
HAL Id: hal-01001706
https://hal.science/hal-01001706v1

Submitted on 4 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic construction of optimal designs on compact
sets for concave and differentiable criteria

Luc Pronzato, Anatoly A. Zhigljavsky

To cite this version:
Luc Pronzato, Anatoly A. Zhigljavsky. Algorithmic construction of optimal designs on compact sets
for concave and differentiable criteria. Journal of Statistical Planning and Inference, 2014, 154, pp.141-
155. �10.1016/j.jspi.2014.04.005�. �hal-01001706�

https://hal.science/hal-01001706v1
https://hal.archives-ouvertes.fr


Algorithmic construction of optimal designs on compact sets

for concave and differentiable criteria∗

L. PRONZATO1,2 and A. ZHIGLJAVSKY3

1 Author for correspondence
2 Laboratoire I3S, CNRS/Université de Nice-Sophia Antipolis

Bât. Euclide, Les Algorithmes, 2000 route des lucioles, BP 121

06903 Sophia Antipolis cedex, France
3 School of Mathematics, Cardiff University

Senghennydd Road, Cardiff, CF24 4YH, UK

pronzato@i3s.unice.fr

ZhigljavskyAA@cf.ac.uk

February 19, 2014

Abstract

We consider the problem of construction of optimal experimental designs (approximate

theory) on a compact subset X of Rd with nonempty interior, for a concave and Lipschitz

differentiable design criterion φ(·) based on the information matrix. The proposed algorithm

combines (a) convex optimization for the determination of optimal weights on a support set,

(b) sequential updating of this support using local optimization, and (c) finding new support

candidates using properties of the directional derivative of φ(·). The algorithm makes use

of the compactness of X and relies on a finite grid Xℓ ⊂ X for checking optimality. By

exploiting the Lipschitz continuity of the directional derivatives of φ(·), efficiency bounds on

X are obtained and ǫ-optimality on X is guaranteed. The effectiveness of the method is

illustrated on a series of examples.

keywords Approximate design; optimum design; construction of optimal designs, global

optimization

MSC 62K05; 90C30; 90C26

∗This work was initiated while the authors were invited at the Isaac Newton Institute for Mathematical

Sciences, Cambridge, UK; the support of the INI and of CNRS is gratefully acknowledged.

1



1 Introduction and motivation

A design measure ξ on a finite set X ⊂ R
d with ℓ elements is characterized by the ℓ-dimensional

vector of weights W (nonnegative and summing to one) allocated to the ℓ elements of X . The

determination of an optimal measure ξ∗ which maximizes a concave differentiable criterion φ(·)
then forms a finite-dimensional convex problem for which many optimization algorithms are

available, see, e.g., Hiriart-Urruty and Lemaréchal (1993); den Hertog (1994); Nesterov and

Nemirovskii (1994); Ben-Tal and Nemirovski (2001); Boyd and Vandenberghe (2004); Nesterov

(2004) for recent developments on convex programming. In particular, the cutting plane method

of Kelley (1960) is considered by Sibson and Kenny (1975), and a variant of it (with a modified

version of the Equivalence Theorem) by Gribik and Kortanek (1977); see also Pronzato and

Pázman (2013, Chap. 9). However, design problems are usually such that (a) the cardinality ℓ

of the design space, which determines the dimension of the optimization problem to be solved,

is large, and (b) there always exists an optimal measure ξ∗ with a few support points only, i.e.,

such that only a few components of W are positive (say m, with m≪ ℓ). These particularities

have motivated the development of specific methods which happen to be competitive compared

to general-purpose convex-programming algorithms. One may distinguish three main families,

see Pronzato and Pázman (2013, Chap. 9) for a recent survey.

(i) Vertex-direction methods only increase one component of W at each iteration, all other

components being multiplied by the same factor smaller than one; see Wynn (1970);

Fedorov (1972) and also Frank and Wolfe (1956) for a method originally proposed in a more

general context. A significant improvement can be achieved by decreasing some individual

components of W only, which allows us to set some components of W to zero, i.e., to

remove support points from a poorly chosen initial design and sometimes to exchange two

components of W (vertex-exchange methods); see Atwood (1973); St. John and Draper

(1975); Böhning (1985, 1986); Molchanov and Zuyev (2001, 2002).

(ii) In gradient methods the gradient direction projected on the set of design measures is used

as the direction of movement at each iteration; see Wu (1978a,b), and Atwood (1976) for

an extension to a Newton-type method.

(iii) At each iteration of a multiplicative method, each component of W is multiplied by a suit-

ably chosen positive function; see, e.g., Titterington (1976); Silvey et al. (1978); Torsney

(1983); Fellman (1989); Dette et al. (2008); Yu (2010a,b), and Torsney (2009) for a his-

torical review.

In multiplicative methods all initial weights must be positive, those which should be zero

at the optimum decrease continuously along iterations but typically stay strictly positive, i.e.,

2



never achieve exactly zero. The convergence is inevitably slow close to the optimum. The

same phenomenon occurs for vertex-direction methods, unless the decrease of some particular

individual components of W is allowed at some iterations, so that poor initial support points

can be removed. Even in this case, if ℓ is large many iterations are required to identify the

components of W which should be positive at the optimum. Gradient-type methods are also

not efficient when ℓ is large.

Several authors tried combinations of different methods to make use of their respective

advantages. A very sensible algorithm is proposed in (Wu, 1978a,b); it combines a gradient

method (always working in a small dimensional subspace) with a vertex-direction method (which

allows a suitable updating of this subspace). A mixture of multiplicative and vertex-exchange

algorithms is proposed in (Yu, 2011) for D-optimum design; it includes a nearest-neighbor

exchange strategy which helps apportioning weights between adjacent points in X and has the

property that poor support points are quickly removed from the support of the initial measure.

Attractive performance is reported. All the methods above, however, are restricted to the case

where the design space X is finite with l being not too large and, for some of them, to particular

design criteria (D-optimality, for instance).

When one is interested in the determination of an optimal design on a compact subset X

of Rd with nonempty interior, the usual practice consists in discretizing X into a finite set Xℓ

with ℓ elements and applying one of the methods above. When a precise solution is required,

then ℓ is necessarily very large (in some cases, ℓ = 106 should be considered as a small number)

and none of the methods above is efficient. Refining iteratively a finite grid contained in X is

a possible option, see Wu (1978a), but the search for the optimal design is still performed in a

discrete set.

In contrast, the algorithm we propose makes use of the compactness of X and looks for the

optimal support in the whole set X . A finite grid Xℓ ⊂X is only used to check optimality on

Xℓ and, using the Lipschitz continuity of directional derivatives of φ(·), to construct an efficiency

bound on X . A key ingredient in the algorithm is the separation between the determination of

the support points of ξ∗ (knowing that there are at most m of them) from the determination of

the associated weights (an m-dimensional convex problem).

The determination of the support of ξ∗ is a non-convex problem, usually multimodal, for

which the straightforward application of a global search method (such as the simulated annealing

or one of the genetic algorithms) cannot be recommended. Indeed, these heuristic methods do

not use the crucial information about the objective function provided by the Lipschitz constants,

derivatives and convexity of the weight-optimization problem, and most of them do not provide

any indication of the closeness of the returned solution to an optimum, global or local. On the

other hand, by using properties of the directional derivative of φ(·), we can easily locate good

3



candidates for the support of ξ∗ and thereby we do not need to perform a global search in the

m × d dimensional space X d. The aim of this paper is to show how these properties can be

combined with algorithms for convex optimization which are classically used in design for the

determination of optimal weights to yield an efficient method of construction of optimal designs

on compact sets.

The paper is organized as follows. Section 2 defines the problem and introduces the notation.

Section 3 presents the algorithm and proves its convergence. A few illustrative examples are

given in Sect. 4 where the results obtained with the proposed algorithm are discussed. Section 5

concludes and indicates some remaining open issues. A few technical aspects are collected in

Appendix.

2 Notation and problem statement

Let the design space X be a compact subset of Rd with nonempty interior (typically X =

[−1, 1]d) and denote by Ξ(X ) the set of probability measures on X . Any element ξ ∈ Ξ(X )

will be called design measure, or shortly design.

Consider a model (the main example being a regression model) defined on X with p unknown

parameters θ ∈ R
p, p ≥ 2. Denote by M

≥ and M
> the sets of p× p symmetric non-negative and

positive definite matrices respectively. Let

M(ξ) =

∫

X

µ(x) ξ(dx) (1)

be the information matrix related to the estimation of θ, with µ(x) ∈M
≥. The matrix µ(x) is the

elementary information matrix for the estimation of θ associated with one single observation at x

and may have rank larger than one (think of Bayesian optimal design or multivariate regression,

see, e.g., Fedorov (1972, Chap. 5), Harman and Trnovská (2009)). In the case of simple linear

regression model with observations yj = θT f(xj) + εj , where the εj denote i.i.d. random errors

with zero mean, we have µ(x) = f(x)fT (x). We suppose that µ(·) is continuous on X (this

assumption could be weakened, but it would make the presentation unduly complicated).

Although µ(·), and thus M(ξ), may depend on the model parameters θ in a nonlinear situ-

ation, this dependence will be omitted and, when it occurs, we only consider locally optimum

designs and evaluate M(·) at a nominal value for θ. The set MX = {M(ξ) : ξ ∈ Ξ(X )} is a

convex and compact subset of a linear space of dimension p(p+ 1)/2 + 1; from Caratheodory’s

Theorem, see, e.g., Silvey (1980, p. 72), any element ofMX can be written as M(ξdiscr), where

ξdiscr is a discrete measure supported on a finite set with m ≤ p(p+ 1)/2 + 1 elements.

