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1. Introduction

In the last decade, networks have arisen in numerous domains such as social
sciences and biology. They provide an attractive graphical representation of
complex data. However, the increasing size of networks and their great number
of connections have made it difficult to interpret network representations of data
in a satisfactory way. This has strengthened the need for statistical analysis of
such networks, which could raise latent patterns in the data.

Interpreting networks as realizations of random graphs, unsupervised classi-
fication (clustering) of the vertices of the graph has received much attention. It
is based on the idea that vertices with a similar connectivity can be gathered
in the same class. The initial graph can be replaced by a simpler one without
loosing too much information. This idea has been successfully applied to social
(Nowicki and Snijders, 2001) and biological (Picard et al., 2009) networks. It is
out of the scope of the present work to review all of them.

Mixture models are a convenient and classical tool to perform unsupervised
classification in usual statistical settings. Mixture models for random graphs
were first proposed by Holland et al. (1983) who defined the so-called stochastic
block model (SBM), in reference to an older non stochastic block model widely
used in social science. Assuming each vertex belongs to only one class, a latent
variable (called the label) assigns every vertex to its corresponding class. SBM
is a versatile means to infer underlying structures of the graph. Subsequently,
several versions of SBM have been studied and it is necessary to formally dis-
tinguish between them. Three binary distinctions can be made to this end:

1. The graph can be directed or undirected.
2. The graph can be binary or weighted.
3. The model can (i) rely on latent random variables (the labels), or (ii)

assume the labels are unknown parameters :
(i) SBM is a usual mixture model with random multinomial latent vari-
ables (Ambroise and Matias, 2012; Daudin et al., 2008; Nowicki and Sni-
jders, 2001). In this model, vertices are sampled in a population and the
concern is on the population parameters, that is the frequency of each
class and their connectivity parameters.
(ii) An alternative conditional version of SBM (called CSBM) has been
studied (Bickel and Chen, 2009). In CSBM, former latent random variables
(the labels) are considered as fixed parameters. The main concerns are
then the estimation of between- and within-class connectivity parameters
as well as of the unknown label associated to every vertex (see Choi et al.,
2012; Rohe et al., 2011).

The present work deals with directed (and undirected) binary edges in random
graphs drawn from SBM.

The main interest of SBM is that it provides a more realistic and versatile
model than the famous Erdös-Rényi graph while remaining easily interpretable.
However unlike usual statistical settings where independence is assumed, one
specificity of SBM is that vertices are not independent. Numerous approaches
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have been developed to overcome this challenging problem, but most of them
suffer some high computational cost. For instance Snijders and Nowicki (1997)
study maximum-likelihood estimators of SBM with only two classes and binary
undirected graphs, while Nowicki and Snijders (2001) perform Gibbs sampling
for more than two classes at the price of a large computational cost. Other strate-
gies also exist relying for instance on profile-likelihood optimization in CSBM
(Bickel and Chen, 2009), on a spectral clustering algorithm in CSBM (Rohe
et al., 2011), or on moment estimation in a particular instance of SBM called
affiliation model (Ambroise and Matias, 2012, and also Example 1 in the present
paper).

A variational approach has been proposed by Daudin et al. (2008) to rem-
edy this computational burden. It can be used with binary directed SBM and
avoids the algorithmic complexity of the likelihood and Bayesian approaches
(see Mixnet (2009) and also Mariadassou et al. (2010) for weighted undirected
SBM analyzed with a variational approach). However even if its practical per-
formance shows a great improvement, variational approach remains poorly un-
derstood from a theoretical point of view. For instance, no consistency result
does already exist for maximum likelihood or variational estimators of SBM
parameters. Note however that consistency results for maximum likelihood es-
timators in the CSBM have been derived recently by Choi et al. (2012) where
the number of groups is allowed to grow with the number of vertices. Nonethe-
less, empirical clues (Gazal et al., 2011) have already supported the consistency
of variational estimators in SBM. Establishing such asymptotic properties is
precisely the purpose of the present work.

In this paper the identifiability of binary directed SBM is proved under very
mild assumptions for the first time to our knowledge. Note that identifiability
of directed SBM is really challenging since existing strategies such as that of
Allman et al. (2009) cannot be extended easily. The asymptotics of maximum-
likelihood and variational estimators is also addressed by use of concentration
inequalities. In particular, variational estimators are shown to be asymptoti-
cally equivalent to maximum-likelihood ones, and consistent for estimating the
probability π of an edge between two vertices. When estimating the group pro-
portions α, an additional assumption on the convergence rate of π̂ is required
to derive consistency. The present framework assumes the number Q of classes
to be known and independent of the number of vertices. Some attempts exist
to provide a data-driven choice of Q (see Daudin et al., 2008), but this question
is out of the scope of the present work.

The rest of the paper is organized as follows. The main notation and as-
sumptions are introduced in Section 2 where identifiability of SBM is settled.
Section 3 is devoted to the consistency of the maximum-likelihood estimators
(MLE), and Section 4 to the asymptotic equivalence between variational and
maximum-likelihood estimators. In particular, the consistency of variational es-
timators (VE) is proved. Some concluding remarks are provided in Section 5
with some further important questions.
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2. Model definition and identifiability

Let Ω = (V ,X ) be the set of infinite random graphs where V = N denotes the

set of countable vertices and X = {0, 1}N
2

the corresponding set of adjacency
matrices. The random adjacency matrix, denoted by X = {Xi,j}i,j∈N

, is given
by: for i 6= j, Xi,j = 1 if an edge exists from vertex i to vertex j and Xi,j = 0
otherwise, and Xi,i = 0 (no loop). Let P denote a probability measure on Ω.

2.1. Stochastic Block Model (SBM)

Let us consider a random graph with n vertices {vi}i=1,...,n. These vertices are
assumed to be split into Q classes {Cq}q=1,...,Q depending on their structural
properties.

Set α = (α1, . . . , αQ) with 0 < αq < 1 and
∑

q αq = 1. For every q, αq
denotes the probability for a given vertex to belong to the class Cq. For any
vertex vi, its label Zi is generated as follows

{Zi}1≤i≤n
i.i.d.∼ M (n;α1, . . . , αQ) .

where M (n;α1, . . . , αQ) denotes the multinomial distribution. Let Z[n] =
(Z1, . . . , Zn) denote the random label vector of (v1, . . . , vn).

The observation consists of an adjacency matrix X[n] = {Xi,j}1≤i,j≤n, where
Xi,i = 0 for every i and

Xi,j | Zi = q, Zj = l
i.i.d.∼ B (πq,l) , ∀i 6= j ,

where B(πq,l) denotes the Bernoulli distribution with parameter 0 ≤ πq,l ≤ 1
for every (q, l).

The log-likelihood is given by

L2(X[n];α, π) = log


∑

z[n]

eL1(X[n];z[n],π)P
[
Z[n] = z[n]

]

 , (1)

where

L1(X[n]; z[n], π) =
∑

i6=j

{
Xi,j log πzi,zj + (1−Xi,j) log(1− πzi,zj )

}
, (2)

and P
[
Z[n] = z[n]

]
= Pα

[
Z[n] = z[n]

]
=
∏n
i=1 αzi . In the following, let θ =

(α, π) denote the parameter and θ∗ = (α∗, π∗) be the true parameter value. No-
tice that the Xi,js are not independent. However, conditioning on Zi = q, Zj = l
yields independence.

Recall that the number Q of classes is assumed to be known and the purpose
of the present work is to efficiently estimate the parameters of SBM.
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2.2. Assumptions

In the present section, several assumptions are discussed, which will be used all
along the paper.

Assumption 1. For every q 6= q′, there exists l ∈ {1, . . . , Q} such that

πq,l 6= πq′,l or πl,q 6= πl,q′ . (A1)

Following (A1), the matrix π cannot have two columns equal and the cor-
responding rows also equal. This constraint is consistent with the goal of SBM
which is to define Q classes C1, . . . , CQ with different structural properties. For
instance, the connectivity properties of vertices in Cq must be different from
that of vertices in Cl with q 6= l. Therefore, settings where this assumption is
violated correspond to ill-specified models with too many classes.

Assumption 2. There exists ζ > 0 such that

∀(q, l) ∈ {1, . . . , Q}2 , πq,l ∈]0, 1[ ⇒ πq,l ∈ [ζ, 1 − ζ] . (A2)

SBM can deal with null probabilities of connection between vertices. However,
the use of log πq,l implies a special treatment for πq,l ∈ {0, 1}. Note that all along
the present paper, (A2) is always assumed to hold with ζ not depending on n.

Assumption 3. There exists 0 < γ < 1/Q such that

∀q ∈ {1, . . . , Q} , αq ∈ [γ, 1− γ] . (A3)

This assumption implies that no class is drained. Actually the identifiability
of SBM (Theorem 2.1) requires every αq ∈ (0, 1) for q ∈ {1, . . . , Q}, which is
implied by (A3). In this paper, it is assumed that γ does not depend on n.

Assumption 4. There exist 0 < γ < 1/Q and n0 ∈ N
∗ such that any realization

of SBM (Section 2.1) with label vector z∗[n] = (z∗1 , . . . , z
∗
n) satisfies

∀q ∈ {1, . . . , Q} , ∀n ≥ n0,
Nq(z

∗
[n])

n
≥ γ , (A4)

where Nq(z
∗
[n]) = |{1 ≤ i ≤ n | z∗i = q}|.

Note that (A4) is the empirical version of (A3). By definition of SBM, z∗[n] is

the realization of a multinomial random variable with parameters (α1, . . . , αQ).
Any multinomial random variable will satisfy the requirement of (A4) with high
probability. This assumption will be used in particular in Theorem 3.1.

2.3. Identifiability

The identifiability of the parameters in SBM have been first obtained by Allman
et al. (2009) for undirected graphs (π is symmetric): if Q = 2, n ≥ 16, and the
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coefficients of π are all different, the parameters are identifiable up to label
switching. Allman et al. (2011) also established that for Q > 2, if n is even and

n ≥ (Q − 1 + (Q+2)2

4 )2 (with a similar condition if n is odd), the parameters of
SBM are generically identifiable, that is identifiable except on a set with null
Lebesgue measure.

First generic identifiability (up to label switching) of the SBM parameters is
proved for d irected (or undirected) graphs as long as n ≥ 2Q.

Theorem 2.1. Let n ≥ 2Q and assume that for any 1 ≤ q ≤ Q, αq > 0 and
the coordinates of r = π.α are distinct. Then, SBM parameters are identifiable.

The assumption on vector π.α is not strongly restrictive since the set of
vectors violating this assumption is of Lebesgue measure 0. Therefore, Theo-
rem 2.1 actually asserts the generic identifiability of SBM (see Allman et al.,
2009). Moreover, Theorem 2.1 also holds with r′ = π t.α (instead of r = π.α),
and with vectors r′′ given by r′′q =

∑
l πq,lπl,qαl for every 1 ≤ q ≤ Q. Let us

also emphasize that Assumption (A1) is implied by assuming either π.α or πt.α
has distinct coordinates (which leads to identifiability). Note that Bickel et al.
(2011, Theorem 2, Section 3.1) also recently derived an identifiability result for
“block models” in terms of “wheel motifs”.

