

Therefore, using the orthogonality conditions (43), (58) and estimates (54), we have (see also proof
of Lemma 9),

〈DεH(s, ε),ΛPb〉 = −2 (ε, Pb)2 + b (ε, iΛPb)2 +O(s−2‖ε‖2) = O(s−(K+1)).

Thus, from Lemma 9,
∣

∣

∣

∣

λs

λ
+ b

∣

∣

∣

∣

|〈DεH(s, ε),ΛPb〉| . O(s−(2K+3)).

Using similar arguments we get

〈DεH(s, ε), iPb〉 = −4 (ε,ΛPb)2 +O(s−1‖ε‖2) = O(s−1‖ε‖2) = O(s−(K+1))

and
〈

DεH(s, ε), i
|y|2

4
Pb

〉

= (ε, ρb)2 +O(s−1‖ε‖2) = O(s−1‖ε‖2) = O(s−(K+1)).

Using Lemma 9, we obtain in conclusion for this term

〈iDεH(s, ε),Modop(s)Pb〉 = O(s−(2K+3)).

Next, we have

〈iDεH(s, ε), iΛε〉 = 〈DεH(s, ε),Λε〉 =

〈−∆ε+ ε− (f(Pb + ε)− f(Pb))− λα(g(Pb + ε)− g(Pb)),Λε〉 .

Note that (by direct computations)

〈−∆ε,Λε〉 = ‖∇ε‖
2
2, 〈ε,Λε〉 = 0,

and by (54),

|〈λα(g(Pb + ε)− g(Pb)),Λε〉| . O(s−2‖ε‖2H1 ).

Thus,

λs

λ
〈iDεH(s, ε), iΛε〉 =

λs

λ

(

‖∇ε‖
2
2 − 〈f(Pb + ε)− f(Pb),Λε〉

)

+O(s−3‖ε‖2H1).

For the third term in the right-hand side of (63), we claim

|(1− γs) 〈iDεH(s, ε), ε〉 | =
∣

∣

∣(1− γs) 〈(f(Pb + ε)− f(Pb)) + λα(g(Pb + ε)− g(Pb)), ε〉
∣

∣

∣

. |Mod(s)|
(

‖ε‖
2
2 + ‖ε‖

2+ 4
d

H1

)

= O(s−4‖ε‖
2
H1 ).

Finally, the fourth term in the right-hand side of (63) is estimated by (17) combined with
Lemma 9 and (54)

| 〈iDεH(s, ε),Ψ〉 | ≤ O(s−(K+4)‖ε‖H1) ≤ O(s−(2K+3)) +O(s−5‖ε‖
2
H1).

Gathering these estimates, we have proved the lemma. �
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5.3. The time derivative of the Morawetz part.

Lemma 15. For all s ∈ [s∗, s1],

d

ds
[J(ε(s))] =

∫

Rd

∇εT∇2φA∇ε̄dy −
1

4

∫

Rd

|ε|2∆2φAdy

−

〈

f(Pb + ε)− f(Pb),
1

2
∆φAε+∇φA∇ε

〉

+O(s−(2K+2)) +O(s−2‖ε‖2H1).

Proof. From the definition of J(ε), we have

d

ds
[J(ε(s))] = Re

∫

Rd

iεs

(

1

2
∆φAε̄+∇φA∇ε̄

)

dy.

We replace iεs using (59). First, from standard computations

Re

∫

Rd

−∆ε

(

1

2
∆φAε̄+∇φA∇ε̄

)

dy =

∫

Rd

∇εT∇2φA∇ε̄dy −
1

4

∫

Rd

|ε|2∆2φAdy,

Re

∫

Rd

ε

(

1

2
∆φAε̄+∇φA∇ε̄

)

dy = 0,

λs

λ
Re

∫

Rd

iΛε

(

1

2
∆φAε̄+∇φA∇ε̄

)

dy = 0.

Next,

λαRe

∫

Rd

(g(Pb + ε)− g(Pb))

(

1

2
∆φAε̄+∇φA∇ε̄

)

dy = O(λα‖ε‖2H1) = O(s−2‖ε‖2H1).