We are interested in constructing a φ-optimal design on X ; that is, a design ξ∗ ∈ Ξ(X )

4



which maximizes the functional

φ(ξ) = Φ[M(ξ)]

with respect to ξ ∈ Ξ(X ). The function Φ : M
≥ −→ R is normally assumed to be (see, e.g.,

Pukelsheim (1993, Chap. 5)):

(i) concave, i.e., Φ[(1−α)M1 +αM2] ≥ (1−α)Φ(M1) +αΦ(M2) for all M1, M2 in M
≥ and all

α in [0, 1];

(ii) proper, i.e., the set {M ∈M
≥ : Φ(M) > −∞} is nonempty and Φ(M) <∞ for allM ∈M

≥;

(iii) isotonic (monotonic for Loewner ordering), i.e., Φ(M1) ≥ Φ(M2) for all M1, M2 in M
≥

such that M1 −M2 is non-negative definite.

We suppose that a nonsingular design measure ξ0 exists in Ξ(X ) (i.e., such that M(ξ0) ∈
M

>). We shall denote by Φ+(·) the positively homogeneous version of Φ(·), which satisfies

Φ+(Ip) = 1, with Ip the p-dimensional identity matrix, and Φ+(aM) = aΦ+(M) for all M in

M
≥ and all a positive. We also suppose that the design criterion Φ(·) is global, that is, its

positively homogeneous version Φ+(·) satisfies Φ+(M) > 0 if and only if M ∈ M
>. We can

write Φ+(M) = ψ[Φ(M)], with ψ(·) the inverse function of the transformation a ∈ R
+ 7−→

Φ(aIp). Note that ψ(·) is increasing. We suppose that Φ+(·) is concave. Standard examples

are Φ(M) = log det(M) with Φ+(M) = det1/p(M), ψ(t) = exp(t/p), and Φ(M) = −trace(M−1)

with Φ+(M) = [(1/p)trace(M−1)]−1 and ψ(t) = −p/t; see, e.g., Pukelsheim (1993, Chap. 5).

The φ-efficiency of a design measure ξ ∈ Ξ(X ) is defined as

Eφ(ξ) =
φ+(ξ)

maxξ∈Ξ(X) φ+(ξ)
, (2)

where φ+(ξ) = Φ+[M(ξ)].

We assume that Φ(·) : M≥ −→ R is differentiable on M
> with Lipschitz continuous gradient;

that is,

‖∇Φ(M1)−∇Φ(M2)‖ ≤ L(c)‖M1 −M2‖ (3)

for all M1, M2 in the set

M(c) = {M ∈M
> : Φ(M) ≥ c} ,

for some constant L(c), where ∇Φ(M) denotes the gradient of Φ(·) at M , the norm ‖ · ‖ is the
usual L2-norm (for any real matrix M , ‖M‖ = trace1/2(M⊤M)) and c is any number between

infξ∈Ξ(X ) φ(ξ) and maxξ∈Ξ(X ) φ(ξ). We also suppose that

‖∇Φ(M)‖ ≤ B(c) for all M ∈M(c) (4)

5



for some constant B(c). Note that L(c) and B(c) will only be used in the proofs of Theorems 2

and 3 and that their knowledge is not required for the construction of optimal designs with the

algorithms of Sect. 3.

Isotonicity implies that any optimal information matrixM(ξ∗) lies on the boundary of the set

MX , and therefore there always exists an optimal design measure with no more than m∗(p) =

p(p + 1)/2 support points. We can thus restrict our attention to such designs, i.e., to designs

ξ defined by their support points {x(1), . . . , x(m)}, m ≤ m∗(p), and associated weights wi =

ξ({x(i)}) ≥ 0 which satisfy
∑m

i=1wi = 1. The notation

ξ =

{

x(1) x(2) · · · x(m)

w1 w2 · · · wm

}

is standard. One should notice that the bound m∗(p) is often pessimistic since many situations

exist where optimal designs are concentrated on a much smaller number of support points or are

even saturated, i.e., are supported on p points only; see Yang and Stufken (2009); Yang (2010)

and the paper (Dette and Melas, 2011) which makes use of results in (Karlin and Studden,

1966b) on Chebyshev systems and moment spaces.

For any n ≥ 1 and any design measure ξ on X = {x(1), . . . , x(n)} ⊂X n, we shall denote by

W = W (ξ) = (w1, . . . , wn)
⊤ ∈Pn the vector formed by the weights wi = {W}i = ξ(x(i)), with

Pn the probability simplex

Pn = {W = (w1, . . . , wn)
⊤ ∈ R

n : wi ≥ 0 ,
n
∑

i=1

wi = 1} . (5)

Some components wi of W may equal zero, and we shall denote by W+(ξ) the vector formed

by strictly positive weights and by S = S(ξ) the support of ξ, defined by the corresponding

design points. With a slight abuse of notation, we shall consider X and S sometimes as sets

with respectively n and m ≤ n elements, and sometimes as vectors in R
n×d and R

m×d. Also, we

shall respectively denote by φ(S|W+) and φ(W+|S) = φ(W |X) the value of the design criterion

φ(ξ) when considered as a function of S with W+ fixed and as a function of W+ with S fixed,

and by ∇φ(W+|S) the usual gradient ∂φ(W+|S)/∂W+ (a m-dimensional vector). For any ν

and ξ in Ξ(X ) such that φ(ξ) > −∞, we can compute the directional derivative of φ(·) at ξ in

the direction ν,

F (ξ; ν) = lim
α→0+

φ[(1− α)ξ + αν]− φ(ξ)
α

= trace{[M(ν)−M(ξ)]∇Φ[M(ξ)]}

(with F (ξ; ν) ∈ R ∪ {+∞}). When ν is the delta-measure δx at x, we obtain

F (ξ, x) = F (ξ; δx) = trace{[µ(x)−M(ξ)]∇Φ[M(ξ)]} . (6)

6



Suppose that ξ and ν are finitely supported and let X denote the union of their supports.

Denoting by W and W ′ the vectors of weights which ξ and ν respectively allocate to points in

X, with some components of W and W ′ possibly equal to zero, we obtain

F (ξ; ν) = (W ′ −W )⊤∇φ(W |X) .

The concavity and differentiability of Φ(·) yield a necessary and sufficient condition for the opti-

mality of a design measure ξ∗, see, e.g., Silvey (1980), usually named the Equivalence Theorem

as a tribute to the work of Kiefer and Wolfowitz (1960); see also Karlin and Studden (1966a).

Theorem 1 The following properties are equivalent

(i) ξ∗ is φ-optimal on X , i.e., ξ∗ maximizes φ(ξ) with respect to ξ ∈ Ξ(X );

(ii) ξ∗ minimizes maxx∈X F (ξ, x) with respect to ξ ∈ Ξ(X );

(iii) maxx∈X F (ξ∗, x) = 0.

Note that F (ξ; ξ) = 0 for all ξ ∈ Ξ(X ) and that F (ξ; ν) =
∫

X
F (ξ, x) ν(dx) for all ξ and

ν ∈ Ξ(X ), so that (iii) implies that ξ∗-almost everywhere we have F (ξ∗, x) = 0; that is,

F (ξ∗, x) = 0 on the support of ξ∗.

We shall say that ξǫ is ǫ-optimal for φ(·) on X if and only if

max
x∈X

F (ξǫ, x) < ǫ .

The concavity of φ(·) then implies that φ(ξǫ) > maxξ∈Ξ(X) φ(ξ)− ǫ.
The directional derivative of the positively homogeneous criterion φ+(·) = ψ[φ(·)] at ξ in

the direction ν is Fφ+(ξ; ν) = ψ′[φ(ξ)]F (ξ; ν) . We denote Fφ+(ξ, x) = Fφ+(ξ; δx) for all x ∈ X

and all ξ ∈ Ξ(X ). Due to the concavity of φ+(·), the ǫ-optimality of ξǫ for φ(·) implies that

φ+(ξǫ) > maxξ∈Ξ(X) φ
+(ξ)− ǫ ψ′[φ(ξǫ)]; this yields the efficiency bound

Eφ(ξ
ǫ) > 1− ǫ ψ′[φ(ξǫ)]

maxξ∈Ξ(X) φ+(ξ)
≥ Eφ(ξ

ǫ) = 1− ǫ ψ′[φ(ξǫ)]

φ+(ξǫ)
, (7)

where the φ-efficiency Eφ(·) is defined in (2).

3 Algorithms

We denote by A0 a convex optimization algorithm for the determination of optimal weights.

When initialized at an arbitrary nonsingular design on X, for any ǫ > 0, the algorithm A0 is

assumed to return an ǫ-optimal design in a finite number of iterations; we shall denote this

ǫ-optimal design by ξ = A0[X, ǫ]. In the examples of Sect. 4, we use a combination of the

projected-gradient and vertex-exchange methods, following ideas similar to those in (Wu, 1978a),

but other methods could be used as well, see a discussion in Sect. 1.

7



Algorithm A0

Input: Discrete set X = {x(1), . . . , x(m)} ∈ X m (such that M(ν0) has full rank, with ν0 the

uniform measure on X) and ǫ > 0.

Output: Design ξ = A0[X, ǫ] such that maxx∈X F (ξ, x) < ǫ.

3.1 Construction of the main algorithm

We shall construct an algorithm for the maximization of φ(·) on the set of design measures on

the compact set X . We denote by ξk the design measure obtained at iteration k (always with

finite support), by Sk = S(ξk) its support and by W+
k the vector of associated weights, and

write φk = φ(ξk).

The construction is decomposed into three steps. First, we present a prototype algorithm A1;

at each iteration k of this algorithm we determine an (ǫ/2)-optimal design ξk = A0[Xk, ǫ/2] for

an increasing sequence of sets Xk, where Xk has one element more than Xk−1. The main

difference between algorithm A1 and the vertex-direction methods discussed in Sect. 1 is step 1,

where the weights at the current support are optimized. Although closely related, the algorithm

also differs from a direct application of the cutting-plane method as considered by Sibson and

Kenny (1975); Gribik and Kortanek (1977).

Algorithm A2 is very similar to A1 but in A2 the number of points in the sets Xk is bounded.