Let us further illustrate the assumption on π.α through two examples. The
first one is a particular instance of SBM called Affiliation Model (Allman et al.,
2011) restricted to the setting where Q = 2.

Example 1 (Affiliation model). From a general point of view, affiliation model
is used with Q populations of vertices and considers undirected graphs (π sym-
metric). The present example focuses on a particular instance where Q = 2.
In this model, the matrix π is only parametrized by two coefficients π1 and
π2 (π1 6= π2), which respectively correspond to within-class and between-class
connectivities between edges. With Q = 2, the matrix π is given by

π =

(
π1 π2
π2 π1

)
.

Then, requiring (πα)1 = π1α1 + π2α2 is not equal to (πα)2 = π2α1 + π1α2

amounts to impose that α1 6= α2. Indeed since within- and between-class connec-
tivities are the same for the two classes, distinguishing between them therefore
requires a different proportion of edges in these classes (α1 6= α2).

Note that Allman et al. (2011) have derived a result on identifiability for
affiliation models with equal group proportions.

The second example describes a more general setting than Example 1 in
which the assumption on the coordinates of r can be more deeply understood.

Example 2 (Permutation-invariant matrices). For some matrices π, there exist
permutations σ : {1, . . . , Q} → {1, . . . , Q} such that π remains unchanged if one
permutes both its rows and columns according to σ. More precisely, let πσ denote
the matrix defined by

πσq,l = πσ(q),σ(l) ,

for every 1 ≤ q, l ≤ Q. Then, πσ = π.
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For a given matrix π, let us define the set of permutations letting π invariant
by

S
π = {σ : {1, . . . , Q} → {1, . . . , Q} | πσ = π} .

The matrix π is said permutation-invariant if Sπ 6= {Id}, where Id denotes
the identity permutation. For instance in the affiliation model (Example 1), π is
permutation-invariant since S

π is the whole set of permutations on {1, . . . , Q}.
Let us first notice that “label-switching” translates into the following prop-

erty. For any permutation σ of {1, . . . , Q},

πσασ = πα , (3)

where ασq = ασ(q) for every q. The main point is that label-switching arises
whatever the choice of (α, π), and for every σ.

By contrast, only permutation-invariant matrices satisfy the more specific
following equality. For any permutation-invariant matrix π, let σπ ∈ S

π denote
one permutation whose support is of maximum cardinality. (Such a permutation
is not necessarily unique, for instance with the affiliation model.) Then,

(πα)σ
π

= πα . (4)

Equation (4) amounts to impose equalities of the coordinates of πα in the sup-
port of σπ. Let us recall that the support of σπ corresponds to rows and columns
of π that can be permuted without changing π. Then, assuming all coordinates
of πα distinct leads to impose that classes with the same connectivity proper-
ties have different respective proportions (αq) to be distinguished between one
another.

Proof of Theorem 2.1. First, let P[n] denote the probability distribution func-
tion of the adjacency matrix X[n] of SBM. Let us show that there exists a unique
(α, π) corresponding to P[n].

Up to reordering, let r1 < r2 < · · · < rQ denote the coordinates of the vector
r in the increasing order: rq is equal to the probability of an edge from a given
vertex in the class Cq.

Let R denote the Van der Monde matrix defined by Ri,q = riq, for 0 ≤ i < Q
and 1 ≤ q ≤ Q. R is invertible since the coordinates of r are all different. For
i ≥ 1, Ri,q is the probability that i given vertices in Cq have an edge.

Let us also define

ui =
∑

1≤k≤Q

αkr
i
k, i = 0, . . . , 2Q− 1 .

For i ≥ 1, ui denotes the probability that the first i coefficients of the first row
of X[n] are equal to 1. Note that n ≥ 2Q is a necessary requirement on n since
Xi,i = 0 by assumption. Hence given P[n], u0 = 1 and u1, . . . , u2Q−1 are known.

Furthermore, set M the (Q + 1) ×Q matrix given by Mi,j = ui+j for every
0 ≤ i ≤ Q and 0 ≤ j < Q, and let Mi denote the square matrix obtained by
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removing the row i from M . The coefficients of MQ are

Mi,j = ui+j =
∑

1≤k≤Q

rikαkr
j
k , with 0 ≤ i, j < Q .

Defining the diagonal matrix A = Diag(α), it comes that MQ = RAR t, where
R and A are invertible, but unknown at this stage. With Dk = det(Mk) and

the polynomial B(x) =
∑Q
k=0(−1)k+QDk x

k, it yields DQ = det(MQ) 6= 0 and
the degree of B is equal to Q.

Set Vi = (1, ri, . . . , r
Q
i )

t and let us notice that B(ri) is the determinant of
the square matrix produced when appending Vi as last column toM . The Q+1
columns of this matrix are linearly dependent, since they are all linear com-
binations of the Q vectors V1, V2, . . ., VQ. Hence B(ri) = 0 and ri is a root

of B for every 1 ≤ i ≤ Q. This proves that B = DQ

∏Q
i=1(x − ri). Then, one

knows r = (r1, . . . , rQ) (as the roots of B defined from M) and R. It results

that A = R−1MQ (R t)
−1

, which yields a unique (α1, . . . , αQ).
It only remains to determine π. For 0 ≤ i, j < Q, let us introduce Ui,j the

probability that the first row of X[n] begins with i + 1 occurrences of 1, and
the second row of X ends up with j occurrences of 1 (i+ 1+ j ≤ n− 1 implies
n ≥ 2Q).

Then, Ui,j =
∑
k,l r

i
kαkπk,lαlr

j
l , for 0 ≤ i, j < Q, and the Q × Q matrix

U = RAπAR t. The conclusion results from π = A−1R−1U(R t)
−1
A−1.

The assumption of Theorem 2.1 on r (r′ or r′′), leading to generic identifia-
bility, can be further relaxed in the particular case where n = 4 and Q = 2.

Theorem 2.2. Set n = 4, Q = 2 and let us assume that αq > 0 for every
1 ≤ q ≤ Q, and the coefficients of π are not all equal. Then, SBM is identifiable.

The proof of this result is deferred to Appendix A.
Note that when Q = 2, (A1) implies the coefficients of π are not all equal.

3. Maximum-likelihood estimation of SBM parameters

3.1. Asymptotics of P
(
Z[n] = · | X[n]

)

In this section we study the a posteriori probability distribution function of
Z[n], P

(
Z[n] = · | X[n]

)
, which is a random variable depending on X[n].

3.1.1. Equivalence classes between label sequences

Let us consider a realization of the SBM random graph generated with the
sequence of true labels Z = z∗, where z∗ = {z∗i }i∈N∗ .

Since a given matrix π can be permutation-invariant (see Example 2 Sec-
tion 2.3), the mapping z 7→

{
πzi,zj

}
i,j∈N∗ can be non injective. To remedy this
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problem, let us introduce an equivalence relation between two sequences of labels
z and z′:

z
π∼ z′ ⇔ ∃σ ∈ S

π | z′i = σ(zi), ∀i ∈ N
∗ .

Then z
π∼ z′ is equivalent to [ z ]π = [ z′ ]π, where [ z ]π denotes the equivalence

class of z. As a consequence, any vectors z[n] and z
′
[n] in the same class have the

same conditional likelihood (2):

L1(X[n]; z[n], π) = L1(X[n]; z
′
[n], π) .

From now on, square-brackets in the equivalence class notation will be re-
moved to simplify the reading as long as no confusion can be made. In such
cases, z will be understood as the equivalence class of the label sequence.

3.1.2. Main asymptotic result

Let P ∗ := P (· | Z = z∗) = P ∗
α∗,π∗ denote the true conditional distribution given

the (equivalence class of the) whole label sequence, the notation emphasizing
that P ∗ depends on (α∗, π∗).

The following Theorem 3.1 provides the convergence rate of P
(
Z[n] = z∗[n] |

X[n]

)
= Pα∗,π∗

(
Z[n] = z∗[n] | X[n]

)
towards 1 with respect to P ∗, that is given

Z = z∗. It is an important result that will be repeatedly used along the paper.

Theorem 3.1. Let us assume that assumptions (A1)–(A4) hold. For every
t > 0,

P ∗


 ∑

z[n] 6=z
∗
[n]

P
(
Z[n] = z[n] | X[n]

)

P

(
Z[n] = z∗[n] | X[n]

) > t


 = O

(
ne−κn

)
,

where κ > 0 is a constant depending on π∗ but not on z∗, and the O (ne−κn) is
uniform with respect to z∗.

Furthermore, the same result holds with P ∗ replaced by P under (A1)–(A3).

The proof of Theorem 3.1 is deferred to Appendix B.
A noticeable feature of this result is that the convergence rate does not depend

on z∗. This point turns out to be crucial when deriving consistency for the MLE
and the variational estimator (respectively Section 3.2 and Section 4.2). Besides,
the exponential bound of Theorem 3.1 allows the use of Borel-Cantelli’s lemma
to get the P−almost sure convergence.

Corollary 3.2. With the same notation as Theorem 3.1,

∑

z[n] 6=z
∗
[n]

P
(
Z[n] = z[n] | X[n]

)

P

(
Z[n] = z∗[n] | X[n]

) −−−−−→
n→+∞

0 , P− a.s. .
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Moreover,

P

(
Z[n] = z∗[n] | X[n]

)
−−−−−→
n→+∞

1 , P− a.s. ,

and for every z[n] 6= z∗[n],

P
(
Z[n] = z[n] | X[n]

)
−−−−−→
n→+∞

0 , P− a.s. .

As a consequence of previous Corollary 3.2, one can also understand the
above phenomenon in terms of the conditional distribution of the equivalence
class Z[n] given X[n].

Corollary 3.3.

D(Z[n] | X[n])
w−−−−−→

n→+∞
δz∗ , P− a.s. ,

where D(Z[n] | X[n]) denotes the distribution of Z[n] given X[n],
w−−−−−→

n→+∞
refers

to the weak convergence in M1 (Z), the set of probability measures on E (Z) the

set of equivalence classes on Z = {1, . . . , Q}N
∗

and δz∗ is the Dirac measure at
the equivalence class z∗.

Proof of Corollary 3.3. For every n ∈ N
∗, let us define Zn = {1, . . . , Q}n and

E (Zn) the corresponding set of equivalence classes. Let us further introduce a
metric space (E (Zn) , dn), where the distance dn is given by

∀z, z′ ∈ E (Zn) , dn (z, z
′) = min

u∈z, v∈z′

n∑

k=1

2−k1(uk 6=vk) .

Similarly for Z = {1, . . . , Q}N
∗

, (E (Z) , d) denotes a metric space with

∀z, z′ ∈ E (Z) , d (z, z′) = min
u∈z, v∈z′

∑

k≥1

2−k1(uk 6=vk) .

Then, E (Zn) can be embedded into E (Z), so that E (Zn) is identified to a subset
of E (Z).

Let us introduce B the Borel σ−algebra on E (Z), and Bn the σ−algebra
induced by B on E (Zn). Let also P

n = P
[
· | X[n]

]
denote a probability measure

on B, and En [ · ] is the expectation with respect to P
n.

