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ABSTRACT

Anomaly Detection methods are used when there is not

enough information about the target to detect. These methods

search for pixels in the image with spectral characteristics that

differ from the background. The most widespread detection

test, the RX-detector, is based on the Mahalanobis distance

and on the background statistical characterization through

the mean vector and the covariance matrix. Although non-

Gaussian distributions have already been introduced for back-

ground modeling in Hyperspectral Imaging, the parameters

estimation is still performed using the Maximum Likelihood

Estimates for Gaussian distribution. This paper describes

robust estimation procedures more suitable for non-Gaussian

environment. Therefore, they can be used as plug-in estima-

tors for the RX-detector leading to some great improvement

in the detection process. This theoretical improvement has

been evidenced over two real hyperspectral images.

Index Terms— hypespectral imaging, anomaly detec-

tion, elliptical distributions, M-estimators

1. INTRODUCTION

Target detection (TD) and anomaly detection (AD) of mul-

tidimensional signals have proved to be valuable techniques

in a wide range of applications, including search-and-rescue,

surveillance, rare mineral and land mines detection, etc. TD

aims to discover the presence of a specific signal of interest

(the target) among a set of signals. Statistical TD is based

on the Neyman-Pearson (NP) criterion, which maximizes the

probability of detection for a given probability of false alarm.

AD is a special case of TD in which no a-priori target is

provided. Hence, the goal of AD is to detect signals that are

anomalous respect to the background. The Reed-Xiaoli (RX)

AD algorithm [1] is considered as the benchmark algorithm

in multidimensional AD. However, the RX detector perfor-

mance strongly relies on the statistical parameters estimation.

Accordingly, when the background is non-homogeneous or

the noise independence assumption is not fulfilled, the de-

tector performance can be deteriorated. Here, we highlight a

third drawback in the estimation problems: the presence of

outliers in the secondary data used for the parameters estima-

tion.

In hyperspectral imaging, the actual distribution of the back-

ground pixels differs from the theoretically predicted under

Gaussian hypothesis. In fact, as stated in [2], the empir-

ical distribution usually has heavier tails compared to the

Gaussian distribution, and these tails strongly influence the

observed false-alarm rate of the detector. One of the most

general and acknowledged model for background statistics

characterization is the family of Elliptically-Contoured Dis-

tributions (ECD). They account for non-Gaussianity provid-

ing a long tailed alternative to multivariate normal model.

They are proven to represent a more accurate characteriza-

tion of HSI than models based on Gaussian assumption [2].

Although non-Gaussian distributions have already been as-

sumed for background modeling, the parameters estimation

is still performed using classical Gaussian based estimators;

as in the case of covariance matrix, generally determined by

the Sample Covariance Matrix (SCM) and the mean vector

with the Sample Mean Vector (SMV). These classical esti-

mators correspond to the Maximum Likelihood Estimators

(MLE) for Gaussian assumption. However, they lead to sub-

optimal detection schemes when the noise is a non-Gaussian

process. When working on ECD framework the model can

be used to assess the robustness of statistical procedures and

to derive alternative robust estimators of the parameters, the

mean vector and the covariance matrix [3, 4]. These can then

be used as plug-in estimators in place of the unknown mean

vector or/and of the covariance matrix. This is a simple but

often efficient method to obtain robust properties for signal

processors derived under the Gaussian assumption.

2. ELLIPTICALLY CONTOURED DISTRIBUTIONS

Hyperspectral data have been proven not to be multivariate

normal but long tailed distributed. In order to take into ac-

count these features, the class of elliptically-contoured distri-

butions is considered to describe clutter statistical behavior. It



provides a multivariate location-scatter family of distributions

that primarily serves as heavy tailed alternative to the multi-

variate normal model. An m-dimensional random complex

vector y = [y1, y2, . . . , ym]T with mean µ and scatter ma-

trix Σ has an elliptical distribution if its probability density

function (PDF) has the form [5]:

fy(y) = |Σ|−1hm((y − µ)HΣ−1(y − µ)) (1)

where H denotes the conjugate transpose operator and hm(.)
is any function such as (1) defines a PDF. If the second-order

moment exists, then Σ reflects the structure of the covariance

matrix of the elliptically distributed random vector y, i.e. the

covariance matrix is equal to the scatter matrix up to a scalar

constant. It serves to characterize the correlation structure

existing within the spectral bands. It is worth pointing out

that the ECD class includes a large number of distributions,

notably the Gaussian distribution, multivariate t distribution,

K-distribution or multivariate Cauchy. Thus, it allows for

heterogeneity of the background power with the texture.

3. ROBUST PARAMETERS ESTIMATION

Along with their well-known properties and their simplicity

of analysis, the SCM and the SMV are the most extended

estimates since they are the MLEs for Gaussian case.

µ̂SMV =
1

N

N
∑

i=1

yi Σ̂SCM =
1

N

N
∑

i=1

(yi−µ̂)(yi−µ̂)H

(2)

where N denotes the number of secondary data. However,

such widespread techniques are suboptimal when the noise is

a non-Gaussian stochastic process. This article reviews some

robust procedures particularly suited for estimating the co-

variance matrix and the mean vector of elliptical populations.

The Fixed Point estimators, according to the definition

proposed by Tyler in [6], satisfy the following equations:

µ̂FP =

N
∑

i=1

xi
(

(xi − µ̂FP )
HΣ̂

−1

FP (xi − µ̂FP )
)1/2

N
∑

i=1

1
(

(xi − µ̂FP )
HΣ̂

−1

FP (xi − µ̂FP )
)1/2

(3)

Σ̂FP =
m

N

N
∑

i=1

(xi − µ̂FP ) (xi − µ̂FP )
H

((xi − µ̂FP )
HΣ̂

−1

FP (xi − µ̂FP ))
(4)

The Fixed Point estimates have been widely investigated in

statistics and signal processing literature. We refer to [7]

for a detailed performance analysis. It is worth pointing out

that Σ̂SCM and Σ̂FP have the same asymptotic Gaussian

distribution which differs on their second order moment by a

factor m+1

m N , i.e. for N sufficiently large, Σ̂FP behaves as a

Wishart matrix with m
m+1

degrees of freedom.

4. RX ADAPTIVE ANOMALY DETECTION

The RX algorithm was derived from the Likelihood Ratio as-

suming Gaussian hypothesis:

{

H0 : y = b

H1 : y = s+ b
, (5)

where s denotes the presence of an anomalous signal. The

adaptive detector is obtained by replacing the unknown pa-

rameters by their estimates. For example, an estimate may be

obtained from the range cells surrounding the cell under test.

The size of the cell has to be chosen large enough to ensure

the invertibility of the covariance matrix and small enough

to justify both spectral homogeneity (stationarity) and spatial

homogeneity. The use of a sliding mask provides a more re-

alistic scenario than when estimating the parameters using all

the pixels in the image. Thus, the mean vector µ and the

background covariance matrix, Σ are estimated from N sig-

nal free secondary data surrounding the pixel under test, yi,

i = 1, . . . , N . The resulting GLRT decision rule is the fol-

lowing:

tRX(y) = (y − µ̂SMV )
HΣ̂

−1

SCM (y − µ̂SMV )
H1

≷
H0

λ. (6)

and λ is a given threshold. When Gaussian assumption is

valid, the quadratic form (y − µ)H Σ−1 (y − µ) follows a

χ2 distribution for Σ and µ perfectly known. This quadratic

form is usually known as the Mahalanobis distance [8]. When

the parameters and under Gaussian assumptions Σ and µ are

replaced by their MLE parameters and under Gaussian as-

sumptions (2), the distribution of the quadratic form

N −m+ 1

mN
(z−µ̂SMV )