In both A1 and A2 we assume that maxx∈X F (ξk, x) can be determined with arbitrary

precision ǫ. In practice, we usually perform the search for the maximum of F (ξk, x) over a

finite test-set Xℓ. Using Lipschitz continuity arguments and (7), we can then guarantee some

efficiency bound over X when Xℓ ⊂ X is a fine enough grid, see Sect. 3.3. However, the

computational effort required becomes too high when ℓ gets large if we search for the maximum

of F (ξk, x) over the whole grid Xℓ at each iteration. In algorithm A3, we use a two-level strategy

where the maximization of F (ξk, ·) is performed over a coarse test-set Tk which is progressively

enriched by points taken from Xℓ. Moreover, the maximization over Tk is complemented by a

local search over X .

The addition of a local maximization of φ(S|W+
k ) with respect to the support S of ξk at

each iteration preserves the convergence of φk to the optimum φ∗ = φ(ξ∗) and yields our final

algorithm A4, which also incorporates a merging strategy which avoids having clusters of points

(that is, groups of points positioned closely) in Tk and Xk. This is important as the presence

of such clusters slows down the convergence of algorithms.

8



Algorithm A1

Step 0) Choose X0 = {x(1), . . . , x(m)} ∈ X m such that M(ν0) has full rank, with ν0 the

uniform measure on X0; choose ǫ > 0, set k = 0.

Step 1) Compute ξk = A0[Xk, ǫ/2].

Step 2) Find x∗k = argmaxx∈X F (ξk, x).

Step 3) If F (ξk, x
∗
k) < ǫ, stop; otherwise, set Xk+1 = {Xk, x

∗
k}, k ← k + 1, go to step 1.

Note that we can always use m ≤ p(p+ 1)/2 at step 0 above. The next theorem establishes

an important property of algorithm A1.

Theorem 2 Algorithm A1 stops after a finite number of iterations. The design measure ξk

obtained at step 3 is then ǫ-optimal, in the sense φk = φ(ξk) > φ∗ − ǫ.

Proof. Denote by φ∗k the maximum value of φ(·) on the set of probability measures supported on

Xk. From the (ǫ/2)-optimality of the design ξk returned by algorithm A0, we have φ0 = φ(ξ0) ≥
φ∗0 − ǫ/2. Since X0 ⊂ Xk for any k ≥ 1, φ∗k ≥ φ∗0 and φk ≥ φ∗k − ǫ/2 ≥ φ∗0 − ǫ/2 for all k.

Now, for all k and all x, x′ ∈X we have

|F (ξk, x′)− F (ξk, x)| =
∣

∣trace{[µ(x′)− µ(x)]∇Φ[M(ξk)]
∣

∣

≤ ‖µ(x′)− µ(x)‖ ‖∇Φ[M(ξk)]‖

≤ ‖µ(x′)− µ(x)‖B(φ∗0 − ǫ/2) ,

see (4) and (6). Since X is compact and µ(x) is continuous, there exists ρ > 0 such that for

any x and x′ in X , ‖x′ − x‖ < ρ implies that |F (ξk, x′) − F (ξk, x)| < ǫ/2 for all k. Since

ξk = A0[Xk, ǫ/2], F (ξk, x
(i)) < ǫ/2 for all x(i) in Xk, so that any x in a ball B(x(i), ρ) with

centre x(i) and radius ρ is such that F (ξk, x) < ǫ. This implies that x∗k constructed at step 2 is

at distance larger than ρ from all points in Xk when algorithm A1 does not stop at step 3. In

view of the fact that X is compact, A1 necessarily stops after a finite number of iterations.

The concavity of φ(·) implies that φ∗ ≤ φk + maxx∈X F (ξk, x) and thus φ∗ < φk + ǫ when

the algorithm stops.

Remark 1 Note that the algorithm stops in less than k∗ iterations, with

k∗ = max{k : there exists (x1, . . . , xk) ∈X
k such that min

i 6=j
‖xi − xj‖ ≥ ρ} .

An upper bound on k∗ (very pessimistic) can easily be constructed when X is an hypercube in

R
d, say [−1, 1]d, using packing radius. Indeed, the existence of (x1, . . . , xk) in the definition

9



of k∗ implies that k non-intersecting balls of radius R = ρ/2 can be packed in the hypercube

[−(1 + ρ/2), (1 + ρ/2)]d, so that k∗ ≤ (2 + 4/ρ)d/Vd, with Vd = πd/2/Γ(d/2 + 1) the volume of

the d-dimensional unit ball.

In algorithm A1, the size of Xk increases by one at each iteration (see step 3), so that the

dimension of the optimization problem to be solved by A0 at step 1 is also increasing. In order

to facilitate the work of A0 we shall consider another construction for Xk.

The support Sk = S(ξk) of the design ξk determined at step 1 may be strictly included in

Xk. It is then tempting to replace step 3 of A1 by

Step 3′) If F (ξk, x
∗
k) < ǫ stop; otherwise set Xk+1 = {Sk, x∗k}, k ← k + 1, go to step 1.

However, the arguments used in the proof of Theorem 2 for the non-existence of cluster

points for the sequence {x∗k} are no longer valid since Xk does not contain all previous points

x∗k′ , k
′ < k. We show in Theorem 3 that convergence is ensured by choosing a suitably decreasing

sequence of constants γk in ξk = A0[Xk, γkǫ] at step 1, e.g., γk = 1/(k + 1) or γk = γk for some

γ ∈ (0, 1). The algorithm is then as follows.

Algorithm A2 Let {γk}, k ≥ 0, denote a decreasing sequence of numbers in (0, 1), with

limk→∞ γk = 0.

Step 0) Same as in A1.

Step 1) Compute ξk = A0[Xk, γkǫ].

Step 2) Same as in A1.

Step 3) Use step 3′ above.

Theorem 3 Algorithm A2 stops after a finite number of iterations and the design measure ξk

obtained at step 3 is ǫ-optimal.

Proof. We use the same notation as in the proof of Theorem 2. The maximum φ∗k of φ(·) in

the space of probability measures supported on Xk is also the maximum of φ(·) for a measure

supported on Sk. Since Sk ⊂ Xk+1, φ
∗
k+1 ≥ φ∗k and therefore φk > φ∗k − γkǫ ≥ φ∗0 − γkǫ ≥ φ∗0 − ǫ

for all k ≥ 0.

We suppose that A2 never stops and show that we reach a contradiction. Denote ξ′k(α) =

(1−α)ξk+αδx∗

k
, with δx∗

k
the delta measure allocating mass 1 at x∗k. The function α 7−→ φ[ξ′k(α)]

is concave, reaches its maximum for some αk ∈ [0, 1) and equals φk for α = 0 and α = α′
k, with

α′
k some number larger than αk. For any α ∈ [0, α′

k] we may write

φ[ξ′k(α)] = φk + α trace{[µ(x∗k)−M(ξk)]∇Φ[M(ξ′k(α
′))]}

10



for some α′ ∈ [0, α]. Using (3) and the fact that φk > φ∗0 − ǫ, we obtain

φ[ξ′k(α)] = φk + αtrace{[µ(x∗k)−M(ξk)]∇Φ[M(ξk)]}

+α trace{[µ(x∗k)−M(ξk)] [∇Φ[M(ξ′k(α
′))]−∇Φ[M(ξk)]]}

≥ φk + αF (ξk, x
∗
k)− α ‖µ(x∗k)−M(ξk)‖ ‖∇Φ[M(ξ′k(α

′))]−∇Φ[M(ξk)]‖

≥ φk + αF (ξk, x
∗
k)− αα′ ‖µ(x∗k)−M(ξk)‖2 L(φ∗0 − ǫ)

≥ φk + αǫ− α2C L(φ∗0 − ǫ)

with C = maxx,x′∈X ‖µ(x′)− µ(x)‖2, where we used the property F (ξk, x
∗
k) ≥ ǫ. Therefore,

φ∗k+1 ≥ max
α

φ[ξ′k(α)] ≥ φk +
ǫ2

4C L(φ∗0 − ǫ)

and

φk+1 ≥ φ∗k+1 − γk+1ǫ ≥ φk +
ǫ2

4C L(φ∗0 − ǫ)
− γk+1ǫ . (8)

This implies that there exists some k0 such that, for all k > k0, φk+1 > φk + ǫ2/[8C L(φ∗0 − ǫ)].
The sequence {φk} is thus unbounded, which contradicts the assumptions on X , µ(·) and φ(·).

Algorithm A2 thus stops in a finite number of iterations. As in the proof of Theorem 2, the

concavity of φ(·) implies that ξk is then ǫ-optimal.

Remark 2 An upper bound k∗ on the number of iterations required by A2 can easily be derived

from (8). Indeed, k∗ satisfies k∗ǫ2/A − ǫ
∑k∗

i=1 γi ≤ φ∗ − φ0, where we have denoted A =

4C L(φ∗0 − ǫ) and φ∗ = φ(ξ∗). This gives k∗ ≤ (A/ǫ2)[φ∗ − φ0 + γǫ/(1 − γ)] for γi = γi with

γ ∈ (0, 1), and k∗ ≤ A2/(4ǫ2)[1 +
√

1 + 4(φ∗ − φ0)/A]2 for γi = 1/(i + 1) (where we have used

the property (1/k)
∑k

i=1 γi < 1/
√
k).

Step 2 of algorithms A1 and A2 may be difficult to implement when X has nonempty interior

since the function x ∈ X 7−→ F (ξk, x) is severely multimodal. We thus discretize X into a

finite grid Xℓ and use the maximizer over this grid as initialization for a local maximization of

F (ξk, ·) over X . The grid must be fine enough (i) to ensure that the maximum of F (ξk, ·) is not
missed and (ii) to guarantee a reasonable level of optimality over X , see Sect. 3.3. However,

the computational cost corresponding to the evaluation of F (ξk, x) for all points of Xℓ at each

iteration would be too high when ℓ is very large. For that reason, algorithm A3 presented below

uses a two-level strategy, with a test-set Tk remaining much smaller than Xℓ.

We denote by x∗ = LM [F (ξ, ·);x0] the result of a local maximization of F (ξ, x) with respect

to x ∈ X initialized at x0, see Sect. 3.2 for possible algorithms when X is the hypercube

[−1, 1]d, or the probability simplex Pd given by (5) (mixture experiments). As in A2, {γk}
denotes a decreasing sequence of numbers in (0, 1), with limk→∞ γk = 0.