Set h ∈ Cb (Z) (continuous bounded functions on E (Z)) such that ‖h‖∞ ≤M
for M > 0. By continuity at point z∗, for every ǫ > 0, there exists η > 0 such
that

d(z, z∗) ≤ η ⇒ |h(z∗)− h(z)| ≤ ǫ .
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Then,
∣∣En

[
h
(
Z[n]

) ]
− h(z∗)

∣∣ ≤
∑

z[n]

∣∣h
(
z[n]
)
− h(z∗)

∣∣Pn
(
Z[n] = z[n]

)

≤ ǫ+ 2M
∑

z[n]∈(B∗
η)

c

P
n
(
Z[n] = z[n]

)

≤ ǫ+ oP(1) P− a.s. ,

by use of Corollary 3.2, where B∗
η = B(z∗, η) denotes the ball in E (Z) with

radius η with respect to d. In the last inequality, oP(1) results from Corollary 3.2,
which yields the result.

3.2. MLE consistency

The main focus of this section is to settle the consistency of the MLE of (α∗, π∗).
Let us start by recalling the SBM log-likelihood (1):

L2(X[n];α, π) = log


∑

z[n]

eL1(X[n];z[n],π)P
[
Z[n] = z[n]

]

 ,

where P
[
Z[n] = z[n]

]
=
∏n
i=1 αzi , and (α, π) are the SBM parameters. Note

that L2(X[n];α, π) is an involved expression to deal with.
First, the Xi,js are not independent, which strongly differs from usual sta-

tistical settings. For this reason, no theoretical result has ever been derived for
the MLE of SBM parameters.

Second, another non standard feature of L1 is the number of random variables
which is n(n− 1) (and not n as usual). More precisely, there are n(n− 1) edges
Xi,js but only n vertices. This unusual scaling difference implies a refined treat-
ment of the normalizing constants n and n(n− 1), depending on the estimated
parameter α and π respectively. As a consequence, the MLE consistency proof
has been split into two parts: (i) the consistency of the π estimator is addressed
by use of an approach based on M-estimators, (ii) a result similar to Theo-
rem 3.1 is combined with a “deconditioning” argument to get the consistency
of the α∗ estimator (Theorem 3.9) at the price of an additional assumption on
the rate of convergence of the estimator π̂ of π∗.

The consistency of the MLE of π strongly relies on a general theorem which
is inspired from that for M-estimators (van der Vaart and Wellner, 1996).

Theorem 3.4. Let (Θ, d) and (Ψ, d′) denote metric spaces, and let Mn : Θ×
Ψ → R be a random function and M : Θ → R a deterministic one such that for
every ǫ > 0,

sup
d(θ,θ0)≥ǫ

M (θ) <M (θ0) , (5)

sup
(θ,ψ)∈Θ×Ψ

|Mn (θ, ψ)−M (θ)| := ‖Mn −M‖Θ×Ψ
P−−−−−→

n→+∞
0 . (6)
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Moreover, set (θ̂, ψ̂) = Argmaxθ,ψMn (θ, ψ). Then,

d
(
θ̂, θ0

)
P−−−−−→

n→+∞
0 .

One important difference between Theorem 3.4 and its usual counterpart
for M-estimators (van der Vaart and Wellner, 1996) is that Mn and M do not
depend on the same number of arguments. Our consistency result for the MLE
of π strongly relies on this point.

Proof of Theorem 3.4. For every η > 0, there exists δ > 0 such that

P
[
d
(
θ̂, θ0

)
≥ η

]
≤ P

[
M(θ̂) ≤ M(θ0)− 3δ

]
.

Since ‖Mn −M‖Θ×Ψ
P−−−−−→

n→+∞
0, it comes that for large enough values of n,

P
[
d
(
θ̂, θ0

)
≥ η

]
≤ P

[
Mn(θ̂, ψ̂) ≤Mn(θ0, ψ0)− δ

]
+ o(1)

≤ o(1) .

The leading idea in what follows is to check the assumptions of Theorem 3.4.
The main point of our approach consists in using P ∗ = P ∗

α∗,π∗ (Section 3.1.2)
as a reference probability measure, that is working as if Z[n] = z∗[n] were known.
In this setting, a key quantity is

L1(X[n]; z[n], π) =
∑

i6=j

{
Xi,j log πzi,zj + (1−Xi,j) log(1− πzi,zj )

}
,

where (z[n], π) are interpreted as parameters. For any (z[n], π), let us introduce

φn
(
z[n], π

)
:=

1

n(n− 1)
L1

(
X[n]; z[n], π

)
,

Φn
(
z[n], π

)
:= E

[
φn
(
z[n], π

)
| Z[n] = z∗[n]

]
,

where the expectation is computed with respect to P ∗ = P ∗
α∗,π∗ . Actually our

strategy (using Theorem 3.4) only requires to prove φn and Φn are uniformly
close to each other on a subset of parameters denoted by P (see also the proof
of Theorem 3.6 for more details) and defined as follows

P =
{
(z[n], π) | (A1), (A2),

∣∣Φn
(
z[n], π

)∣∣ < +∞
}
. (7)

Showing this uniform convergence between φn and Φn over P is precisely the
purpose of Proposition 3.5. Its proof, which is deferred to Appendix C, strongly
relies on Talagrand’s concentration inequality (Massart, 2007).
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Proposition 3.5. With the above notation, let us assume (A1) and (A2) hold
true. Then,

sup
P

∣∣φn(z[n], π)− Φn(z[n], π)
∣∣ P−−−−−→
n→+∞

0 .

Actually Proposition 3.5 is crucial to prove the following theorem which set-
tles the desired properties for L2(X[n];α, π), that is (5) (uniform convergence)
and (6) (well-identifiability).

Theorem 3.6. Let us assume that (A1), (A2), and (A3) hold, and for every

(α, π), set Mn(α, π) = [n(n− 1) ]−1 L2(X[n];α, π) , and

M(π)

= max
{ai,j}∈A




∑

q,l

α∗
qα

∗
l

∑

q′,l′

[
aq,q′al,l′π

∗
q,l log πq′,l′ + (1− π∗

q,l) log(1 − πq′,l′)
]


 ,

where (α∗, π∗) denotes the true parameter of SBM, and A =
{
A = (ai,j)1≤i,j≤Q |

aq,q′ ≥ 0,
∑
q′ aq,q′ = 1

}
⊂ MQ(R).

Then for any η > 0,

sup
d(π,π∗)≥η

M(π) <M(π∗) ,

sup
α,π

|Mn(α, π)−M(π)| P−−−−−→
n→+∞

0 ,

where d denotes a distance.

The proof of Theorem 3.6 is given in Appendix D. Its uniform convergence
part exploits the connection between φn(z[n], π) and L2(X[n];α, π) (Proposi-
tion 3.5).

Let us now deduce the Corollary 3.7, which asserts the consistency of the
MLE of π∗.

Corollary 3.7. Under the same assumptions as Theorem 3.6, let us define the
MLE of (α∗, π∗)

(α̂, π̂) := Argmax(α,π)L2(X[n];α, π) .

Then for any distance d(·, ·) on the set of parameters π,

d (π̂, π∗)
P−−−−−→

n→+∞
0 .

Proof of Corollary 3.7. This is a straightforward consequence of Theorem 3.4
and Theorem 3.6.

A quick inspection of the proof of uniform convergence in Theorem 3.6 shows
that the asymptotic behavior of the log-likelihood L2 does not depend on α.
Roughly speaking, this results from the expression of L2 in which the number of
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terms involving π is of order n2 whereas only n terms involve α. This difference
of scaling with respect to n between π and α justifies to some extent a different
approach for the MLE of α∗.

Our proof heavily relies on an analogous result to Theorem 3.1, where the
true value (α∗, π∗) of SBM parameters is replaced by an estimator (α̂, π̂). In

what follows, P̂
(
Z[n] = z[n] | X[n]

)
= Pα̂,π̂

(
Z[n] = z[n] | X[n]

)
(Section 3.1.2 and

Lemma E.2) denotes the same quantity as P
(
Z[n] = z[n] | X[n]

)
where (α∗, π∗)

has been replaced by (α̂, π̂). Let us state this result in a general framework since
it will be successively used in proofs of Theorems 3.9 and 4.4.

Proposition 3.8. Let us assume that assumptions (A1)–(A4) hold, and
that there exists an estimator π̂ such that ‖π̂ − π∗‖∞ = oP(vn), with vn =
o
(√

logn/n
)
. Let also α̂ denote any estimator of α∗. Then for every ǫ > 0,

P ∗


 ∑

z[n] 6=z
∗
[n]

P̂
(
Z[n]= z[n] | X[n]

)

P̂
(
Z[n]= z∗[n] | X[n]

) > ǫ


 ≤ κ1ne

−κ2
(log n)2

nv2n +P [ ‖π̂−π∗‖∞ >vn ]

for n large enough, where κ1, κ2 > 0 are constants independent of z∗, and

log


 P̂

(
Z[n] = z[n] | X[n]

)

P̂
(
Z[n] = z∗[n] | X[n]

)




=
∑

i6=j

{
Xi,j log

(
π̂zi,zj
π̂z∗

i
,z∗

j

)
+ (1−Xi,j) log

(
1− π̂zi,zj
1− π̂z∗

i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

.

Moreover, the same result holds replacing P ∗ by P under (A1)–(A3).

The proof of Proposition 3.8 is given in Appendix E.
In the same way as in Theorem 3.1, one crucial point in Proposition 3.8 is the

independence of the convergence rate with respect to z∗[n]. Note that the novelty
of Proposition 3.8 compared to Theorem 3.1 lies in the convergence rate which
depends on the behavior of π̂. This is the reliable price for estimating rather
than knowing π∗.

We assume vn = o
(√

log n/n
)
, which arises from the proof as a necessary

requirement for consistency. However, we do not know whether this is a necessary
or only a sufficient condition. Furthermore there is still empirical evidence (see
Gazal et al., 2011) that the rate of convergence of π̂ is of order 1/n, but this
property is assumed and not proved in the present paper.

Let us now settle the consistency of the MLE of α∗ on the basis of previous
Proposition 3.8.

Theorem 3.9. Let (α̂, π̂) denote the MLE of (α∗, π∗) and assume ‖π̂ − π∗‖∞ =
oP
(√

logn/n
)
. With the same assumptions as Theorem 3.6, and the notation of

Corollary 3.7, then

d(α̂, α∗)
P−−−−−→

n→+∞
0 ,

where d denotes any distance between vectors in R
Q.
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Note that the rate 1/n would be reached in “classical” parametric models
with n2 independent random variables.

Proof of Theorem 3.9. In the mixture model framework of SBM, Lemma E.2
shows the MLE of α is given for any q by

α̂q =
1

n

n∑

i=1

P̂ (Zi = q | X[n]) .

First, let us work with respect to P ∗, that is given Z[n] = z∗[n]. Setting Nq(z[n]) =∑n
i=1 1(zi=q), it comes

∣∣∣α̂q −Nq(z
∗
[n])/n

∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

P̂
(
Zi = z∗i | X[n]

)
1(z∗

i
=q) −Nq(z

∗
[n])/n

∣∣∣∣∣

+ P̂
(
Z[n] 6= z∗[n] | X[n]

)

≤ 1

n

n∑

i=1

(
1− P̂

(
Zi = z∗i | X[n]

))
1(z∗

i
=q)

+ P̂
(
Z[n] 6= z∗[n] | X[n]

)

≤ 1

n

n∑

i=1

(
P̂
(
Zi 6= z∗i | X[n]

))
1(z∗

i
=q) + P̂

(
Z[n] 6= z∗[n] | X[n]

)

≤ 2P̂
(
Z[n] 6= z∗[n] | X[n]

)
.

