Consistency of maximum-likelihood and variational estimators in the stochastic block model - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2012

Consistency of maximum-likelihood and variational estimators in the stochastic block model

Alain A. Celisse
Laurent L. Pierre
  • Fonction : Auteur
  • PersonId : 901194

Résumé

The stochastic block model (SBM) is a probabilistic model designed to describe heterogeneous directed and undirected graphs. In this paper, we address the asymptotic inference in SBM by use of maximum-likelihood and variational approaches. The identifiability of SBM is proved while asymptotic properties of maximum-likelihood and variational estimators are derived. In particular, the consistency of these estimators is settled for the probability of an edge between two vertices (and for the group proportions at the price of an additional assumption), which is to the best of our knowledge the first result of this type for variational estimators in random graphs.
Fichier principal
Vignette du fichier
EJS729_1.pdf (537.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01000059 , version 1 (29-05-2020)

Identifiants

Citer

Alain A. Celisse, Jean-Jacques J.-J. Daudin, Laurent L. Pierre. Consistency of maximum-likelihood and variational estimators in the stochastic block model. Electronic Journal of Statistics , 2012, 6, pp.1847-1899. ⟨10.1214/12-EJS729⟩. ⟨hal-01000059⟩
164 Consultations
104 Téléchargements

Altmetric

Partager

More