11



Algorithm A3

Step 0) Choose X0 = {x(1), . . . , x(m)} ∈ X m such that M(ν0) has full rank, with ν0 the

uniform measure on X0; choose some arbitrary test-set T0 of n points in X ; choose ǫ > 0,

set k = 0.

Step 1) Compute ξk = A0[Xk, γkǫ/2].

Step 2) Find x∗ = argmaxx∈Tk
F (ξk, x) and compute x∗k = LM [F (ξk, ·);x∗].

Step 3) If F (ξk, x
∗
k) ≥ ǫ/2, go to step 7; otherwise go to step 4.

Step 4) Find x∗∗ = argmaxx∈Xℓ
F (ξk, x).

Step 5) If F (ξk, x
∗∗) < ǫ/2, stop.

Step 6) Compute x∗k = LM [F (ξk, ·);x∗∗].

Step 7) Set Xk+1 = {Sk, x∗k}, Tk+1 = (Tk, x
∗
k), k ← k + 1; go to step 1.

The test-set T0 of step 0 is arbitrary, one may choose for instance T0 = X0 or the 2d vectors

with components ±1 when X = [−1, 1]d. The algorithm repeatedly goes through steps 1 to 3

and 7 until F (ξk, x) becomes smaller than ǫ/2 for all x ∈ Tk; then the algorithm goes through

step 5 which tests the (ǫ/2)-optimality of ξk over Xℓ. The proof of convergence uses the same

arguments as for A2: the algorithm stops after a finite number of iterations and returns a design

measure ξk that is (ǫ/2)-optimal on Xℓ. The set Xℓ can be chosen such that (ǫ/2)-optimality

on Xℓ implies ǫ-optimality on the whole compact set X , see Sect. 3.3.

The following two easy improvements can be made to A3.

(i) When minx∈Sk
‖x − x∗k‖ < δk at step 7, with δk some small number, one may consider

replacing the point in Sk closest to x∗k by x∗k and accept the substitution if φ(ξk) < φ(ξ′k),

with ξ′k the design measure after the substitution. We denote the result of this operation

by Xk+1 = EX[{Sk, x∗k}; δk].

(ii) Step 1 can be complemented by a local maximization of φ(S|W+
k ) with respect to S ∈X mk ,

initialized at Sk, with mk the number of support points of ξk, Sk their collection and

W+
k the associated weights. We shall denote the result of this local maximization by

S′
k = LM [φ(·|W+

k );Sk]; see Sect. 3.2 for algorithms.

Since (i) and (ii) above can only increase the value of φk, the arguments used in the proof of

Theorem 3 remains valid and the convergence to an (ǫ/2)-optimal measure on Xℓ is preserved.

We also add modifications which may decrease the value of φ(·) and for which some caution

is thus required.

12



(iii) If the substitution is rejected in Xk+1 = EX[{Sk, x∗k}; δk], see (i), then the set Xk+1 may

contain points which are very close, which may complicate the task of A0 at step 1. We

thus consider aggregation of points in Xk+1 and replace (sequentially) all pairs of points

xi 6= xj such that ‖xi−xj‖ < δk by (xi+xj)/2, until the set X
′
k+1 which is obtained is such

that minxi 6=xj∈X′

k+1
‖xi − xj‖ ≥ δk. We denote this operation by X ′

k+1 = AG(Xk+1, δk).

(iv) When the set Tk+1 contains many points, say more than some specified number N , one

may consider an aggregation step similar to (iii) above and use AG(Tk+1, δk).

To preserve convergence, we take {δk} as a positive decreasing sequence tending to zero as

k → ∞ (e.g., δk = δ/(k + 1) for some δ > 0) and, to avoid possible oscillations which may

be caused by alternating local optimization in (ii) and aggregation of points in (iii), the local

optimization is only used when there is an increase of φ(·) in two successive passages through

step 1. The final algorithm is as follows. Remember that W+
k denotes the vector formed by the

strictly positive weights of ξk (in practice we only keep weights larger than some small constant,

typically 10−6, all other points are removed from ξk and their total weight is reallocated to

remaining points proportionally to the gradient components).

Algorithm A4 Let {γk} and {δk}, k ≥ 0, denote two decreasing sequences of numbers in

(0, 1), with limk→∞ γk = limk→∞ δk = 0.

Step 0) Choose X0 = {x(1), . . . , x(m)} ∈ X m such that M(ν0) has full rank, with ν0 the

uniform measure on X0; choose some arbitrary test-set T0 of n points in X ; choose

N > n and ǫ > 0, set k = 0, φold = φ(ν0).

Step 1) Compute ξk = A0[Xk, γkǫ/2].

Step 1a) Compute S′
k = LM [φ(·|W+

k );Sk].

Step 1b) If φ(S′
k|W+

k ) > φold, substitute S
′
k for Sk as support of ξk.

Step 1c) Compute φk = φ(ξk), set φold = φk.

Step 2) Find x∗ = argmaxx∈Tk
F (ξk, x) and compute x∗k = LM [F (ξk, ·);x∗].

Step 3) If F (ξk, x
∗
k) ≥ ǫ/2, go to step 7; otherwise go to step 4.

Step 4) Find x∗∗ = argmaxx∈Xℓ
F (ξk, x).

Step 5) If F (ξk, x
∗∗) < ǫ/2, stop.

Step 6) Compute x∗k = LM [F (ξk, ·);x∗∗].

Step 7) Set X∗ = EX[{Sk, x∗k}; δk] and T ∗ = (Tk, x
∗
k).

13



Step 7a) If #T ∗ > N , aggregate points in T ∗: Tk+1 = AG(T ∗, δk); otherwise set

Tk+1 = T ∗.

Step 7b) Aggregate points in X∗: Xk+1 = AG(X∗, δk), k ← k + 1, go to step 1.

In practice the finite set Xl can be taken as an adaptive grid such that, as the number ℓ of

points tends to infinity, the minimax distance ρ = maxy∈X minx∈Xℓ
‖y − x‖q tends to zero, for

some Lq-norm ‖ · ‖q. The search for x∗∗ = argmaxx∈Xℓ
F (ξk, x) of step 4 is then replaced by a

sequential inspection of grid points: the screening through the grid is stopped when either

(i) a grid point xi is found such that F (ξk, x) ≥ ǫ/2, this point being then taken as x∗∗,

or

(ii) the value of ρ is small enough to ensure that maxx∈X F (ξk, x) < ǫ, that is, ξk is ǫ-optimal

on X .

This is detailed in Sect. 3.4.

3.2 Local maximizations

Steps 1a and 2 involve local maximizations, respectively with respect to the mk points forming

the support Sk of ξk, Sk ⊂ X mk , and with respect to x ∈ X . There exist many sophisti-

cated constrained optimization methods (such as sequential quadratic programming for instance)

which can solve this problem efficiently. Note that very high accuracy is not required, any im-

provement compared with the initialization is enough to ensure convergence of algorithm A4.

Simple unconstrained optimization methods can therefore also be used when X has a simple

form. Some methods are suggested below for situations where X is the hypercube [−1, 1]d and

for the case of mixture experiments with X given by the simplex Pd defined by (5).

Remark 3 Note that a local maximization of F (ξk, x) initialized at the support points of ξk is

generally not adequate at step 2. Consider for instance D-optimal design for the linear regression

model η(x, θ) = θ1 + θ2 x sin(x) on X = [0, x], with x ≥ 2. For ξ = (1/2)δ0 + (1/2)δ2,

F (ξ, 0) = F (ξ, 2) = 2 and F (ξ, x) is locally maximum at x = 0 and x = 2 (with ξ being D-

optimal on X when 2 ≤ x ≤ π), but maxx∈X F (ξ, x) > 2, and ξ is not D-optimal, when

x > π.

Reparameterization When X = [−1, 1]d, one may consider the reparameterization x =

cos(y) ∈ X (to be understood componentwise) with a local maximization with respect to

y ∈ R
d at step 2, or with respect to the mk points y(1), . . . , y(mk), each one in R

d, at step 1a; see

Appendix B for further details. Any classical method for unconstrained optimization can then

be used, including derivative-free methods, see for instance Powell (1964).

14



Projected gradient Let h(·) denote a differentiable function on some convex and compact

set A , with gradient ∇h(·), and consider the local maximization of h(x) with respect to x ∈ A .

The projected-gradient algorithm uses iterations of the form

xj+1 = PA

[

x+j (α
∗)
]

with x0 given in A , where x+j (α) = xj + α∇h(xj),

α∗ = argmax
α

h(PA [x+j (α)])

and PA [·] denotes the orthogonal projection onto A .

When X = [−1, 1]d, PX [x] simply amounts to a truncation of all components of x to [−1, 1].
The value α∗ can be obtained by a classical line-search algorithm, restricted to α in the interval

[0, αmax], with

αmax = min

{

min
i=1,...,d:{∇h(xj)}i≥0

(1− {xj}i)/{∇h(xj)}i ,

min
i=1,...,d:{∇h(xj)}i≤0

(1 + {xj}i)/|{∇h(xj)}i|
}

,

which guarantees that x+j (α) ∈ X . The same method can be applied when the optimization

is with respect to Sk ∈ X mk ; projections on X mk then correspond to mk projections over X .

The iterations can be stopped when the norm of the projected gradient is smaller than some

specified threshold.

The projected-gradient method can also be used in the case of mixture experiments where

X is the simplex Pd given by (5). The projection of x+j (α) on X can then be obtained as

the solution of a Quadratic Programming (QP) problem: PPd
[x+j (α)] minimizes ‖x − x+j (α)‖2

with respect to x satisfying the linear constraints x ∈ Pd. Alternatively, one may also use the

property that, for any Z ∈ R
d, the projection PPd

(Z) is given by x(Z, t∗), where x(Z, t) =

max{Z− t1d, 0d} (componentwise, with 1d and 0d respectively the d-dimensional vectors of ones

and zeros) and t∗ maximizes L[x(Z, t), t] with respect to t, with L(x, t) the partial Lagrangian

L(x, t) = (1/2)‖x− Z‖2 + t [1⊤d x− 1]. Indeed, L(x, t) can be written as

L(x, t) = (1/2)‖x− (Z − t1d)‖2 + t [1⊤d Z − 1]− d t2/2 ,

which reaches its minimum with respect to x ∈ R
d+ for x = x(Z, t). One may notice that

max{maxi{Z}i − t∗, 0} ≤ 1⊤d x(Z, t
∗) = 1 ≤ dmax{maxi{Z}i − t∗, 0}, so that the search for

t∗ can be restricted to the interval [maxi{Z}i − 1,maxi{Z}i − 1/d], see Pronzato and Pázman

(2013, Chap. 9).