Note the last inequality results from

1

n

∑

i

P̂
(
Zi 6= z∗i | X[n]

)
≤ max

i=1,...,n
P̂
(
Zi 6= z∗i | X[n]

)

≤ P̂
[
∪ni=1(Zi 6= z∗i ) | X[n]

]
= P̂

(
Z[n] 6= z∗[n] | X[n]

)
.

Second, let us now use a “deconditioning argument” replacing P ∗ by P. Let
Nq = Nq(Z[n]) denote a binomial random variable B(n, α∗

q) for every q. Then
for every ǫ > 0,

P
[ ∣∣α̂q − α∗

q

∣∣ > ǫ
]

≤ P [ |α̂q −Nq/n| > ǫ/2 ] + P
[ ∣∣Nq/n− α∗

q

∣∣ > ǫ/2
]

≤ P [ |α̂q −Nq/n| > ǫ/2 ] + o(1) ,

by use of LLG. Finally, a straightforward use of Proposition 3.8 leads to

P [ |α̂q −Nq/n| > ǫ/2 ]

= EZ[n]

[
P
(
|α̂q −Nq/n| > ǫ/2 | Z[n]

) ]

≤
∑

z[n]

P
[
P̂
(
Z[n] 6= z[n] | X[n]

)
> ǫ/4 | Z[n] = z[n]

]
P
[
Z[n] = z[n]

]

= o(1) .
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4. Variational estimators of SBM parameters

In Section 3, consistency has been proved for the maximum likelihood estima-
tors. However this result is essentially theoretical since in practice the MLE can
only be computed for very small graphs (with less than 20 vertices). Neverthe-
less, such results for the MLE are useful in at least two respects. First from a
general point of view, they provide a new strategy to derive consistency of esti-
mators obtained from likelihoods in non-i.i.d. settings. Second in the framework
of the present paper, these results are exploited to settle the consistency of the
variational estimators.

The main interest of variational estimators in SBM is that unlike the MLE
ones, they are useful in practice since they enable to deal with very huge graphs
(several thousands of vertices). Indeed the log-likelihood L2

(
X[n];α, π

)
involves

a sum over Qn terms, which is intractable except for very small and unrealistic
values of n:

L2(X[n];α, π) = log





∑

z[n]∈Zn

e
∑

i6=j
bij(zi,zj)PZ[n]

(z[n])



 , (8)

with bij(zi, zj) = Xi,j log πzi,zj + (1 − Xi,j) log(1 − πzi,zj ). To circumvent this
problem, alternatives are for instance Markov chain Monte Carlo (MCMC) al-
gorithms (Andrieu and Atchadé, 2007) and variational approximation (Jordan
et al., 1999). However, MCMC algorithms suffer a high computational cost,
which makes them unattractive compared to variational approximation. Actu-
ally the variational method can deal with thousands of vertices in a reasonable
computation time thanks to its complexity inO(n2). For instance, Mixnet (2009)
package (based on variational approximation) deals with up to several thousands
of vertices, whereas STOCNET package (see Boer et al., 2006) (Gibbs sampling)
only deals with a few hundreds of vertices. Note that other approaches based
on profile-likelihood have been recently developed and studied for instance by
Bickel and Chen (2009).

The purpose of the present section is to prove that the variational approxi-
mation yields consistent estimators of the SBM parameters. The resulting esti-
mators will be called variational estimators (VE).

4.1. Variational approximation

To the best of our knowledge, the first use of variational approximation for
SBM has been made by Daudin et al. (2008). The variational method consists
in approximating PX[n] = P

(
Z[n] = · | X[n]

)
by a product of n multinomial

distributions (see (9)). The computational virtue of this trick is to replace an
intractable sum over Qn terms (see (8)) by a sum over only n2 terms (Eq. (11)).

Let us define Dn as a set of product multinomial distributions

Dn =

{
Dτ[n]

=

n∏

i=1

M(1, τi,1, . . . , τi,Q) | τ[n] ∈ Sn
}

, (9)
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where

Sn =

{
τ[n] = (τ1, . . . , τn) ∈

(
[0, 1]Q

)n | ∀i, τi = (τi,1, . . . , τi,Q) ,

Q∑

q=1

τi,q = 1

}
.

For any Dτ[n]
∈ Dn, the variational log-likelihood, J (·; ·, ·, ·) is defined by

J (X[n]; τ[n], α, π) = L2(X[n];α, π)−K
(
Dτ[n]

, PX[n]
)
, (10)

where K(., .) denotes the Kullback-Leibler divergence, and PX[n] =
P
(
Z[n] = · | X[n]

)
. With this choice of Dn, J (X[n]; τ[n], α, π) has the following

expression (see Daudin et al. (2008) and the proof of Lemma F.3):

J (X[n]; τ[n], α, π) =
∑

i6=j

∑

q,l

bij(q, l)τi,qτj,l −
∑

iq

τi,q (log τi,q − logαq) , (11)

where bij(q, l) = Xi,j log πq,l+(1−Xi,j) log(1−πq,l). The main improvement of
Eq. (11) upon Eq. (8) is that J (X[n]; τ[n], α, π) can be fully computed for every

(τ[n], α, π). The variational approximation RX[n]
to PX[n] is given by solving the

minimization problem over Dn:

RX[n]
∈ ArgminDτ∈Dn

K
(
Dτ , P

X[n]
)
,

as long as such a minimizer exists, which amounts to maximizing
J (X[n]; τ[n], α, π) as follows

τ̂[n] = τ̂[n](π, α) := Argmaxτ[n]
J (X[n]; τ[n], α, π) .

The variational estimators (VE) of (α∗, π∗) are

(α̃, π̃) = Argmaxα,πJ (X[n]; τ̂[n], α, π) . (12)

Note that in practice, the variational algorithm maximizes J (X[n]; τ, α, π) al-
ternatively with respect to τ and (α, π) (see Daudin et al., 2008). Furthermore
since (α, π) 7→ J (X[n]; τ̂[n], α, π) is not concave, this variational algorithm can
lead to local optima in the same way as for likelihood optimization.

In the sequel, the same notation as in Section 3 is used. In particular it is as-
sumed that a realization of SBM is observed, which has been generated from the
sequence of true labels Z = z∗. In this setting, P ∗ = P ∗

α∗,π∗ (Section 3.1.2) de-
notes the conditional distribution P (· | Z = z∗) given the whole label sequence.
The first result provides some assurance about the reliability of the variational
approximation to PX[n] = Pα∗,π∗

[
Z[n] = · | X[n]

]
(Section 3.1.2).

Proposition 4.1. For every n, let Dn denote the set defined by (9), and
PX[n] (·) be the distribution of Z[n] given X[n]. Then, assuming (A1)–(A3) hold,

K(RX[n]
, PX[n]) := inf

D∈Dn

K(D,PX[n]) −−−−→
n→∞

0 , P ∗ − a.s. .
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Note that this convergence result is given with respect to P ∗ (and not to P).
Stronger results can be obtained (see Section 4.1) thanks to fast convergence
rates. Proposition 4.1 yields some confidence in the reliability of the variational
approximation, which gets closer to PX[n] as n tends to +∞. However, it does
not provide any warranty about the good behavior of variational estimators,
which is precisely the goal of following Section 4.2.

Proof of Proposition 4.1. By definition of the variational approximation,

K(RX[n]
, PX[n]) ≤ K(δz∗

[n]
, PX[n]) ,

where δz∗
[n]

=
∏

1≤i≤n δz∗i ∈ Dn. Then,

K(RX[n]
, PX[n]) ≤ K(δz∗

[n]
, PX[n]) = − log

[
P
(
Z[n] = z∗[n] | X[n]

) ]
,

since

K(δz∗
[n]
, PX[n]) =

∑

z[n]

δz∗
[n]
(z[n]) log

[
δz∗

[n]
(z[n])

PX[n](z[n])

]

= − log
[
P
(
Z[n] = z∗[n] | X[n]

) ]
.

The conclusion results from Theorem 3.1, and Corollary 3.2 since P
(
Z[n] = z∗[n] |

X[n]

)
−−−−→
n→∞

1 P ∗ − a.s. .

4.2. Consistency of the variational estimators

Since the variational log-likelihood J (·; ·, ·, ·) (10) is defined from the log-
likelihood L2(·; ·, ·), the properties of J (X[n]; τ[n], α, π) are strongly connected
to those of L2(X[n];α, π). Therefore, the strategy followed in the present section
is very similar to that of Section 3. In particular, the consistency of π̃ (VE of
π∗, see (12)) is addressed first. The consistency of the VE of α∗ (α̃, see (12)) is
handled in a second step and depends on the convergence rate of the estimator
of π̃.

The first step consists in applying Theorem 3.4 to settle the π̃ consistency.
Following results aim at justifying the use of Theorem 3.4 by checking its as-
sumptions.

Theorem 4.2 states that L2 and J are asymptotically equivalent uniformly
with respect to α and π.

Theorem 4.2. With the same notation as Theorem 3.6 and Section 4.1, let us
define

Jn (α, π) :=
1

n(n− 1)
J
(
X[n]; τ̂[n], α, π

)
.
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Then, (A2) and (A3) lead to

sup
α,π

{|Jn (α, π)−Mn(α, π)|} = o (1) , P− a.s. ,

where the supremum is computed over sets fulfilling (A2) and (A3).

This statement is stronger than Proposition 4.1 in several respects. On the
one hand, convergence applies almost surely with respect to P and not P ∗. On
the other hand, Theorem 4.2 exhibits the convergence rate toward 0, which is
not faster than n(n− 1).

Proof of Theorem 4.2. From the definitions of L1, L2, and J (respectively
given by Eq. (2), Eq. (1), and Eq. (10)) and recalling ẑ[n] = ẑ[n](π) =
Argmaxz[n]

L1(X[n]; z[n], π), Lemma F.1 leads to

J (X[n]; τ[n], α, π) ≤ L2(X[n];α, π) ≤ L1(X[n]; ẑ[n], π) .

Then applying (A3) and Lemma F.2, there exists 0 < γ < 1 independent of
(α, π) such that

∣∣J (X[n]; τ̂[n], α, π)− L1(X[n]; ẑ[n], π)
∣∣ ≤ n log(1/γ) .

The conclusion results straightforwardly.

The consistency of π̃ is provided by the following result, which is a simple
consequence of Theorem 4.2, Proposition 3.5, and Theorem 3.4.

Corollary 4.3. With the notation of Theorem 4.2 and assuming (A1), (A2),
and (A3) hold, let us define the VE of (α∗, π∗)

(α̃, π̃) = Argmaxα,πJn(α, π) .

Then for any distance d(·, ·) on the set of π parameters,

d(π̃, π∗)
P−−−−−→

n→+∞
0 .

The proof is completely similar to that of Corollary 3.7 and is therefore not
reproduced here.