H Σ̂
−1

SCM (z−µ̂SMV ) ∼ Fm,N−m+1

follows a Hotelling T 2 distribution Fm,N−m+1 which is the

non-central F -distribution with m and N − m + 1 degrees

of freedom [9]. For high values of N, (N > 10m), the dis-

tribution can be approximated by the χ2 distribution. How-

ever, real hyperspectral scenes can not be described only with

Gaussian distribution, as mentioned above. In this work we

explore the use of Fixed Point estimators in the classical RX

detector :

tRX−FP (y) = (y − µ̂FP )
HΣ̂

−1

FP (y − µ̂FP )
H1

≷
H0

λ. (7)

It is important to highlight that the distribution of this detector

is still an open question, as far as the authors are aware.



5. RESULTS

The experiments were conducted firstly on a real hyperspec-

tral image where artificial targets with known spectral signa-

ture were introduced as anomalies in the background, see Fig.

1. The original data set consist in 50 × 50 pixels with 126

bands. Most of the theory on covariance matrix estimation

have been recently extended to complex value signals [10].

Since hyperspectral data are real and positive, we proposed to

use a Hilbert filter in order to render them complex. However,

it is important to note that the real component after Hilbert

transform is still the original signal. To avoid the well-known

problem due to high dimensionality we have chosen sequen-

cially eleven bands in the complex representation. In this ap-

proach, both covariance matrix and mean vector are estimated

using a sliding window of size 9 × 9, having N = 80 sec-

ondary data. The results for this image are shown on the Fig.

2.

(a) (b)

Fig. 1. (a) Original background image with artificial anoma-

lies, (b) Endmember used in the experiment.

The results obtained with (4) show that the robust de-

tector tRX−FP is capable of locate all the artificial targets

and present a lower number of false alarms. This improve-

ment is due to the fact that Fixed Point estimators treat the

outliers and impulsive samples in order for them to have a

smaller contribution to the background characterization pro-

cess, while the SMV-SCM estimates suffer from the presence

of strong reflectance pixels in the secondary data.

The algorithm has also been applied for galaxy detection

on the MUSE data cube. The Multi Unit Spectroscopic Ex-

plorer (MUSE) project (see [11]) aims to provide astronomers

with a new generation of optical instrument, capable of simul-

taneously imaging the sky (in 2D) and measuring the optical

spectra of the light received at a given position on the sky.

MUSE was installed on the VLT telescope and operational in

2013, and its performances are expected to allow observation

of far galaxies up to 100 times fainter than those presently

detectable. MUSE will deliver a 3D data-cube made of a

stack of images recorded at 3578 different wavelengths over

the range 465- 930 nm. Each monochromatic image repre-

(a) Classical RX detector

(b)RX detector built with the FP estimates

Fig. 2.

sents a field of view of 60×60 arcsec, recorded with a spatial

sampling of 0.2 arcsec. Each record results in a data cube of

size 1570 MB encoding 3578 images of 300 × 300 pixels,

possibly containing thousands of objects (galaxies) existing

over different subsets of wavelengths!

An example of MUSE data cube image is displayed in Fig.

3, from the 3578 available bands, we have chosen one band

of each 100 after Hilbert transformation. The results for

anomaly detection are presented in Fig.3

These examples illustrate the robust behavior of Fixed

Point estimators in non-Gaussian environments or for close

targets detection problems.

6. CONCLUSIONS

The family of elliptical distributions is considered for impul-
sive background characterization in hyperspectral imaging. In
this context, robust estimation methods for mean vector and
covariance matrix are used to overcome the non-Gaussianity
of the background and the presence of outliers or strong scat-
ters in the secondary data. Moreover, the use of the robust
Fixed Point estimators for anomaly detection purposes has
been discussed and compared to the classical SMV-SCM
Gaussian estimators. The theoretical improvement provided
by the robustness of the estimators is borne out through two
real hyperspectral images.



(a) MUSE data cube

(a) Classical RX detector (b) RX detector built the FP estimates

Fig. 3.
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