15



3.3 From (ǫ/2)-optimality on a grid to ǫ-optimality on a compact set

For any ξ ∈ Ξ(X ) and any x, y ∈X we have

|F (ξ, x)− F (ξ, y)| = |trace{[µ(x)− µ(y)]∇Φ[M(ξ)]}| ≤ ‖µ(x)− µ(y)‖ ‖∇Φ[M(ξ)]‖ .

Only the second term on the right-hand side depends on the criterion φ(·) and design ξ, the first

term being related to the problem under consideration. For instance (assuming that M(ξ) has

full rank), D-optimality with φ(ξ) = log det[M(ξ)] gives∇Φ[M(ξ)] =M−1(ξ), A-optimality with

φ(ξ) = −trace[M−1(ξ)] gives∇Φ[M(ξ)] =M−2(ξ) and, more generally, when t ≥ 1 and A is non-

negative definite φA,t(ξ) = −trace[AM−t(ξ)] gives ∇Φ[M(ξ)] =
∑t

i=1M
−i(ξ)A⊤M−(t+1−i)(ξ),

see (Harville, 1997, Chap. 15).

Suppose that µ(·) satisfies the Lipschitz condition

∀y ∈X ∩Bq(x, ρ) , ‖µ(y)− µ(x)‖ ≤ Lµ(x, ρ) ρ ,

with Bq(x, ρ) the ball {y : ‖y − x‖q ≤ ρ} for some norm ‖ · ‖q, 1 ≤ q ≤ ∞. We then obtain

∀y ∈X ∩Bq(x, ρ) , F (ξ, y) ≤ F (ξ, x) + ρLF (ξ, x, ρ) , (9)

where LF (ξ, x, ρ) = Lµ(x, ρ) ‖∇Φ[M(ξ)]‖. Suppose in particular that µ(·) is differentiable on

X which is a convex set. Then, for any x, y in X we can write

F (ξ, y) = F (ξ, x) +
∂F (ξ, z)

∂z⊤

∣

∣

∣

∣

z=x+α(y−x)

(y − x)

for some α ∈ [0, 1], so that (9) is satisfied for q = 2 with

LF (ξ, x, ρ) = max
max z∈B2(x,ρ)

∥

∥

∥

∥

∂F (ξ, z)

∂z

∥

∥

∥

∥

.

More generally, we can use regularity properties of µ(·) to derive inequalities of the form

∀y ∈X ∩Bq(x, ρ) , F (ξ, y) ≤ F (ξ, x) + h(ξ, x, ρ) , (10)

where, for any ξ such that M(ξ) has full rank, supx∈X h(ξ, x, ρ)→ 0 as ρ→ 0.

Consider then the final design ξk returned by algorithmA4 and take ρ = maxy∈X minx∈Xℓ
‖y−

x‖q with Xℓ the set used at step 4 of the algorithm. Then (10) implies that

max
y∈X

F (ξ, y) ≤ max
x∈Xℓ

{F (ξk, x) + h(ξ, x, ρ)}

and, if ρ is small enough to ensure that maxx∈Xℓ
h(ξk, x, ρ) < ǫ/2, ξk is ǫ-optimal on X and the

efficiency bound (7) applies.

16



The case where µ(x) has rank one, i.e., µ(x) = f(x)f⊤(x) for some p-dimensional regressor

vector f(x), deserves special attention. Consider φ0(ξ) = log det[M(ξ)] (D-optimality) and

φt(ξ) = −trace[M−t(ξ)] for t ≥ 1. For each of these criteria we get

|F (ξ, y)− F (ξ, x)| = ct

∣

∣

∣f⊤(y)M−(t+1)(ξ)f(y)− f⊤(x)M−(t+1)(ξ)f(x)
∣

∣

∣

= ct

∣

∣

∣
∆f⊤M−(t+1)(ξ)∆f + 2∆f⊤M−(t+1)(ξ)f(x)

∣

∣

∣

≤ ct
‖∆f‖2

λt+1
min[M(ξ)]

+ 2 ct ‖f(x)‖
‖∆f‖

λt+1
min[M(ξ)]

, (11)

where we have denoted ct = max(t, 1) and ∆f = f(y)− f(x). This gives (10) with

h(ξ, x, ρ) =
ct

λt+1
min[M(ξ)]

[

D2
ρ(x) + 2Dρ(x)‖f(x)‖

]

(12)

where Dρ(x) = maxy∈X ∩Bq(x,ρ) ‖f(y)− f(x)‖.
If f(·) is differentiable, then we also have ∂F (ξ, x)/∂x = 2 ct f

⊤(x)M−(t+1)(ξ) ∂f(x)/∂x so

that
∥

∥

∥

∥

∂F (ξ, x)

∂x

∥

∥

∥

∥

≤ 2 ct ‖f(x)‖
∥

∥

∥

∥

∂f(x)

∂x

∥

∥

∥

∥

1

λt+1
min[M(ξ)]

.

This gives (9) with LF (ξ, x, ρ) = {2ct/λt+1
min[M(ξ)]}maxy∈X ∩B2(x,ρ){‖f(y)‖ ‖∂f(y)/∂y‖}. Any

particular problem can thus be handled by a case-by-case analysis in order to obtain a Lipschitz

inequality similar to (9) or (10). Examples with polynomial regression models are considered in

Appendix A.

3.4 Adaptive grids

An adaptive construction of the grid Xl used at step 4 of algorithm A4 allows us to only

refine the grid at locations where the upper bound (10) needs to be improved. Meanwhile, it

also sometimes speeds up the search for x∗∗. Here we indicate a possible construction when

X = [−1, 1]d.
For any n ≥ 0, let X1,mm(n) = {x(1), . . . , x(n)} denote the design (sometimes called minimax-

distance optimal) given by x(j) = (2j−1)/n−1, j = 1, . . . , n, and Xd,mm(n) = X
⊗

d
1,mm(n) denote

the nd-point d-dimensional grid with all coordinates in X1,mm(n).

Step 4 of algorithm A4 is then replaced by the following (step 5 is removed).

Step 4-0) Choose n (say, n = 100), Nmax (say, Nmax = 107), set X
(0)
ℓ = Xd,mm(n), G0 = nd,

ρ0 = 1/m, j = 0.

Step 4-1) Find x∗∗ = argmax
x∈X

(j)
ℓ

F (ξk, x).

Step 4-2) If F (ξk, x
∗∗) ≥ ǫ/2, go to step 6 of A4.

17



p support points

2 −1 1

3 −1 0 1

4 −1 − 1√
5

1√
5
≃ 0.4472 1

5 −1 −
√
3√
7

0
√
3√
7
≃ 0.6547 1

6 −1 −
√

7+2
√
7

√
21

−
√

7−2
√
7

√
21

√
7−2

√
7

√
21

≃ 0.2852

√
7+2

√
7

√
21

≃ 0.7651 1

Table 1: D-optimal designs for polynomial regression on [−1, 1] (all support points are equally weighted).

Step 4-3) If ǫ = max
x∈X

(j)
ℓ

F (ξk, x)+h(ξk, x, ρj) < ǫ or if Gj > Nmax, stop A4: ξk is ǫ-optimal

on X .

Step 4-4) Set X
(j>)
ℓ = {x(j) ∈ X

(j)
ℓ : F (ξk, x

(j)) + h(ξk, x
(j), ρj) ≥ ǫ}; for each x(j) ∈ X

(j>)
ℓ ,

divide the hypercube B∞(x(j), ρj) into 2d hypercubes B∞(x(ji), ρj/2), where x
(ji) = x(j)+

ρjx
(i)
d,mm(2) with x

(i)
d,mm(2) the i-th element of the 2d-point grid Xd,mm(2), i = 1, . . . , 2d.

Collect all x(ji) to form X
(j+1)
ℓ , set Gj+1 = #X

(j+1)
ℓ , ρj+1 = ρj/2, j ← j + 1, go to step

4-1.

Steps 4-3 and 4-4 rely on (10); although the construction of the grids X
(j)
ℓ use the norm

‖·‖∞, another norm can be used in the definition of h(ξ, x, ρ). Due to the bound Nmax set on the

number Gj of elements of X
(j)
ℓ , the algorithm may stop before the precision on maxx∈X F (ξk, x)

reaches ǫ, i.e., one may have ǫ > ǫ at step 4-3. The use of a precise bound in (10) is then crucial

to avoid a fast increase of Gj and a premature stopping of the algorithm.

4 Examples

4.1 Description

We have tested algorithm A4 on a series of examples with known optimal design ξ∗. The design

space is X = [−1, 1]d with d = 1 or 2 and the number of parameters p varies between 3 and

9. We use φ(ξ) = log detM(ξ) for D-optimal design and φ(ξ) = −trace[M−1(ξ)] for A-optimal

design.

Problems 1 to 4 correspond to D-optimal design for linear regression models with f(x) given

by (13) and p = s varying from 3 to 6. For each p, the D-optimal design measure is uniquely

defined and gives weight 1/p at the roots of the polynomial t 7−→ (1− t2)P ′
p−1(t) with P

′
k(·) the

derivative of the k-th Legendre polynomial, see Table 1.

Problems 5 and 6 correspond to D-optimal design for additive polynomial models: f(x) is

given by (14) with d = 2, p = 2s − 1 and s = 3, 4 respectively. Problem 7 correspond to D-

optimal design for a complete product-type interaction model with d = 2: f(x) = g(x1)⊗ g(x2)

18



with ⊗ denoting tensor product and g(x) given by (13) with s = 3; this gives p = 9. For those

three problems the D-optimal design is the cross-product of the D-optimal design measures for

the individual models; see Schwabe (1996, Chap. 4 and 5).