Finally, the consistency for the VE of α∗ is derived from the same decondition-
ing argument as that one used for the MLE (proof of Theorem 3.9). Consistency
for α̃ is stated by the following result where a convergence rate of 1/n is assumed
for π̃. Note that at least some empirical evidence and heuristics exist (see Gazal
et al., 2011) in favour of this rate.

Theorem 4.4. Let us assume the VE π̃ converges at rate 1/n to π∗. With the
same assumptions as Theorem 4.2 and assuming (A1), (A2), and (A3) hold,
then

d(α̃, α∗)
P−−−−−→

n→+∞
0 ,

where d denotes any distance between vectors in R
Q.



1866 A. Celisse et al.

The crux of the proof is the use of Proposition 3.8.

Proof of Theorem 4.4. Let us show that given Z[n] = z∗[n],

∣∣∣α̃q −Nq(z
∗
[n])/n

∣∣∣ P∗

−−−−→
n→∞

0 .

For every q,

α̃q =
1

n

n∑

i=1

τ̃i,q,

where τ̃i,q = τ̂i,q (α̃, π̃) (see (12)). Introducing z∗i , it comes that

α̃q =
1

n

n∑

i=1

τ̃i,z∗
i
1(z∗

i
=q) +

1

n

n∑

i=1

τ̃i,q1(z∗
i
6=q) .

From (9), let us consider the a posteriori distribution of Z̃[n] = (Z̃1, . . . , Z̃n)
denoted by

Dτ̃[n]
(z[n]) = P

[
Z̃[n] = z[n] | X[n]

]
=

n∏

i=1

τ̃i,zi .

Then,

∣∣∣α̃q −Nq(z
∗
[n])/n

∣∣∣ =
∣∣∣∣∣
1

n

n∑

i=1

(
τ̃i,z∗

i
− 1
)
1(z∗

i
=q) +

1

n

n∑

i=1

τ̃i,q1(z∗
i
6=q)

∣∣∣∣∣

≤ 1

n

n∑

i=1

(
1− τ̃i,z∗

i

)
1(z∗

i
=q) +

1

n

n∑

i=1

τ̃i,q1(z∗
i
6=q)

≤ 1

n

n∑

i=1

(
1− τ̃i,z∗

i

)
,

using that when z∗i 6= q, τ̃i,q ≤
∑
q 6=z∗

i
τ̃i,q = 1− τ̃i,z∗

i
. Hence,

∣∣∣α̃q −Nq(z
∗
[n])/n

∣∣∣ ≤ 1

n

n∑

i=1

P

[
Z̃[n] 6= z∗[n] | X[n]

]
= 1−Dτ̃[n]

(z∗[n]) .

It remains to show Dτ̃[n]
(z∗[n])

P∗

−−−−→
n→∞

1 at a rate which does not depend of

z∗[n]. Let P̃ = Pα̃,π̃

(
Z[n] = · | X[n]

)
denote the a posteriori distribution of Z[n]

with parameters (α̃, π̃) (Section 3.1.2). Since Lemma F.4 provides

∣∣∣Dτ̃[n]
(z∗[n])− P̃ (z∗[n])

∣∣∣ ≤
√
−1

2
log
[
P̃ (z∗[n])

]
,

the conclusion results from another use of Proposition 3.8 applied with π̂ = π̃
and vn = 1/n.
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5. Conclusion

This paper provides theoretical (asymptotic) results about the stochastic block
model (SBM) inference. Identifiability of SBM parameters has been proved for
directed (and undirected) graphs. This is typically the setting of real applications
such as biological networks.

In particular, asymptotic equivalence between maximum-likelihood and vari-
ational estimators is proved, as well as the consistency of resulting estimators
(up to an additional assumption for the group proportions). To the best of our
knowledge, these are the first results of this type for variational estimators of the
SBM parameters. Such theoretical properties are essential since they validate
the empirical practice which uses variational approaches as a reliable means to
deal with up to several thousands of vertices.

Besides, this work can be seen as a preliminary step toward a deeper anal-
ysis of maximum-likelihood and variational estimators of SBM parameters. In
particular a further interesting question is the choice of the number Q of classes
in the mixture model. Indeed it is crucial to develop a data-driven strategy to
choose Q in order to make the variational approach fully applicable in practice
and validate the empirical practice.

Appendix A: Proof of Theorem 2.2

Proof of Theorem 2.2. Let us just assume Q = 2, n = 4, and that no element
of α is zero.

If the coordinates of r = πα are distinct, then Theorem 2.1 applies and the
desired result follows.

Otherwise, the two coordinates are r, r′ and r′′ are not distinct. Set r1 =
r2 = a and ui = α1r

i
1 + α2r

i
2, for i ≥ 0. Let us also define b = r′1 = r′2, and

c = r′′1 = r′′2 . Then, the following equalities hold:

a = π11α1 + π12α2 = π21α1 + π22α2 ,

b = π11α1 + π21α2 = π12α1 + π22α2 ,

c = π2
11α1 + π21π12α2 = π12π21α1 + π2

22α2 .

From a−b = (π12−π21)α2 = −(π12−π21)α1 we deduce π12 = π21 and a = b.
Then,

α1α2(π11 − π12)
2 = (α1 + α2)(α1π

2
11 + α2π

2
12)− (α1π11 + α2π12)

2

= c− a2

= c− b2

= α1α2(π22 − π12)
2 .

If c = a2, then π11 = π12 = π21 = π22 = a and α cannot be found.
If c 6= a2, then |π11 − π12| = |π22 − π12| 6= 0. But α1(π11 − π12) = a− π12 =

b−π12 = α2(π22−π12) leads to |α1| = |α2| and α1 = α2 = 1/2. Hence π11 = π22.
Then, π11 and π12 are the roots of the polynomial x2 − 2ax+ 2a2 − c.
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At this stage, we need to distinguish between π11 and π12. Let us introduce
the probability d that X[n] fits the pattern

. 1 . .

. . 1 .
1 . . .
. . . .

.

Then, d = (π3
11+3π11π

2
12)/4 and one can compute e = 3

√
d− a3 = (π11−π12)/2.

This leads to π11 = π22 = a + e and π12 = π21 = a − e, which yields the
conclusion.

Appendix B: Proof of Theorem 3.1

B.1. Preliminaries

Assuming (A1) holds true, π∗ can be permutation-invariant (see Section 3.1.1).
For this reason, we will consider equivalence classes denoted by

[
z[n]

]
=
[
z[n]

]
π∗

for the label vector z[n].

Let us define PX[n](z[n]) = P
[
Z[n] = z[n] | X[n]

]
for every label vector z[n],

and PX[n]
(
[z[n]]

)
= P

(
[Z[n]] = [z[n]] | X[n]

)
for corresponding class [z[n]]. Since

every z′[n] ∈
[
z[n]

]
satisfies PX[n](z′[n]) = PX[n](z[n]), it results that

PX[n]
(
[z[n]]

)
=

∑

z′
[n]

∈[z[n]]

PX[n](z′[n]) =
∣∣[z[n]]

∣∣PX[n](z[n]) , (13)

where
∣∣[z[n]]

∣∣ denotes the cardinality of [z[n]].

B.2. Upper bounding P

[∑
[z[n]]6=[z∗

[n]
]

P[ [Z[n]]=[z[n]]|X[n] ]
P

[
[Z[n]]=[z∗

[n]
]|X[n]

] > t | Z = z∗

]

Using P ∗ instead of P [ · | Z = z∗ ] for simplicity, let us first notice

∑

[z[n]] 6=[z∗
[n]

]

PX[n]([z[n]])

PX[n]([z∗[n]])
=

∑

[z[n]] 6=[z∗
[n]

]

∑
z′
[n]

∈[z[n]]
PX[n](z[n])

∑
z0
[n]

∈[z∗
[n]

] P
X[n](z0[n])

≤
∑

[z[n]] 6=[z∗
[n]

]

∑

z′
[n]

∈[z[n]]

PX[n](z[n])

PX[n](z∗[n])

=
∑

z[n] 6∈[z∗
[n]

]

PX[n](z[n])

PX[n](z∗[n])
,
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by (13) applied to [z∗[n]]. Partitioning according to the number
∥∥z[n]− z∗[n]

∥∥
0
= r

of differences between z[n] and z
∗
[n], it comes

∑

[z[n]] 6=[z∗
[n]

]

PX[n]([z[n]])

PX[n]([z∗[n]])
=

n∑

r=1

∑

z[n] 6∈ [z∗[n]]∥∥z[n] − z∗[n]

∥∥
0
= r

PX[n](z[n])

PX[n]([z∗[n]])
· (14)

Note that the number of vectors z[n] such that z[n] 6∈ [z∗[n]] and
∥∥z[n]−z∗[n]

∥∥
0
= r

is roughly upper bounded by
(
n
r

)
(Q− 1)

r
, this upper bound being reached for

instance when π∗ is such that π∗
q,l 6= π∗

q′,l′ for every (q, l) 6= (q′, l′). Then, a
straightforward union bound leads to

P ∗




∑

[z[n]] 6=[z∗
[n]

]

PX[n]([z[n]])

PX[n]([z∗[n]])
> t




≤
n∑

r=1

∑

z[n] 6∈ [z∗[n]]∥∥z[n] − z∗[n]

∥∥
0
= r

P ∗

[
PX[n](z[n])

PX[n](z∗[n])
>

t

nr+1(Q− 1)r

]
,

by use of
(
n
r

)
≤ nr, which is tight enough for our purpose.

B.3. Upper bounding P

[
P

X[n] (z[n])

P
X[n] (z∗

[n]
)
>

t

nr+1(Q−1)r
| Z = z∗

]

Let us first notice that for every vectors z[n] and z
∗
[n],

log

(
PX[n](z[n])

PX[n](z∗[n])

)
− E

Z=z∗

[
log

(
PX[n](z[n])

PX[n](z∗[n])

)]

=
∑

i6=j




(
Xi,j − π∗

z∗i ,z
∗
j

)
log



π∗
zi,zj

(
1− π∗

z∗
i
,z∗

j

)

π∗
z∗
i
,z∗

j

(
1− π∗

zi,zj

)





 . (15)

Note that for any vector z[n] such that π∗
zi,zj ∈ {0, 1} and π∗

z∗
i
,z∗

j
6= π∗

zi,zj ,

log
(PX[n] (z[n])

P
X[n] (z∗

[n]
)

)
= −∞ and PX[n](z[n]) = 0. Then such vector z[n] can be removed

from the sum in Eq. (14).
Second for any vectors z[n] and z

′
[n], let us further define

D(z[n], z
′
[n]) =

{
(i, j) | i 6= j, π∗

zi,zj 6= π∗
z′
i
,z′

j

}
,

where zi and z
′
j respectively refer to the i−th (resp. j−th) coordinate of vector

z[n] (resp. z
′
[n]). Note that D(z[n], z

′
[n]) remains unchanged if z[n] and z′[n] are

replaced by any representatives of their respective classes.
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If Nr(z[n]) =
∣∣D(z[n], z

∗
[n])
∣∣ denotes the number of terms in the sum of

Eq. (15), then

P ∗

[
PX[n](z[n])

PX[n](z∗[n])
>

t

nr+1(Q− 1)r

]

= P ∗

[
log

PX[n](z[n])

PX[n](z∗[n])
> log

(
t

nr+1(Q− 1)r

)]

= P ∗

{
1

Nr(z[n])

(
log

PX[n](z[n])

PX[n](z∗[n])
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
>

1

Nr(z[n])

(
log

t

nr+1(Q− 1)r
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])}
.