The term corresponding to the second line of (59) is estimated as follows.
∣

∣

∣

∣

〈

−i(b+
λs

λ
)Λ(Pb + ε) + (1− γs)(Pb + ε)− (bs + b2 − θ)

|y|2

4
Pb,

1

2
∆φAε+∇φA∇ε

〉∣

∣

∣

∣

. |Mod(s)|‖ε‖H1 . O(s−(2K+2)).

Finally, by (17) and Lemma 9,
∣

∣

∣

∣

〈

Ψe−i
b|y|2

4 ,
1

2
∆φAε̄+∇φA∇ε̄

〉∣

∣

∣

∣

≤ O(s−(K+4)‖ε‖H1 ) ≤ O(s−(2K+4)).

The result follows. �

5.4. The Lyapunov property.

Proof of Proposition 11. By definition of S, we have

d

ds
[S(s, ε(s))] =

1

λ4

(

−4
λs

λ
(H(s, ε) + bJ(ε)) +

d

ds
[H(s, ε(s))] + b

d

ds
[J(ε(s))] + bsJ(ε)

)

First, we claim the following estimate

d

ds
[H(s, ε(s))]+b

d

ds
[J(ε(s))] = b

∫

Rd

∇εT∇2φA∇ε̄dy−b‖∇ε‖
2
2+

b

A
O(‖ε‖

2
H1)+O(s−(2K+3)). (64)

Proof of (64). It is essential to see from Lemmas 14 and 15 that the main nonlinear terms are
cancelling. Indeed, by integration by parts,

− Re

∫

Rd

(f(Pb + ε)− f(Pb))Λε̄dy

= −
d

2
Re

∫

Rd

(f(Pb + ε)− f(Pb))ε̄dy − Re

∫

Rd

y∇(F (Pb + ε)− F (Pb)− dF (Pb)ε)dy

+Re

∫

Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)y∇P̄bdy

= −
d

2
Re

∫

Rd

(f(Pb + ε)− f(Pb))ε̄dy + dRe

∫

Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε)dy

+Re

∫

Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)y∇P̄bdy,
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− Re

∫

Rd

(f(Pb + ε)− f(Pb))

(

1

2
∆φAε̄+∇φA∇ε̄

)

dy

= −
1

2
Re

∫

Rd

(f(Pb + ε)− f(Pb))∆φAε̄dy +Re

∫

Rd

∆φA(F (Pb + ε)− F (Pb)− dF (Pb)ε)dy

+Re

∫

Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)∇φA∇P̄bdy.

Writing these two terms as above, it becomes clear that when y or ∇φA appear, they are multiplied
by ∇Pb, which is exponentially decaying in space (see Proposition 3). Therefore, such terms are
controlled by expressions involving only ‖ε‖H1 .

Therefore, combining Lemma 14 and Lemma 15, we have

d

ds
[H(s, ε(s))] + b

d

ds
[J(ε(s))] = b

∫

Rd

∇εT∇2φA∇ε̄dy − b‖∇ε‖22

+

(

b+
λs

λ

)

(

‖∇ε‖
2
2 −

d

2
Re

∫

Rd

(f(Pb + ε)− f(Pb))ε̄dy+ dRe

∫

Rd

(F (Pb + ε)−F (Pb)− dF (Pb)ε)dy

+Re

∫

Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)y∇P̄bdy

)

+b

(

−
1

2
Re

∫

Rd

(f(Pb+ε)−f(Pb))(∆φA−d)ε̄dy+Re

∫

Rd

(F (Pb+ε)−F (Pb)−dF (Pb)ε)(∆φA−d)dy

+Re

∫

Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)(∇φA − y)∇P̄bdy

)

− b
1

4

∫

Rd

|ε|2∆2φAdy +O(s−(2K+3)) +O(s−2‖ε‖2H1 ).

By
∣

∣b+ λs

λ

∣

∣ . O(s−4), we have

∣

∣

∣

∣

∣

(

b+
λs

λ

)

(

‖∇ε‖
2
2 −

d

2
Re

∫

Rd

(f(Pb + ε)− f(Pb))ε̄dy + dRe

∫

Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε)dy

+Re

∫

Rd

(f(Pb + ε)− f(Pb)− df(Pb)ε)y∇P̄bdy

)∣

∣

∣

∣

∣

. s−4‖ε‖2H1 .