In Problems 8 and 9, the models are the same as in Problems 1 and 7 but the criterion is

φ(ξ) = −trace[M−1(ξ)] (A-optimality). The A-optimal design for Problem 8 is

ξ∗A =

{

−1 0 1

1/4 1/2 1/4

}

,

the A-optimal design for Problem 9 is the product measure ξ∗A⊗ξ∗A; see Schwabe (1996, Chap. 4).
Problem 10 corresponds to (local) D-optimal design for the nonlinear regression model

η(x, θ) = θ0 + θ1 exp(−θ2x1) +
θ3

θ3 − θ4
[exp(−θ4x2)− exp(−θ3x2)]

with five parameters θ = (θ0, θ1, θ2, θ3, θ4) and two design variables x = (x1, x2) ∈ X =

[0, 2] × [0, 10]. A numerical value must be given to the parameters θ2, θ3 and θ4 that inter-

vene nonlinearly in η(x, θ), and we use θ2 = 2, θ3 = 0.7, θ4 = 0.2. The model considered

is additive with a constant term, so that the tensor product of the D-optimal designs for the

two models η1(x1, β
(1)) = β

(1)
0 +β

(1)
1 exp(−β(1)2 x1) and η2(x2, β

(2)) = β
(2)
0 +β

(2)
1 [exp(−β(2)2 x2)−

exp(−β(2)1 x2)]/(β
(2)
1 −β

(2)
2 ), respectively at β(1) = (θ0, θ1, θ2) and β

(2) = (θ0, θ3, θ4), is D-optimal

for η(x, θ) at θ, see Schwabe (1995). These two D-optimal designs are supported on three points

only, each one receiving mass 1/3, which can be computed with arbitrary precision using Theo-

rem 1-(iii): the support points are approximately 0, 0.46268527927 and 2 for η1(x1, β
(1)) and 0,

1.22947139883, 6.85768905493 for η2(x2, β
(2)). The design space X is renormalized to [−1, 1]2

in order to use the adaptive-grid construction of Sect. 3.4; the tests for optimality are based on

(10) and (12).

4.2 Results and discussion

The results obtained are presented in Table 2. When d = 1, the algorithm is initialized with

X0 having m equidistant points, X0 = {(2i − 1)/m − 1, i = 1 . . . ,m}, with m = p(p + 1)/2;

when d = 2, X0 is the tensor product of two such designs, with m2 the smallest integer larger

than or equal to p(p+ 1)/2. The test-set T0 is the union of X0 and the 2d vertices of X . The

number of points in Tk always remains reasonably small (see Table 2) so that step 7a is not used.

The decreasing sequences {γk} and {δk} are respectively given by 1/(k + 1) and 0.1/(k + 1),

ǫ is set to 10−6 in all examples. The algorithm A0 used at step 1 is based on a combination

of projected-gradient and vertex-exchange methods, see Wu (1978a). Local maximizations at

steps 1a and 2 of A4 use reparameterization and the derivative-free algorithm of Powell (1964).

19



The set Xℓ of step 4 corresponds to an adaptive grid, constructed according the the algorithm

of Sect. 3.4 with n = 100 for d = 1 and n = 10 for d = 2 (so that G0 = 100).

In all problems considered the optimal design ξ∗ is unique and one can thus compute its

distance to ξkmax returned by A4. Various metrics can be considered and we use here the Wasser-

stein and Lévy-Prokhorov metrics, see Appendix C. Table 2 indicates that ξkmax is very close

to ξ∗ for all problems considered. We also report in Table 2 the distance to 1 of the efficiencies

Eφ(ξkmax) defined by (2) together with the values of 1− Eφ(ξkmax), with Eφ(ξkmax) the efficiency

bound given by (7). Note that 1− Eφ(ξ) < ǫ/p for D-optimality when maxx∈X F (ξ, x) < ǫ and

φ(ξ) = log detM(ξ) and 1−Eφ(ξ) < ǫ/trace[M−1(ξ)] for A-optimality when maxx∈X F (ξ, x) < ǫ

and φ(ξ) = −trace[M−1(ξ)]. Due to the fact that the efficiency bound, used to terminate the

algorithm, is very pessimistic in most problems, the true efficiency of ξkmax is often much closer

to 1 than the bound indicated. We thus observe in all cases considered that a very good precision

is achieved although the number of iterations kmax is small. Also note that the construction of

the adaptive grid is only required a small number of times (only once for more than half of the

problems considered); due to the local maximizations performed at steps 1a, 2 and 6, the points

in the test-set Tk, although there are only few of them, are generally enough to construct an

optimal design on the whole set X .

Most of the computational cost of A4 corresponds to step 1 and especially step 4.

Concerning step 4 (which we try to avoid as much as possible), the use of an adaptive grid,

as proposed in Sect. 3.4, aims at minimizing its cost. Using precise bounds in the construction

of h(ξ, x, δ) used in (10) is essential to maintain the cardinality Gj of X
(j)
ℓ reasonably small.

One may notice that the construction of Sect. 3.4 does not make use of all the information

contained in the evaluations of F (ξk, xi) for the various xi which are used. Indeed, some x(j)

are removed from X
(j)
ℓ when constructing the set X

(j>)
ℓ . With some computational effort,

other constructions making a more efficient use of the information collected on F (ξk, ·) could be

considered, and the results in (Harman and Pronzato, 2007; Pronzato, 2013) could be used to

remove parts of X with low values of F (ξk, x) that cannot contain support points of an optimal

design. Also, Lipschitz bounds obtained from diagonal partitions, see Sergeyev and Kvasov

(2006), might be used to get a significant reduction of the number of evaluations of F (ξk, xi)

required when d > 1. Of course, for a given problem this number depends very much on the

value of ǫ, see the bottom part of Table 2.

Concerning step 1, the algorithm is constructed in such a way that Xk has a small number of

elements. The choice of the optimization method used for A0 at step 1 is then not crucial. We

have used a combination of the projected-gradient and vertex-exchange methods for the results

in Table 2. Numerical experimentations with a pure projected-gradient algorithm (McCormick

and Tapia, 1972), the methods of cutting planes (Kelley, 1960) and the level method (Nesterov,

20



2004, Sect. 3.3.3), originally developed for non-differentiable optimization (see also Pronzato

and Pázman (2013, Chap. 9)), yield similar results.

5 Conclusion

We have proposed an algorithm for the construction of optimal design measures over a compact

set X for a concave and differentiable criterion φ(·). The method exploits the property that

optimal designs are often supported on a small number of points and combines updating of the

support with convex optimization of the weights it receives. Efficiency bounds and guaranteed

ǫ-optimality over X are obtained using Lipschitz continuity of the directional derivative of

φ(·). As illustrated by some examples, the algorithm seems to be quite effective when accurate

Lipschitz constants can be determined for the particular problem considered. General techniques

for deriving those constants are given which could be applied to any model satisfying usual

regularity conditions. Also, some general ideas have been given for the local optimization of the

support of a design measure, which should allow the construction of specific methods especially

adapted to particular design regions X .

On the other hand, some issues remain that call for further developments. We mention two

of them.

(i) There exist problems for which the optimal design is not unique; in such situations it

would be of interest to have an algorithm capable of ensuring convergence to an ǫ-optimal

design with minimal support. This is not the case of our algorithm A4 and improvements in

that direction are under current investigation. Note that once an optimal design is found, the

determination of another optimal design (having necessarily the same information matrix when

Φ(·) is strictly concave) with minimum support corresponds to a fixed-charge problem, see, e.g.,

Sadagopan and Ravindran (1982). A simple reduction of the support of an optimal design can

be obtained by iteratively removing elementary matrices µ(x(i)) that are in the convex hull of

others µ(x(j)), j 6= i.

(ii) Although the convex optimization of weights for non-differentiable criteria (for instance,

E-optimality) is not a big challenge, see, e.g., Nesterov (2004, Sect. 3.3.3), Pronzato and Pázman

(2013, Chap. 9), the determination of new points being candidates for inclusion in the support

and the construction of efficiency bounds over X raise specific issues due to the fact that the

maximum of the directional derivative of φ(·) is not always attained at a one-point (delta) mea-

sure. The geometrical characterization of optimal designs, see in particular Dette and Studden

(1993), may then prove salutary for the construction of efficient algorithms.

21



Pb. ǫ d p kmax # step 4 W1 W2 L 1− Eφ(ξkmax) 1− Eφ #Tkmax Gmax

1 10−6 1 3 4 1 4.4 10−10 7.6 10−10 1.3 10−9 1.3 10−11 2.8 10−7 8 195

2 10−6 1 4 5 4 3.4 10−5 5.7 10−5 1.1 10−4 1.6 10−8 1.5 10−7 13 402

3 10−6 1 5 6 1 2.4 10−6 4.7 10−6 1.1 10−5 2.5 10−10 1.3 10−7 15 672

4 10−6 1 6 5 1 9.1 10−6 1.4 10−5 2.6 10−5 2.4 10−9 1.0 10−7 12 924

5 10−6 2 5 11 2 4.5 10−8 1.8 10−4 7.3 10−8 4.2 10−15 1.5 10−7 21 ≃ 2.1 103

6 10−6 2 7 20 2 4.2 10−8 9.7 10−5 7.1 10−8 1.2 10−15 8.7 10−8 42 ≃ 1.4 106

7 10−6 2 9 7 3 5.7 10−9 2.3 10−8 3.5 10−8 1.8 10−11 8.8 10−8 55 ≃ 1.1 106

8 10−6 1 3 10 1 9.9 10−9 8.9 10−5 5.2 10−9 < 10−16 8.4 10−8 8 196

9 10−6 2 9 13 1 1.0 10−8 5.7 10−5 2.2 10−8 1.3 10−15 1.2 10−8 53 ≃ 4.9 106

10 10−6 2 5 9 1 2.8 10−7 2.1 10−4 3.6 10−8 4.8 10−14 1.8 10−7 21 ≃ 6.4 106

10 10−5 2 5 7 1 1.1 10−6 7.7 10−4 1.5 10−6 1.9 10−12 1.9 10−6 21 ≃ 1.7 106

10 10−4 2 5 7 1 5.0 10−7 1.9 10−6 1.6 10−6 1.6 10−12 1.3 10−5 21 ≃ 5.9 105

10 10−3 2 5 6 1 4.9 10−6 7.6 10−6 1.6 10−5 1.7 10−10 1.0 10−4 21 ≃ 2.2 105

10 10−2 2 5 4 1 1.6 10−4 2.4 10−4 6.1 10−4 1.8 10−7 1.5 10−3 21 ≃ 8.7 104

Table 2: Results obtained by using algorithm A4 on Problems 1-10 with ǫ = 10−6 and on Problem 10 with ǫ between 10−2 and 10−6: number kmax of

iterations before stopping and number of passages through step 4; Wasserstein distances W1(ξkmax
, ξ∗) and W2(ξkmax

, ξ∗) and Lévy-Prokhorov distance

L(ξkmax
, ξ∗) between ξkmax

and the optimal design ξ∗; (1−) φ-efficiency Eφ(ξkmax
) and (1−) efficiency bound Eφ(ξkmax

) given by (7); number of elements

of Tkmax
and maximum number of points in the grids X

(j)
ℓ used to guarantee the ǫ-optimality of ξkmax

.