Finally, Hoeffding’s inequality (Proposition B.1) applied with aij = −bij =

log
[
(1− ζ)

2
ζ−2

]
(see Lemma B.2 and (A2)), and L = 2(bi,j − ai,j) provides

for any s > 0,

P ∗

[
1

Nr(z[n])

(
log

PX[n](z[n])

PX[n](z∗[n])
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
> s

]

≤ exp

(−Nr(z[n])s2
L2

)
.

B.4. Conclusion

One then apply this last inequality with a particular choice of s:

s =
1

Nr(z[n])

(
log

t

nr+1(Q− 1)r
− E

Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])
,

which leads to

s =
log t− (r + 1) log(n)− r log(Q− 1)

Nr(z[n])
− 1

Nr(z[n])
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]
.

With Lemma B.3, it is not difficult to show that for large enough values of n,

s2 ≥ 3

4

(
1

Nr(z[n])
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

])2

≥ 3

4
(c∗)2 ,

and that

exp

(−Nr(z[n])s2
L2

)
≤ exp

(−3Nr(z[n])(c
∗)2

4L2

)
.
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Using Proposition B.4, it results that

Nr(z[n]) ≥
γ2

2
n
∥∥∥z[n] − z∗[n]

∥∥∥
0
=
γ2

2
nr ,

and

P ∗


 ∑

[z[n]] 6=[z∗
[n]

]

PX[n]([z[n]])

PX[n]([z∗[n]])
> t


 ≤

n∑

r=1

(
n

r

)
(Q− 1)r exp

(
−3(γc∗)2

8L2
nr

)

=

n∑

r=1

(
n

r

)
[ (Q− 1)un ]

r
,

where un = exp
(
− 3(γc∗)2

8L2 n
)
.

Finally for every t > 0, log(1 + x) ≤ x for every x ≥ 0 implies

P


 ∑

[z[n]] 6=[z∗
[n]

]

PX[n]([z[n]])

PX[n]([z∗[n]])
> t | Z = z∗


 ≤ (1 + (Q− 1)un)

n − 1

≤ e(Q−1)nun − 1 −−−−−→
n→+∞

0 ,

since nun → 0 as n → +∞. Further noticing that the upper bound does not
depend on z∗[n], the same result holds with P ∗ replaced by P.

B.5. Hoeffding’s inequality and related lemmas

Proposition B.1 (Hoeffding’s inequality). Let {Yi,j}1≤i6=j≤n independent ran-

dom variables such that for every i 6= j, Yi,j ∈ [ai,j , bi,j ] almost surely. Then,
for any t > 0,

P




n∑

i6=j

(Yi,j − E [Yi,j ]) > t


 ≤ exp

(
−t2∑

i6=j(bi,j − ai,j)2

)
.

Lemma B.2 (Values of ai,j and bi,j). Assuming (A2) holds for π∗ with ζ > 0,
it comes for every 1 ≤ i 6= j ≤ n,

∣∣∣∣∣∣
Xi,j log



π∗
zi,zj

(
1− π∗

z∗
i
,z∗

j

)

π∗
z∗
i
,z∗

j

(
1− π∗

zi,zj

)



∣∣∣∣∣∣
≤ 2 log

[(
1− ζ

ζ

)]
.

Lemma B.3 (Bounding the conditional expectation). Let us assume (A1),
(A2), (A3), and (A4) hold true. Then for every label vectors z[n] and z

∗
[n] such

that
∥∥z[n]− z∗[n]

∥∥
0
= r (1 ≤ r ≤ n), there exist positive constants c∗ = c(π∗) and

C∗ = C(π∗) such that

0 < c∗ ≤ − 1

Nr(z[n])
E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]
≤ C∗ ,

where Nr(z[n]) =
∣∣{(i, j) | i 6= j, π∗

zi,zj 6= π∗
z∗
i
,z∗

j

}∣∣.
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Proof of Lemma B.3. First,

E
Z=z∗

[
log

PX[n](z[n])

PX[n](z∗[n])

]

=E
Z=z∗


∑

i6=j

{
Xi,j log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1−Xi,j) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α∗
zi

α∗
z∗
i




=
∑

i6=j

E
Z=z∗

[
Xi,j log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1 −Xi,j) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)]
+
∑

i

log
α∗
zi

α∗
z∗
i

=
∑

i6=j

−
[
π∗
z∗
i
,z∗

j
log

(
π∗
z∗i ,z

∗
j

π∗
zi,zj

)
+ (1− π∗

z∗
i
,z∗

j
) log

(
1− π∗

z∗i ,z
∗
j

1− π∗
zi,zj

)]
+
∑

i

log
α∗
zi

α∗
z∗
i

.

Note that the first sum in the above expression is actually taken over (i, j) such
that π∗

zi,zj 6= π∗
z∗
i
,z∗

j
.

Second, let us introduce

C∗ := max
{
2k
(
π∗
q,l, π

∗
q′,l′
)}

and c∗ := min
{
k
(
π∗
q,l, π

∗
q′,l′
)
/2
}
,

where maximum and minimum are taken over
{
((q, l), (q′, l′)) | π∗

q,l 6= π∗
q′,l′

}
,

and k(x, y) = x log(x/y) + (1 − x) log [ (1− x)/(1 − y) ] for every x, y ∈ (0, 1).
Then for every (i, j) such that π∗

zi,zj 6= π∗
z∗
i
,z∗

j
,

0 < c∗ < k
(
π∗
z∗
i
,z∗

j
, π∗
zi,zj

)
< C∗ .

Third, (A3) implies that
∣∣log α∗

zi

α∗
z∗
i

∣∣ ≤ log 1−γ
γ . Therefore (A4) and Proposi-

tion B.4 entail

1

Nr(z[n])

∑

i

log
α∗
zi

α∗
z∗
i

≤ r

Nr(z[n])
log

1− γ

γ
≤ 1

n

2

γ2
log

1− γ

γ
−−−−−→
n→+∞

0 .

The conclusion follows for every n such that

1

n

2

γ2
log

1− γ

γ
<
c∗

2
< C∗ ·

Proposition B.4. Let z[n] and z
∗
[n] denote two label vectors. If (A1) and (A4)

hold true, then

∣∣∣D(z[n], z
∗
[n])
∣∣∣ ≥ γ2

2
n
∥∥∥z[n] − z∗[n]

∥∥∥
0
,

where D(z[n], z
′
[n]) =

{
(i, j) | i 6= j, π∗

zi,zj 6= π∗
z′
i
,z′

j

}
, γ > 0 is the constant given

by (A4), and
∥∥z[n] − z′[n]

∥∥
0
=
∑n
i=1 1(zi 6=z′i)

.



MLE and variational estimators in SBM 1873

Proof of Proposition B.4. Since one assumes (A1) holds true, π can be permu-
tation-invariant (see Example 2). Then, let us define πσ = (πσ(q),σ(l))1≤q,l≤Q
with σ a permutation on {1, . . . , Q}. Note that for permutation-invariant matrix
π, there exists a permutation σ 6= Id on {1, . . . , Q} such that πσ = π. Then, the
following equalities hold

D(z[n], z
′
[n]) = D

(
σ(z[n]), z

′
[n]

)
= D

(
z[n], σ(z

′
[n])
)
,

with σ(z[n]) = (σ(z1), σ(z2), . . . , σ(zn)). Furthermore, neither
∣∣D(z[n], z

∗
[n])
∣∣ nor∥∥z[n]−z∗[n]

∥∥
0
will change if the same permutation is applied to the coordinates of

vectors z[n] and z
∗
[n]. Then, computing

∣∣D(z[n], z
∗
[n])
∣∣ can be made by reordering

z[n] and z
∗
[n].

Assumption (A4) implies that the number of coordinates of z∗[n] that are

equal to 1 is at least nγ := ⌈nγ⌉, where ⌈nγ⌉ denotes the first integer larger
than nγ. The same property holds for every 1 ≤ q ≤ Q. Let us use a permutation
of the coordinates of z∗[n] such that

z∗[n] = (1, 2, . . . , Q, 1, 2, . . . , Q, . . . , 1, 2, . . . , Q, z∗Qnγ+1, z
∗
Qnγ+2, . . . , z

∗
n) ,

and apply the same permutation to z[n]. For each block k of Q coordinates
(1, . . . , Q) of z∗[n], let us introduce a mapping σk(·) where k denotes the number
of the block in z∗[n] such that

∀k, Q+ 1 ≤ i ≤ (k + 1)Q, σk(z
∗
i ) = zi .

Then it comes

z[n] = (σ1(1), σ1(2), . . . , σ1(Q), σ2(1), σ2(2), . . . , σ2(Q), . . . , σnγ
(1), . . . , σnγ

(Q),
(16)

zQnγ+1, zQnγ+2, . . . , zn) .

Note that this reorganization of z∗[n] is not unique. For instance, it is pos-

sible to exchange σ1(3) with σ4(3). Each σk is a function from {1, . . . , Q} to
{1, . . . , Q}, which is a permutation provided it is injective. Let us choose a reor-
ganization of the coordinates of z∗ which minimizes the number of injective σks.

Besides,
∣∣∣D
(
z[n], z

∗
[n]

)∣∣∣ ≥
∣∣∣
{
(i, j) | i 6= j, i, j ≤ Qnγ π

∗
z∗
i
,z∗

j
6= π∗

zi,zj

}∣∣∣

=
∑

k,k′

∣∣∣
{
(i, j) | i 6= j, i ∈ Ik, j ∈ Ik′ , π

∗
z∗
i
,z∗

j
6= π∗

zi,zj

}∣∣∣ ,

where Ik denotes the k−th block of coordinates of z∗[n]. If k 6= k′, the requirement

that i 6= j is fulfilled. Otherwise for k = k′, it is necessary to require that z∗i 6= z∗j
since every values in Ik are different. Let us denote by B(k, k′) =

∣∣{(q, l) | π∗
q,l 6=

π∗
σk(q),σk′ (l)

}∣∣ and by B(k) =
∣∣{(q, l) | q 6= l, π∗

q,l 6= π∗
σk(q),σk(l)

}∣∣. Then, it comes

that
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∣∣∣D
(
z[n], z

∗
[n]

)∣∣∣ ≥
∑

k,k′

∣∣∣
{
(i, j) | i 6= j, i ∈ Ik, j ∈ Ik′ , π

∗
z∗
i
,z∗

j
6= π∗

zi,zj

}∣∣∣

=
∑

k 6=k′

∣∣∣
{
(q, l) | π∗

q,l 6= π∗
σk(q),σk′ (l)

}∣∣∣

+
∑

k

∣∣∣
{
(q, l) | q 6= l, π∗

q,l 6= π∗
σk(q),σk(l)

}∣∣∣

=
∑

k 6=k′

B(k, k′) +
∑

k

B(k) .