Next,

|b|

∣

∣

∣

∣

−
1

2
Re

∫

Rd

(f(Pb + ε)− f(Pb))∆(φA − d)ε̄dy

∣

∣

∣

∣

.
1

s

∫

Rd

∣

∣

∣|P |
4
d |ε|2|∆φA − d|+ |ε|2+

4
d

∣

∣

∣ dy .
e−

A
2

s
‖ε‖

2
2 +O

(

s−1‖ε‖
2+ 4

d

H1

)

,

and similarly for bRe
∫

Rd(F (Pb+ε)−F (Pb)−dF (Pb)ε)(∆φA−d)dy and bRe
∫

Rd(f(Pb+ε)−f(Pb)−

df(Pb)ε)(∇φA − y)∇P̄bdy. Next,

∣

∣

∣

∣

−b

∫

Rd

|ε|2∆2φAdy

∣

∣

∣

∣

.
b

A2
‖ε‖22.

In conclusion for this term, we have obtained (64)



MINIMAL MASS BLOW-UP FOR DOUBLE POWER NLS 23

Using −λs

λ
= b+O(s−2) and the expression of H we have

− 4
λs

λ
H(s, ε) +

d

ds
[H(s, ε(s))] + b

d

ds
[J(ε(s))]

& 4bH(s, ε) + b

∫

Rd

∇εT∇2φA∇ε̄dy − b‖∇ε‖
2
2 +O(s−2‖ε‖2H1) +

b

A
O(‖ε‖

2
H1) +O(s−(2K+3))

& b

(∫

Rd

∇εT∇2φA∇ε̄dy + ‖ε‖
2
2 − 2

∫

Rd

(F (Pb + ε)− F (Pb)− dF (Pb)ε)dx

)

+ 2bH(s, ε) +
b

A
O(‖ε‖

2
H1) +O(s−(2K+3))

Thus, and the coercivity properties Lemma 12 and Lemma 13, we obtain (for A large enough)

−4
λs

λ
H(s, ε) +

d

ds
[H(s, ε(s))] + b

d

ds
[J(ε(s))] & b‖ε‖2H1 +O(s−(2K+3)).

Since b = O(s−1), bs = O(s−2) and J(ε) = O(‖ε‖
2
H1), we have

(∣

∣

∣

∣

λs

λ

∣

∣

∣

∣

b+ |bs|

)

|J(ε)| . s−2O(‖ε‖2H1)

and thus
d

ds
[S(s, ε(s))] &

b

λ4

(

‖ε‖
2
H1 +O(s−(2K+2))

)

.

This finishes the proof. �

6. End of the proof of Proposition 7

In this section, we finish the proof of Proposition 7. Recall from §3.3 that our objective is to
prove s∗ = s0 by improving estimates (54) into (46). Therefore, it is sufficient to prove the following
lemma which closes the bounds (54) provided δ(α) > 0 has been chosen small enough (e.g. as in
(55)).

Lemma 16 (Refined estimates). For all s ∈ [s∗, s1],

‖ε(s)‖H1 . s−(K+1), (65)
∣

∣

∣

∣

∣

λ
α
2 (s)

λ
α
2
app(s)

− 1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

b(s)

bapp(s)
− 1

∣

∣

∣

∣

. s−
1
2 + s2−

4
α . (66)

Proof. First, we prove (65). From Proposition 10, and the expression of S, there exists a universal
constant κ > 1 such that for any s ∈ [s∗, s1],

1

κ

1

λ4

(

‖ε‖
2
H1 − κ2s−2(K+1)

)

≤ S(s, ε) ≤
κ

λ4
‖ε‖

2
H1 . (67)

From Proposition 11, possibly taking a larger κ,

d

ds
[S(s, ε(s))] ≥

1

κ

b

λ4

(

‖ε‖
2
H1 − κ2s−2(K+1)

)

. (68)

Define

s† := inf{s ∈ [s∗, s1], ‖ε(τ)‖H1 ≤ 2κ2τ−(K+1) for all τ ∈ [s, s1]}.

Since ε(s1) = 0, by continuity s† is well-defined and s† < s1. For the sake of contradiction, assume

that s† > s∗. In particular, ‖ε(s†)‖H1 = 2κ2s
−(K+1)
† . Define

s‡ := sup{s ∈ [s†, s1], ‖ε(τ)‖H1 ≥ κτ−(K+1) for all τ ∈ [s†, s]}.