22



Appendix A: Bounds for directional derivatives in polynomial

regression

In this appendix, we construct bound for ‖f(x)‖ and ‖f(y) − f(x)‖ to be used in (12) for

polynomial regression models. Here X = [−1, 1] and µ(x) = f(x)f⊤(x) with

f(x) = (1, x, x2, . . . , xs−1)⊤ , s ≥ 2 . (13)

We then have the global Lipschitz bound ‖µ(x)−µ(y)‖ ≤ ‖As‖ |x− y|, with As the s× s matrix

As =





















0 1 2 · · · s− 1

1 2

2
. . .

...
...

s− 1 · · · 2(s− 1)





















so that ‖As‖2 = trace(A⊤
s As) = s2(7s − 5)(s − 1)/6 . Also, for all x, y ∈ X , ‖∆f‖2 = ‖f(y) −

f(x)‖2 ≤ (x−y)2 [1+22+ · · ·+(s−1)2] = (x−y)2 s(s−1)(2s−1)/6 , and maxx∈X ‖f(x)‖ =
√
s,

which can be used as global bounds in (11). More precise local bounds can also be obtained:

‖∆f‖2 =

s−1
∑

j=0

(yj − xj)2 = (x− y)2
s−1
∑

j=1





∑

a+b=j−1

xayb





2

≤ (x− y)2
s−1
∑

j=1





∑

a+b=j−1

[max{|x|, |y|}]a+b





2

= (x− y)2 ωs(max{|x|, |y|})

where ωs(c) =
∑s−1

j=1 j
2 c2(j−1). Therefore,

Dδ(x) = max
y∈X ∩B1(x,δ)

‖f(y)− f(x)‖ ≤ δ
√

ωs(max{|x+ δ|, |x− δ|}) .

to be used in (10, 12).

Multi-factor polynomial regression models can be handled similarly. For additive models

with

f(x) = (1, x1, x
2
1, . . . , x

s−1
1 , x2, x

2
2, . . . , xd, x

2
d, . . . , x

s−1
d )⊤ , (14)

x = (x1, . . . , xd) ∈X = [−1, 1]d, then ‖∆f‖2 ≤ ‖x−y‖2 s(s−1)(2s−1)/6 and maxx∈X ‖f(x)‖ =
[1 + d(s− 1)]1/2. We also obtain, similarly to the case d = 1 considered above,

‖∆f‖2 =
d

∑

i=1

(yi − xi)2
s−1
∑

j=1





∑

a+b=j−1

xai y
b
i





2

≤
d

∑

i=1

(xi − yi)2 ωs(max{|xi|, |yi|})

23



so that

Dδ(x) = max
y∈X ∩B∞(x,δ)

‖f(y)− f(x)‖ ≤ δ
[

d
∑

i=1

ωs(max{|xi + δ|, |xi − δ|})
]1/2

.

Consider now models with complete product-type interactions and take f(x) = g(x1)⊗g(x2)
with g(x) given by (13), x = (x1, x2) ∈X = [−1, 1]2. Then ∆f = f(y)−f(x) = [g(x1)⊗g(x2)]−
[g(y1)⊗ g(y2)] = [g(x1)− g(y1)]⊗ g(x2) + g(y1)⊗ [g(x2)− g(y2)] and

‖∆f‖ ≤ ‖[g(x1)− g(y1)]⊗ g(x2)‖+ ‖g(y1)⊗ [g(x2)− g(y2)]‖

= ‖[g(x1)− g(y1)]g⊤(x2)‖+ ‖g(y1)[g(x2)− g(y2)]⊤‖

= ‖g(x1)− g(y1)‖ ‖g(x2)‖+ ‖g(y1)‖ ‖g(x2)− g(y2)‖

≤
(

s(s− 1)(2s− 1)

6

)1/2 √
s [|x1 − y1|+ |x2 − y2|]

≤ s
√

(s− 1)(2s− 1)√
3

‖x− y‖ ,

‖f(x)‖ = ‖g(x1)‖ ‖g(x2)‖ ≤ s .

We also get the local bounds

Dδ(x) = max
y∈X ∩B∞(x,δ)

‖f(y)− f(x)‖

≤ δ min
{

‖g(x2)‖
√

ωs(max{|x1 + δ|, |x1 − δ|}) +
√
s
√

ωs(max{|x2 + δ|, |x2 − δ|}),
√
s
√

ωs(max{|x1 + δ|, |x1 − δ|}) + ‖g(x1)‖
√

ωs(max{|x2 + δ|, |x2 − δ|})
}

.

Appendix B: Reparameterization for optimization on an hyper-

cube

Let h(·) denote a function to be maximized with respect to x ∈ X = [−1, 1]d, d ≥ 1. We

suppose that h(·) is twice continuously differentiable in X . Consider the reparameterization

defined by x = x(y) = cos(y) (componentwise), with y ∈ R
d, and denote h̃(y) = h[x(y)], so that

∂h̃(y)

∂y
= −D(y)

∂h(x)

∂x

∣

∣

∣

∣

x=x(y)

and
∂2h̃(y)

∂y∂y⊤
= D(y)

∂2h(x)

∂x∂x⊤

∣

∣

∣

∣

x=x(y)

D(y) ,

where D(y) is the diagonal matrix diag{sin(yi), i = 1, . . . , d}. Any vector y such that, for all

i = 1, . . . d, yi = kiπ with ki ∈ Z is thus a stationary solution, i.e., the reparameterization

renders any point on the boundary of X stationary. However, a local optimization algorithm

applied to h̃(·) provides a local maximizer for h(·). Indeed, suppose that the maximization of

h̃(·) with respect to y ∈ R
d yields a vector y∗ such that

sin(y∗i ) 6= 0 for i = 1, . . . , q and sin(y∗i ) = 0 for i = q + 1, . . . , d .

24



Since h̃(·) is maximized, one may assume that

∂2h̃(y)

∂y∂y⊤

∣

∣

∣

∣

y=y∗
is semi-negative definite

and

(ŷ(i)− y∗)⊤∂h̃(y)
∂y

∣

∣

∣

∣

y=ŷ(i)

< 0 , ŷ(i) = y∗ + αiei , i = 1, . . . , d, (15)

with ei the i-th basis vector, for |αi| small enough. Denote x∗ = cos(y∗) (notice that x∗ ∈ X )

and take any i ∈ {q + 1, . . . , d}; (15) implies that ∂h(x)/∂xi
∣

∣

x=x∗
> 0 when y∗i = 2kπ (i.e.,

x∗i = 1) and ∂h(x)/∂xi
∣

∣

x=x∗
< 0 when y∗i = (2k + 1)π (i.e., x∗i = −1), k ∈ Z. Therefore, there

exist d coefficients λi ≥ 0 and λ′i ≥ 0 such that the Lagrangian

L (x, λ, λ′) = h(x) +
d

∑

i=1

λi(1− xi) +
d

∑

i=1

λ′i(1 + xi)

satisfies ∂L (x, λ, λ′)/∂x
∣

∣

x=x∗
= 0 with λi(1 − xi) = λ′i(1 + xi) = 0 for all i (take λi = λ′i = 0

for i = 1, . . . , q; λi = ∂h(x)/∂xi
∣

∣

x=x∗
, λ′i = 0, when x∗i = 1 and λi = 0, λ′i = −∂h(x)/∂xi

∣

∣

x=x∗
,

when x∗i = −1 for i = q+1, . . . , d). Moreover, for any z ∈ R
d such that zi = 0 for i = q+1, . . . , d,

z⊤
∂2L (x, λ, λ′)

∂x∂x⊤

∣

∣

∣

∣

x=x∗

z = z⊤D−1
1...q(y

∗)

{

∂2h̃(y)

∂y∂y⊤

∣

∣

∣

∣

y=y∗

}

1...q, 1...q

D−1
1...q(y

∗) z ≤ 0 .

The inequality is strict when the matrix given by the first q rows and q columns of the Hessian

matrix ∂2h̃(y)/(∂y∂y⊤)
∣

∣

y=y∗
is negative definite, which is a sufficient condition for the (local)

optimality of x∗, see, e.g., Luenberger (1973, p. 235).

Appendix C: measures of performance

In situations where the optimal design is known, to measure the performance of our algorithm we

can naturally compare the value of the design criterion φkmax = φ(ξkmax), with ξkmax the design

measure obtained when the algorithm stops, to the optimal value φ∗ = maxξ∈Ξ(X ) φ(ξ). When

there exists a unique optimal measure ξ∗ ∈ Ξ(X ) such that φ(ξ∗) = φ∗, it is also instructive to

evaluate how close ξkmax is to ξ∗.