Therefore, lower bounding
∣∣D
(
z[n], z

∗
[n]

)∣∣ amounts to assess the cardinality of

B(k, k′) and B(k), for 1 ≤ k 6= k′ ≤ nγ .
Let us now distinguish between two cases:

1. either for every k, k′ ∈ {1, . . . , nγ}, B(k, k′) +B(k′, k) > 0 and B(k) > 0.
2. or there exist k, k′ such that B(k, k′) +B(k′, k) = 0 or B(k) = 0.

First case: In this setting, let
∥∥z[n] − z∗[n]

∥∥
0
= r. Then,

∣∣∣D(z[n], z
∗
[n])
∣∣∣ ≥

∑

k 6=k′

B(k, k′) +
∑

k

B(k)

=
∑

k<k′

[B(k, k′) +B(k′, k) ] +
∑

k

B(k)

≥ nγ(nγ − 1)

2
+ nγ =

nγ(nγ + 1)

2

≥ n2
γ

2
≥ n2γ2

2
≥ γ2

2
n r ,

since nγ ≥ nγ and n ≥ r.

Second case: Let us assume that there exist k, k′ such that B(k, k′) +
B(k′, k) = 0. (The B(k)s will be lower bounded by 0.)

Then for every such k, k′, σk and σk′ are permutations. Indeed such k, k′

lead to πq,l = πσk(q),σk′ (l) = πσk′ (q),σk(l), for every q, l ∈ {1, . . . , Q}. Assume
furthermore that σk(q) = σk(q

′) for some q, q′ ∈ {1, . . . , Q}. Then for every
l ∈ {1, . . . , Q}, πq,l = πσk(q),σk′ (l) = πσk(q′),σk′ (l) = πq′,l. Hence, for every
l ∈ {1, . . . , Q}, πq,l = πq′,l, which implies q = q′ using (A1). Therefore, σk
is injective and thus a permutation of {1, . . . , Q}. The same property holds for
σk′ which is also a permutation of {1, . . . , Q}.

Furthermore for any such k, k′, σk = σk′ = σ and πσk = π, where σ denotes a
permutation of {1, . . . , Q}. Indeed if one assumes σk 6= σk′ , then there exists q ∈
{1, . . . , Q} such that σk(q) 6= σj(q). If it holds, one can interchange coordinates
of z[n]: σk(q) and σk′(q). This results in new mappings σk and σk′ between z

∗
[n]

and z[n], which are no longer injective. Then, the number of injective mappings
σk in the writing of z[n] decreases by 2 and is no longer minimal as earlier
assumed. This yields σk = σk′ and thus πσk = π. Note that the existence of
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such a unique permutation σ results from the fact that for every i > Qnγ ,
zi = σk(z

∗
i ). Indeed if this was not true, the same reasoning as before applies:

An interchange between zi and σk(z
∗
i ) would decrease the number of injective

σks in (16), which contradicts our assumption. As consequences, it also comes
that πσ = π and that for every i > Qnγ , zi = σ(z∗i ).

Let m denote the number of non-injective mappings σk. Note that for any
non-injective mapping σk (1 ≤ k ≤ nγ), there exists at least one difference
between z[n] and z∗[n] in the corresponding block k. Then, the number r of
differences satisfies

r ≤ m×Q ⇔ m

r
≥ 1

Q
. (17)

The conclusion results from
∣∣∣D(z[n], z

∗
[n])
∣∣∣ ≥

∑

k 6=k′

B(k, k′) +
∑

k

B(k) ≥
∑

k 6=k′

B(k, k′)

≥ nγ(nγ − 1)− (nγ −m) [nγ −m− 1 ]

2

=
2mnγ −m2 −m

2
=
mnγ +m [nγ −m− 1 ]

2
.

Finally, let us notice that m ≤ nγ , and that nγ−1 ≥ m = nγ amounts to say
that no injective mapping σk exists in (16). However with the same reasoning
as before, it means that for every 1 ≤ k, k′ ≤ nγ , B(k, k′) +B(k′, k) > 0, which
contradicts the assumption. Then, nγ − (m+ 1) ≥ 0 and

D(z[n], z
∗
[n]) ≥

nγm

2
≥ γnm

2
=
γn rm

2r
≥ γn r

2Q
≥ γ2n r

2
.

by use of (17) and γ ≤ 1/Q (see Assumption (A4)).

Appendix C: Proof of Proposition 3.5

Proof of Proposition 3.5. Let us first recall that

φn
(
z[n], π

)
:=

1

n(n− 1)
L1

(
X[n]; z[n], π

)
,

Φn
(
z[n], π

)
:= E

[
φn
(
z[n], π

)
| z[n] = z∗[n]

]
.

Then,

∣∣φn
(
z[n], π

)
− Φn

(
z[n], π

)∣∣ = ρn

∣∣∣∣∣∣

∑

i6=j

(
Xi,j − π∗

z∗
i
,z∗

j

)
log
[
πzi,zj/(1− πzi,zj)

]
∣∣∣∣∣∣
,

= ρn

∣∣∣∣∣∣

∑

i6=j

ξij g
(
πzi,zj

)
∣∣∣∣∣∣
,
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where ρn = [n(n− 1) ]
−1

, ξij = Xi,j−π∗
z∗
i
,z∗

j
, and g(t) = log(t/(1− t)), t ∈]0, 1[.

With gi,j = g
(
πzi,zj

)
, let us introduce

Sn (g) =

∣∣∣∣∣∣

∑

i6=j

ξij gij

∣∣∣∣∣∣
,

where g = {gi,j}1≤i6=j≤n. Note that on the parameter set P defined by (7),

|ξij gij | < +∞ a.s. for every 1 ≤ i 6= j ≤ n.
The expected control will result from the use of Talagrand’s inequality (The-

orem C.1). For every z[n] and ǫ > 0, let us introduce the set

P(z[n]) =
{
π | (z[n], π) ∈ P

}
,

and define the event

Ωn(ǫ; z[n]) =

{
sup

P(z[n])

ρnSn (g) ≤ (1+ ǫ)
√
ρnΛ+

√
ρnΓ2xn+ (1/ǫ+1/3)ρnΓxn

}
,

where Γ and Λ are constants respectively defined in Lemmas C.2 and C.3,
and {xn}n is a sequence of positive real numbers to be chosen later. Then
Theorem C.1 implies for any z[n]

P ∗
[
Ωn(ǫ; z[n])

c
]
≤ e−xn .

P ∗

[
sup
P

∣∣φn
(
z[n], π

)
− Φn

(
z[n], π

)∣∣ > η

]

≤
∑

z[n]

P ∗

[{
sup

P(z[n])

ρnSn(g) > η

}
∩ Ωn(ǫ; z[n])

]
+
∑

z[n]

e−xn

≤
∑

z[n]

P ∗
[
(1 + ǫ)

√
ρnΛ +

√
ρnΓ2xn + (1/ǫ+ 1/3)ρnΓxn > η

]
+
∑

z[n]

e−xn .

Since z[n] belongs to a set of cardinality at most Qn, choosing xn = n log(n)
entails the first sum is equal to 0 for large enough values of n, while the second
sum converges to 0.

Finally, a quick inspection of the proof shows this convergence is uniform
with respect to z∗[n], which provides the expected result.

Theorem C.1 (Talagrand). Let {Yij}1≤i6=j≤n denote independent centered ran-
dom variables, and define

∀g ∈ G, Sn(g) =
∑

i6=j

Yijgij ,

where G ⊂ R
n2

. Let us further assume that there exist b > 0 and σ2 > 0 such
that |Yijgij | ≤ b for every (i, j), and supg∈G

∑
i6=j Var(Yijgij) ≤ σ2. Then, for

every ǫ > 0, and x > 0,

P

[
sup
g
Sn(g) ≥ E

[
sup
g
Sn(g)

]
(1 + ǫ) +

√
2σ2x+ b (1/ǫ+ 1/3)x

]
≤ e−x .
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Proof. A proof can be found in Massart (2007) (p.170, Eq. (5.50)).

Lemma C.2. With the same notation as Theorem C.1, Assumption (A2) en-
tails that there exists Γ(ζ) > 0 only depending on ζ such that

sup
P

max
i6=j

|ξij gij | ≤ Γ, and sup
P

max
i6=j

Var (ξij gij) ≤
Γ2

4
.

Proof. If
(
z[n], π

)
∈ P , then

(
πzi,zj ∈ {0, 1} ⇒ π∗

z∗
i
,z∗

j
= πzi,zj

)
⇒ (gi,j = 0) .

Then for every
(
z[n], π

)
∈ P , there exists Γ = Γ(ζ) > 0 (Assumption (A2)) such

that

∀i 6= j, |ξij gij | ≤ Γ ,

for every (z[n], π) ∈ P . This also leads to

∀i 6= j, Var (ξij gij) ≤ Γ2/4 .

Lemma C.3. With the same notation as Proposition 3.5, for every z[n] such
that (z[n], π) ∈ P, there exists a constant Λ = Λ(ζ) > 0 (Assumption (A2))
such that

E


 sup

P(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xi,j − π∗

z∗
i
,z∗j

)
gij

∣∣∣∣∣∣
| Z = z∗


 ≤ Λ [n(n− 1) ]−1/2 .

Proof of Lemma C.3. Let E∗ [ · ] denote the expectation given Z = z∗. Then,

E
∗ sup
P(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xi,j − π∗

z∗
i
,z∗

j

)
gij

∣∣∣∣∣∣

≤ E
∗
X,X′


 sup

P(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xi,j −X ′

ij

)
gij

∣∣∣∣∣∣


 ,

where the X ′
i,js are independent random variables with the same distribu-

tion as the Xi,js. A symmetrization argument based on Rademacher variables
{ǫi,j}1≤i6=j≤n leads to

E
∗ sup
P(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xi,j − π∗

z∗
i
,z∗

j

)
gij

∣∣∣∣∣∣

≤ 2E∗


 sup

P(z[n])

ρnEǫ



∣∣∣∣∣∣

∑

i6=j

ǫijXi,jgi,j

∣∣∣∣∣∣




 ,
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where Eǫ[·] denotes the expectation with respect to ǫi,js. Then, Jensen’s inequal-
ity yields

E
∗ sup
P(z[n])

ρn

∣∣∣∣∣∣

∑

i6=j

(
Xi,j − π∗

z∗
i
,z∗

j

)
gij

∣∣∣∣∣∣

≤ 2E∗


 sup

P(z[n])

ρn

√√√√√Varǫ


∑

i6=j

ǫijXi,jgij







≤ 2E∗

[
sup

P(z[n])

ρn

√
n(n− 1)g2ij

]
≤ Λ(ζ)

√
ρn .

Appendix D: Theorem 3.6

D.1. Proof of Theorem 3.6

D.1.1. Notation

For any metric space (Θ, d) and any real-valued function f : Θ → R, let us
define ‖·‖Θ by

‖f‖Θ := sup
θ∈Θ

|f(θ)| .

Let also α∗ and π∗ be the true values of α and π in SBM (see Section 2.1), A
be the set of stochastic matrices of size Q given by A = {A = (ak,l)1≤k,l≤Q |
ak,l ≥ 0,

∑Q
l=1 ak,l = 1}.

