Algorithmic construction of optimal designs on compact sets for concave and differentiable criteria - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Planning and Inference Année : 2014

Algorithmic construction of optimal designs on compact sets for concave and differentiable criteria

Résumé

We consider the problem of construction of optimal experimental designs (approximate theory) on a compact subset X of Rd with nonempty interior, for a concave and Lipschitz diff erentiable design criterion Phi (.) based on the information matrix. The proposed algorithm combines (a) convex optimization for the determination of optimal weights on a support set, (b) sequential updating of this support using local optimization, and (c) finding new support candidates using properties of the directional derivative of Phi(.). The algorithm makes use of the compactness of X and relies on a fi nite grid Xl C X for checking optimality. By exploiting the Lipschitz continuity of the directional derivatives of Phi(.), effi ciency bounds on X are obtained and epsilon-optimality on X is guaranteed. The eff ectiveness of the method is illustrated on a series of examples.
Fichier principal
Vignette du fichier
Opt_design-V5.pdf (291.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01001706 , version 1 (04-06-2014)

Identifiants

Citer

Luc Pronzato, Anatoly A. Zhigljavsky. Algorithmic construction of optimal designs on compact sets for concave and differentiable criteria. Journal of Statistical Planning and Inference, 2014, 154, pp.141-155. ⟨10.1016/j.jspi.2014.04.005⟩. ⟨hal-01001706⟩
222 Consultations
238 Téléchargements

Altmetric

Partager

More