Robust anomaly detection in hyperspectral imaging - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Robust anomaly detection in hyperspectral imaging

Résumé

Anomaly Detection methods are used when there is not enough information about the target to detect. These methods search for pixels in the image with spectral characteristics that differ from the background. The most widespread detection test, the RX-detector, is based on the Mahalanobis distance and on the background statistical characterization through the mean vector and the covariance matrix. Although non-Gaussian distributions have already been introduced for background modeling in Hyperspectral Imaging, the parameters estimation is still performed using the Maximum Likelihood Estimates for Gaussian distribution. This paper describes robust estimation procedures more suitable for non-Gaussian environment. Therefore, they can be used as plug-in estimators for the RX-detector leading to some great improvement in the detection process. This theoretical improvement has been evidenced over two real hyperspectral images.
Fichier principal
Vignette du fichier
FronteraIGARSS_14.pdf (132.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01010418 , version 1 (19-06-2014)

Identifiants

Citer

Joana Frontera-Pons, Miguel Angel Veganzones, Santiago Velasco-Forero, Frédéric Pascal, Jean-Philippe Ovarlez, et al.. Robust anomaly detection in hyperspectral imaging. IGARSS 2014 - IEEE International Geoscience and Remote Sensing Symposium, Jul 2014, Québec, Canada. ⟨10.1109/IGARSS.2014.6947518⟩. ⟨hal-01010418⟩
5124 Consultations
773 Téléchargements

Altmetric

Partager

More