For the results of Sect. 4 we use the Wasserstein metric Wp(ξkmax , ξ
∗) with p = 1 and p = 2

and the LévyProkhorov metric L(ξkmax , ξ
∗); both define metrizations for the topology of weak

convergence.

For ν0 and ν1 two probablity measures on X , the Wasserstein metric Wp(ν0, ν1) is defined

by

Wp(ν0, ν1) =

(

inf
ω∈Ω(ν0,ν1)

∫

X ×X

‖x− x′‖p dω(x, x′)
)1/p

, p ≥ 1 ,

25



with Ω(ν0, ν1) the set of all couplings of ν0 and ν1, i.e., of all measures ω on X ×X having ν0

and ν1 as marginals. When d = 1 we have

Wp(ν0, ν1) =

(∫ 1

0

[

IF−1
0 (t)− IF−1

1 (t)
]p

dt

)1/p

, (16)

where IF−1
i denotes the quantile function IF−1

i (t) = inf{x : IFi(x) ≥ t} with IFi the distribution

function for νi, i = 0, 1, see Major (1978, Theorem 8.1).

The Lévy-Prokhorov metric L(ν0, ν1) is defined by

L(ν0, ν1) = inf{ǫ > 0 : ν0(A ) ≤ ν1(A ǫ) + ǫ and ν1(A ) ≤ ν0(A ǫ) + ǫ for all sets A ⊂X }

where A ǫ = {x ∈ X : there exists x′ ∈ A , ‖x′ − x‖ < ǫ}. We always use the L2-distance in

X , i.e., ‖x−x′‖ = [
∑d

i=1({x}i−{x′}i)2]1/2. Note that Wp(ν0, ν1) and L(ν0, ν1) are sensitive to

the scaling of X ; in particular, Wp(ν
′
0, ν

′
1) = αWp(ν0, ν1) when ν

′
0 and ν ′1 are obtained from ν0

and ν1 by applying the homothetic transformation x ∈X 7−→ z = αx, α > 0.

Both metrics are difficult to compute for general probability measures but the fact that the

measures ξ∗ and ξkmax have finite support makes the situation much simpler. Computational

details will be presented elsewhere.

Acknowledgments

The authors thank the referees for useful comments that helped to significantly improve the

paper.

References

Atwood, C., 1973. Sequences converging to D-optimal designs of experiments. Annals of Statis-

tics 1 (2), 342–352.

Atwood, C., 1976. Convergent design sequences for sufficiently regular optimality criteria. Annals

of Statistics 4 (6), 1124–1138.

Ben-Tal, A., Nemirovski, A., 2001. Lectures on Modern Convex Optimization: Analysis, Algo-

rithms, and Engineering Applications. MPS/SIAM Series on Optimization 2, Philadelphia.

Böhning, D., 1985. Numerical estimation of a probability measure. Journal of Statistical Plan-

ning and Inference 11, 57–69.

Böhning, D., 1986. A vertex-exchange-method in D-optimal design theory. Metrika 33, 337–347.

26



Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cam-

bridge.

den Hertog, D., 1994. Interior Point Approach to Linear, Quadratic and Convex Programming.

Kluwer, Dordrecht.

Dette, H., Melas, V., 2011. A note on de la Garza phenomenon for locally optimal designs.

Annals of Statistics 39 (2), 1266–1281.

Dette, H., Pepelyshev, A., Zhigljavsky, A., 2008. Improving updating rules in multiplicative

algorithms for computing D-optimal designs. Journal of Statistical Planning and Inference

53, 312–320.

Dette, H., Studden, W., 1993. Geometry of E-optimality. Annals of Statistics 21 (1), 416–433.

Fedorov, V., 1972. Theory of Optimal Experiments. Academic Press, New York.

Fellman, J., 1989. An empirical study of a class of iterative searches for optimal designs. Journal

of Statistical Planning and Inference 21, 85–92.

Frank, M., Wolfe, P., 1956. An algorithm for quadratic programming. Naval Res. Logist. Quart.

3, 95–110.

Gribik, P., Kortanek, K., 1977. Equivalence theorems and cutting plane algorithms for a class

of experimental design problems. SIAM J. Appl. Math. 32 (1), 232–259.

Harman, R., Pronzato, L., 2007. Improvements on removing non-optimal support points in

D-optimum design algorithms. Statistics & Probability Letters 77, 90–94.

Harman, R., Trnovská, M., 2009. Approximate D-optimal designs of experiments on the convex

hull of a finite set of information matrices. Mathematic Slovaca 59 (5), 693–704.

Harville, D., 1997. Matrix Algebra from a Statistician’s Perspective. Springer, Heidelberg.

Hiriart-Urruty, J., Lemaréchal, C., 1993. Convex Analysis and Minimization Algorithms, part 1

and 2. Springer, Berlin.

Karlin, S., Studden, W., 1966a. Optimal experimental designs. Annals of Math. Stat. 37, 783–

815.

Karlin, S., Studden, W., 1966b. Tchebycheff Systems: With Applications in Analysis and Statis-

tics. Wiley, New York.

27



Kelley, J., 1960. The cutting plane method for solving convex programs. SIAM Journal 8, 703–

712.

Kiefer, J., Wolfowitz, J., 1960. The equivalence of two extremum problems. Canadian Journal

of Mathematics 12, 363–366.

Luenberger, D., 1973. Introduction to Linear and Nonlinear Programming. Addison-Wesley,

Reading, Massachusetts.

Major, P., 1978. On the invariance principle for sums of independent identically distributed

random variables. J. Multivariate Analysis 8, 487–517.

McCormick, G., Tapia, R., 1972. The gradient projection method under mild differentiability

conditions. SIAM Journal of Control 10 (1), 93–98.

Molchanov, I., Zuyev, S., 2001. Variational calculus in the space of measures and optimal de-

sign. In: Atkinson, A., Bogacka, B., Zhigljavsky, A. (Eds.), Optimum Design 2000. Kluwer,

Dordrecht, Ch. 8, pp. 79–90.

Molchanov, I., Zuyev, S., 2002. Steepest descent algorithm in a space of measures. Statistics and

Computing 12, 115–123.

Nesterov, Y., 2004. Introductory Lectures to Convex Optimization: A Basic Course. Kluwer,

Dordrecht.

Nesterov, Y., Nemirovskii, A., 1994. Interior-Point Polynomial Algorithms in Convex Program-

ming. SIAM, Philadelphia.

Powell, M., 1964. An efficient method for finding the minimum of a function of several variables

without calculating derivatives. Computer J. 7, 155–162.

Pronzato, L., 2013. A delimitation of the support of optimal designs for Kiefer’s φp-class of

criteria. Statistics & Probability Letters 83, 2721–2728.

Pronzato, L., Pázman, A., 2013. Design of Experiments in Nonlinear Models. Asymptotic Nor-

mality, Optimality Criteria and Small-Sample Properties. Springer, LNS 212, New York, Hei-

delberg.

Pukelsheim, F., 1993. Optimal Experimental Design. Wiley, New York.

Sadagopan, S., Ravindran, A., 1982. A vertex ranking algorithm for the fixed-charge transporta-

tion problem. Journal of Optimization Theory and Applications 37 (2), 221–230.

28



Schwabe, R., 1995. Designing experiments for additive nonlinear models. In: Kitsos, C., Müller,

W. (Eds.), MODA4 – Advances in Model-Oriented Data Analysis, Spetses (Greece), june

1995. Physica Verlag, Heidelberg, pp. 77–85.

Schwabe, R., 1996. Optimum Designs for Multi-Factor Models. Springer, New York.

Sergeyev, Y., Kvasov, D., 2006. Global search based on efficient diagonal partitions and a set of

Lipschitz constants. SIAM J. Optim. 16 (3), 910–937.

Sibson, R., Kenny, A., 1975. Coefficients in D-optimal experimental design. Journal of Royal

Statistical Society B37, 288–292.

Silvey, S., 1980. Optimal Design. Chapman & Hall, London.

Silvey, S., Titterington, D., Torsney, B., 1978. An algorithm for optimal designs on a finite

design space. Commun. Statist.-Theor. Meth. A7 (14), 1379–1389.

St. John, R., Draper, N., 1975. D-optimality for regression designs: a review. Technometrics

17 (1), 15–23.

Titterington, D., 1976. Algorithms for computing D-optimal designs on a finite design space.

In: Proc. of the 1976 Conference on Information Science and Systems. Dept. of Electronic

Engineering, John Hopkins University, Baltimore, pp. 213–216.

Torsney, B., 1983. A moment inequality and monotonicity of an algorithm. In: Kortanek, K.,

Fiacco, A. (Eds.), Proc. Int. Symp. on Semi-infinite Programming and Applications. Springer,

Heidelberg, pp. 249–260.

Torsney, B., 2009. W-iterations and ripples therefrom. In: Pronzato, L., Zhigljavsky, A. (Eds.),

Optimal Design and Related Areas in Optimization and Statistics. Springer, Ch. 1, pp. 1–12.

Wu, C., 1978a. Some algorithmic aspects of the theory of optimal designs. Annals of Statistics

6 (6), 1286–1301.

Wu, C., 1978b. Some iterative procedures for generating nonsingular optimal designs. Comm.

Statist. Theory and Methods A7 (14), 1399–1412.

Wynn, H., 1970. The sequential generation ofD-optimum experimental designs. Annals of Math.

Stat. 41, 1655–1664.

Yang, M., 2010. On de la Garza phenomenon. Annals of Statistics 38 (4), 2499–2524.

Yang, M., Stufken, J., 2009. Support points of locally optimal designs for nonlinear models with

two parameters. Annals of Statistics 37 (1), 518–541.

29



Yu, Y., 2010a. Monotonic convergence of a general algorithm for computing optimal designs.

Annals of Statistics 38 (3), 1593–1606.

Yu, Y., 2010b. Strict monotonicity and convergence rate of Titterington’s algorithm for com-

puting D-optimal designs. Comput. Statist. Data Anal. 54, 1419–1425.

Yu, Y., 2011. D-optimal designs via a cocktail algorithm. Stat. Comput. 21, 475–481.

30