In particular, s† < s‡ < s1 and ‖ε(s‡)‖H1 = κs
−(K+1)
‡ , and from (68), S is nondecreasing on

[s†, s‡]. From equations (67)-(68) and the estimates on λ (see (46)), we obtain

‖ε(s†)‖
2
H1 − κ2s

−2(K+1)
† ≤ κλ4(s†)S(s†, ε(s†)) ≤ κλ4(s†)S(s‡, ε(s‡))

≤ κ2λ
4(s†)

λ4(s‡)
‖ε(s‡)‖

2
H1 ≤ κ4λ

4(s†)

λ4(s‡)
s
−2(K+1)
‡ ≤ 2κ4

(

s‡
s†

)
8
α

s
−2(K+1)
‡ ≤ 2κ4s

−2(K+1)
† ,
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since K > 4/α. Therefore ‖ε(s†)‖
2
H1 ≤ 3κ4s

−2(K+1)
† , which is a contradiction. Hence s† = s∗ and

(65) is proved.

Now, we prove (66). The main idea is to use a conservation law on (b, λ) which can be found from
the differential system satisfied by (b, λ), but that we rather derive from energy properties of the
blow up profile. Recall that λ(s1) = λ1 and b(s1) = b1 are chosen in Lemma 5 so that F(λ(s1)) = s1
and E(b(s1), λ(s1)) =

8E0∫
|y|2Q2 . In particular, we deduce from (22) that |E(Pb1,λ1,γ1) − E0| . s−6

1 .

Using (21) and (54), (57), for all s ∈ [s∗, s1],
∣

∣

∣

∣

d

ds
E(Pb,λ,γ)

∣

∣

∣

∣

. s−(K+2)+ 4
α .

In particular, by integration, we find, for all s ∈ [s∗, s1], |E(Pb,λ,γ(s))−E0| . s−6 (recallK > 20/α)
and using (22) at s,

∣

∣

∣

∣

E(b(s), λ(s)) −
8E0

∫

|y|2Q2

∣

∣

∣

∣

. s−6.

We obtain from the expression (23) of E with C0 = 8E0∫
|y|2Q2 :

∣

∣

∣

∣

b2 −
2β

2− α
λα − C0λ

2

∣

∣

∣

∣

.
λα

s2

where the error term O(λ
α

s2
) comes from θ and cannot be improved. In this estimate, since λ2 ≈ s−

4
α

and λα

s2
≈ s−4, whether or not C0λ

2 is controled by the error term depends on the value of α. We

address both cases at once in what follows. Since b ≈ λ
α
2 ,

∣

∣

∣

∣

∣

b−

√

2β

2− α
λα + C0λ2

∣

∣

∣

∣

∣

.
λ

α
2

s2
, (69)

and with
∣

∣

λs

λ
+ b
∣

∣ . s−(K+1) , we obtain (see (37) for the definition of F)
∣

∣

∣

∣

∣

∣

λs

λ
α
2 +1
√

2β
2−α

+ C0λ2−α

+ 1

∣

∣

∣

∣

∣

∣

= |F ′(s)− 1| . s−2. (70)

Integrating (70) on [s, s1], we obtain

|F(λ(s1))−F(λ(s))− (s1 − s)| . s−1

and thus, by the choice F(λ(s1)) = s1, we obtain

F(λ(s)) = s+O(s−1).

Therefore, using (40) and the definition of λapp(s) in (32),
∣

∣

∣

∣

∣

λ
α
2
app(s)

λ
α
2 (s)

− 1

∣

∣

∣

∣

∣

. s−
1
2 + s2−

4
α .

We reinject this estimate into (69) and use the definition of bapp to conclude:

b(s) = bapp(s) +O(s−
3
2 + s−

4−α
α ).

This finishes the proof. �

Appendix A. Proof of Lemma 1

By contradiction, assume that there exists a blow up solution u(t) of (1) with ǫ = −1 and
‖u(t)‖2 = ‖Q‖2. Let a sequence tn → T ∗ ∈ (0,+∞] with ‖∇u(tn)‖2 → +∞ and consider the
renormalized sequence

vn(x) = λ(tn)
d
2 u(tn, λ(tn)x), λ(tn) =

‖∇Q‖2
‖∇u(tn)‖2

.

