Induction de sens pour enrichir des ressources lexicales
Résumé
En traitement automatique des langues, les ressources lexico-sémantiques ont été incluses dans un grand nombre d'applications. La création manuelle de telles ressources est consommatrice de temps humain et leur couverture limitée ne permet pas toujours de couvrir les besoins des applications. Ce problème est encore plus important pour les langues moins dotées que le français ou l'anglais. L'induction de sens présente dans ce cadre une piste intéressante. À partir d'un corpus de texte, il s'agit d'inférer les sens possibles pour chacun des mots qui le composent. Nous étudions dans cet article une approche basée sur une représentation vectorielle pour chaque occurrence d'un mot correspondant à ses voisins. À partir de cette représentation, construite sur un corpus en bengali, nous comparons plusieurs approches de clustering (k-moyennes, clustering hiérarchique et espérance-maximisation) des occurrences d'un mot pour déterminer les différents sens qu'il peut prendre. Nous comparons nos résultats au Bangla WordNet ainsi qu'à une référence établie pour l'occasion. Nous montrons que cette méthode permet de trouver des sens qui ne se trouvent pas dans le Bangla WordNet.
Domaines
Traitement du texte et du documentOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...