Then, by conservation of mass,

‖vn‖2 = ‖Q‖2
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and conservation of energy and ǫ < 0,

E0 = E(un) ≥ Ecrit(un) =
Ecrit(vn)

λ2(tn)
.

Therefore, the sequence vn satisfies:

‖vn‖2 = ‖Q‖2, ‖∇vn‖2 = ‖∇Q‖2, lim sup
n→+∞

Ecrit(vn) ≤ 0.

From standard concentration compactness argument, see [24, 32], there holds, up to a subsequence,
for some xn ∈ Rd, γn ∈ R,

vn(.− xn)e
iγn →

n→+∞
Q in H1(Rd).

In particular,

‖u(tn)‖p+1 =
‖vn‖p+1

λ
d(p−1)
2(p+1) (tn)

→ +∞ as n → ∞,

which contradicts the a priori bound from the energy conservation law and (3):

E0 = E(u) ≥ Ecrit(u) +
1

p+ 1

∫

|u|p+1 ≥
1

p+ 1

∫

|u|p+1.

Appendix B. Proof of Lemma 2

For the sake of simplicity, we give the proof only for d ≥ 2. The case d = 1 would require an
additionnal (standard) concentration compactness argument (see [32]). For M < ‖Q‖2, set

AM = {u ∈ H1
rad(R

d) with ‖u‖2 = M}

and consider the minimization problem

IM = inf
u∈AM

E(u).

First, we claim
−∞ < IM < 0. (71)

Indeed, from (3) and
∫

|u|p+1 ≤ CGN(p)‖∇u‖
d(p−1)

2
2 ‖u‖

p+1−
d(p−1)

2
2 , (72)

with 1 < p < 1 + 4
d
, we note that IM > −∞ and that any minimizing sequence is bounded in

H1(Rd). Let u ∈ AM and vλ(x) = λ
d
2 u(λx), then vλ ∈ AM and

E(vλ) = λ2

[

Ecrit(u)−
1

λ2− d(p−1)
2

1

p+ 1

∫

|u|p+1

]

.

In particular, for 0 < λ ≪ 1 and u 6≡ 0, E(vλ) < 0 and (71) follows.

Second, let uλ = λ
2

p−1u(λx), so that

E(uλ) = λ
4

p−1+2−d

[

1

2

∫

|∇u|2 −
1

p+ 1

∫

|u|p+1

]

−
λ

2
p−1 (2+

4
d )−d

2 + 4
d

∫

|u|2+
4
d .

We observe that

d

dλ
E(uλ)|λ=1 =

(

4

p− 1
+ 2− d

)[

1

2

∫

|∇u|2 −
1

p+ 1

∫

|u|p+1

]

−

2
p−1 (2 +

4
d
)− d

2 + 4
d

∫

|u|2+
4
d

=

(

4

p− 1
+ 2− d

)

E(u)−
4
d

2 + 4
d

(

2

p− 1
−

d

2

)∫

|u|2+
4
d .

Together with ‖uλ‖2 = λ
2

p−1−
d
2 ‖u‖2, which implies d

dλ
‖uλ‖2|λ=1 > 0, this proves that

I(M) is decreasing in M. (73)

To finish, let (un) be a minimizing sequence. Up to a subsequence and from the standard radial
compactness of Sobolev embeddings (see [3])

un ⇀ u in H1(Rd), un → u in Lq, 2 < q ≤ 2 +
4

d
.
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Hence

E(u) ≤ IM and ‖u‖2 ≤ M.

From (73) and the definition of IM , we deduce ‖u‖2 = M and E(u) = IM . From a standard
Lagrange multiplier argument, u satisfies

∆u+ |u|1+
4
d u+ |u|p−1u = ωu

for a constant ω ∈ R. The sign ω > 0 now follows from a standard Pohozaev type argument.
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[28] F. Planchon and P. Raphaël. Existence and stability of the log-log blow-up dynamics for the L2-critical nonlinear
Schrödinger equation in a domain. Ann. Henri Poincaré, 8(6):1177–1219, 2007.
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