Furthermore, let us introduce the following quantities

φn(π, z[n]) =
1

n(n− 1)
L1(X[n]; z[n], π), ẑ[n](π) = Argmaxzφn(z[n], π) ,

Φn(π, z[n]) =
1

n(n− 1)

∑

i6=j

π∗
z∗
i
z∗
j
log πzi,zj + (1 − π∗

z∗
i
z∗
j
) log(1− πzi,zj) ,

z̃[n](π) = ArgmaxzΦn(z[n], π) ,

Mn(α, π) =
1

n(n− 1)
L2(X[n];α, π) ,

M(π,A) =
∑

q,l

α∗
qα

∗
l

∑

q′l′

aq,q′al,l′ [π
∗
q,l log πq′l′ + (1− π∗

q,l) log(1 − πq′l′)] ,

Āπ = ArgmaxA∈AM(π,A), M(π) = M(π, Āπ) .

Note that Āπ is not necessarily unique for every π. However our analysis only
requires unicity of Āπ∗ and Āπ∗ = IQ, which is proved in the following rea-
soning. Furthermore M(π∗) =

∑
q,l α

∗
qα

∗
lH

∗
q,l, where H

∗
q,l = π∗

q,l log π
∗
q,l + (1−

π∗
q,l) log(1 − π∗

q,l).
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D.1.2. Proof

First let us prove Āπ∗ is unique and Āπ∗ = IQ. Let us assume Āπ∗ 6= IQ. By
definition of Āπ, it results

0 ≤M(π∗, Āπ∗)−M(π∗, IQ)

=
∑

q,l

α∗
qα

∗
l

∑

q′l′

āq,q′ (π
∗)āl,l′ (π

∗)[π∗
q,l log

π∗
q′l′

π∗
q,l

+ (1 − π∗
q,l) log

1− π∗
q′l′

1− π∗
q,l

]

= −
∑

q,l

α∗
qα

∗
l

∑

q′l′

āq,q′(π
∗)āl,l′(π

∗)K(π∗
q,l, π

∗
q′l′) ≤ 0 .

Therefore for every (q, q′, l, l′), āq,q′(π
∗)āl,l′(π

∗)K(π∗
q,l, π

∗
q′l′) = 0 by (A3).

Since
∑

l′ āl,l′(π
∗) = 1 implies for every 1 ≤ l ≤ Q, there exists 1 ≤ l′ ≤ Q

such that al,l′(π
∗) > 0, there exists f : {1, . . . , Q} → {1, . . . , Q} such that

π∗
q,l = π∗

f(q),f(l). Then

• f is a permutation of {1, . . . , Q} is excluded since we are working up to
label switching,

• otherwise there exist two indices q1 and q2 (q1 6= q2) such that rows q1 and
q2 of π∗ are equal and so do the corresponding columns, which is excluded
by (A1),

which proves the unicity and that Āπ∗ = IQ.

Second, let us prove that: ∀η > 0, supd(π,π∗)≥ηM(π) < M(π∗). In the

sequel, let (āq,l)1≤q,l≤Q denote coefficients of Āπ . Without further indication,
āq,l depends on the matrix π. Then,

M(π) −M(π∗)

=
∑

q,l

α∗
qα

∗
l

∑

q′l′

āq,q′ āl,l′ [π
∗
q,l log

πq′l′

π∗
q,l

+ (1− π∗
q,l) log

1− πq′l′

1− π∗
q,l

]

= −
∑

q,l

α∗
qα

∗
l

∑

q′l′

āq,q′ āl,l′K(π∗
q,l, πq′l′) .

Since {π | d(π, π∗) ≥ η, (A1), (A2)} is a compact set, there exists π0 6= π∗

satisfying (A1) and (A2) such that

sup
d(π,π∗)≥η

M(π) −M(π∗) = M(π0)−M(π∗) < 0 .

Otherwise for every (q, l),
∑
q′l′ āq,q′ āl,l′K(π∗

q,l, π
0
q′l′) = 0 would entail by (A3)

that for every (q, l, q′, l′), āq,q′ āl,l′K(π∗
q,l, π

0
q′l′) = 0. It implies that there exists

f : {1, . . . , Q} → {1, . . . , Q} such that π∗
q,l = π0

f(q),f(l). The same reasoning as

for the unicity of Āπ∗ leads to

• if f is a permutation of {1, . . . , Q}: a contradiction arises since π0 6= π∗

up to label switching,
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• otherwise there exist two indices q1 and q2 (q1 6= q2) such that rows q1 and
q2 of π are equal and so do the corresponding columns, which is excluded
by (A1).

Third, let us prove that supα,π |Mn(α, π) −M(π)| P−−−−−→
n→+∞

0. Set

|Mn(α, π)−M(π)| ≤ |Mn(α, π) − φn(π, ẑ[n])| (18)

+ |φn(π, ẑ[n])− Φn(π, z̃[n])| (19)

+ |Φn(π, z̃[n])−M(π)| . (20)

These three terms are successively controlled in the following.

Upper bound of (18): Lemma F.2 implies that P− a.s.,

sup
α,π

∣∣Mn(α, π)− φn(π, ẑ[n])
∣∣ = sup

α,π

∣∣L2(X[n];α, π) − L1(X[n];π, ẑ[n])
∣∣

n(n− 1)

≤ log(1/γ)

n− 1
−−−−→
n→∞

0 ,

Upper bound of (19): Let us first introduce several quantities. Set
∆(π, ẑ[n], z̃[n]) =

∣∣φn(π, ẑ[n])− Φn(π, z̃[n])
∣∣, ∆+(π, ẑ[n], z̃[n]) = φn(π, ẑ[n]) −

Φn(π, z̃[n]), and ∆−(π, ẑ[n], z̃[n]) = −∆+(π, ẑ[n], z̃[n]). Then, it comes

P ∗

[
sup
π

∆(π, ẑ[n], z̃[n])>η

]
≤ P ∗

[
sup
π

{
∆−(π, ẑ[n], z̃[n])1∆−(π,ẑ[n],z̃[n])>0

}
> η

]

+ P ∗

[
sup
π

{
∆+(π, ẑ[n], z̃[n])1∆+(π,ẑ[n],z̃[n])≥0

}
> η

]
.

1. If ∆−(π, ẑ[n], z̃[n]) > 0,

∣∣φn(π, ẑ[n])− Φn(π, z̃[n])
∣∣ = Φn(π, z̃[n])− φn(π, ẑ[n])

≤ Φn(π, z̃[n])− φn(π, z̃[n]) ,

since φn(π, z̃[n]) ≤ φn(π, ẑ[n]). Then, Proposition 3.5 leads to

sup
π

{
∆−(π, ẑ[n], z̃[n])1∆−(π,ẑ[n],z̃[n])>0

}
≤ sup

(z[n],π)∈P

∆(π, z[n], z[n])

P−−−−−→
n→+∞

0 .

2. Otherwise ∆+(π, ẑ[n], z̃[n]) ≥ 0,

∣∣φn(π, ẑ[n])− Φn(π, z̃[n])
∣∣ = φn(π, ẑ[n])− Φn(π, z̃[n]) .
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Distinguishing between settings where (ẑ[n], π) ∈ P or not, it results

P ∗

[
sup
π

{
∆+(π, ẑ[n], z̃[n])1∆+(π,ẑ[n],z̃[n])≥0

}
> η

]

≤ P ∗

[
sup

π, (ẑ[n],π)∈P

{
∆+(π, ẑ[n], z̃[n])1∆+(π,ẑ[n],z̃[n])≥0

}
> η

]

+ P ∗

[
sup

π, (ẑ[n],π) 6∈P

{
∆+(π, ẑ[n], z̃[n])1∆+(π,ẑ[n],z̃[n])≥0

}
> η

]
.

If (ẑ[n], π) ∈ P:

φn(π, ẑ[n]) > −∞ and

∣∣φn(π, ẑ[n])− Φn(π, z̃[n])
∣∣ ≤ φn(π, ẑ[n])− Φn(π, ẑ[n])

by definition of z̃[n]. According to Proposition 3.5, one gets

sup
π, (ẑ[n],π)∈P

{
∆+(π, ẑ[n], z̃[n])1∆+(π,ẑ[n],z̃[n])≥0

}

≤ sup
(z[n],π)∈P

∆(π, z[n], z[n])
P−−−−−→

n→+∞
0 .

Otherwise (ẑ[n], π) 6∈ P:

P ∗

[
sup

π, (ẑ[n],π) 6∈P

{
∆+(π, ẑ[n], z̃[n])1∆+(π,ẑ[n],z̃[n])≥0

}
> η

]

≤ P ∗
[
∃π, Φn(π, ẑ[n]) = −∞, ∆+(π, ẑ[n], z̃[n]) > η

]
.

Set a sequence {ǫn}n∈N∗ such that ǫn → 0 and nǫn → +∞ as n → +∞.
Then,

P ∗

[
sup

π, (ẑ[n],π) 6∈P

{
∆+(π, ẑ[n], z̃[n])1∆+(π,ẑ[n],z̃[n])≥0

}
> η

]

= P ∗
[
∃π, Φn(π, ẑ[n]) = −∞, ∆+(π, ẑ[n], z̃[n]) > η,

N(ẑ[n], π) ≤ ǫnn(n− 1)
]

(21)

+ P ∗
[
∃π, Φn(π, ẑ[n]) = −∞, ∆+(π, ẑ[n], z̃[n]) > η,

N(ẑ[n], π) > ǫnn(n− 1)
]
, (22)

where N(ẑ[n], π) =
∣∣{(i, j) | i 6= j, πẑi,ẑj ∈ {0, 1} and πẑi,ẑj 6= π∗

z∗
i
,z∗

j

}∣∣.



1882 A. Celisse et al.

The first term (21) in the right-hand side is dealt with by Proposition D.1:

P ∗
[
∃π, Φn(π, ẑ[n]) = −∞, ∆+(π, ẑ[n], z̃[n]) > η, N(ẑ[n], π) ≤ ǫnn(n− 1)

]

≤ P ∗
[
∃π, Φn(π, ẑ[n]) = −∞, 2an +∆(π, ẑP[n], ẑ

P
[n]) > η,

N(ẑ[n], π) ≤ ǫnn(n− 1)
]

≤ P ∗

[
2an + sup

(z[n],π)∈P

∆(π, z[n], z[n]) > η

]
−−−−−→
n→+∞

0 ,

following the proof of Proposition 3.5.
The second term (22) is upper bounded by noticing that

{
φn(π, ẑ[n]) > −∞

}
∩
{
Φn(π, ẑ[n]) = −∞

}

=





∑

(i,j)∈M0

Xi,j = 0



 ∩





∑

(i,j)∈M1

(1−Xi,j) = 0



 ,

where M0 =
{
(i, j) | i 6= j, πẑi,ẑj = 0 and π∗

z∗
i
,z∗

j
> 0
}
and M1 =

{
(i, j) |

i 6= j, πẑi,ẑj = 1 and π∗
z∗
i
,z∗

j
< 1
}
.

Thus,

P ∗
[
∃π, Φn(π, ẑ[n]) = −∞, ∆+(π, ẑ[n], z̃[n]) > η, N(ẑ[n], π) > ǫnn(n− 1)

]

≤ P ∗



ǫnn(n−1)∑

k=1

Yk = 0


 = (1 − ξ)ǫnn(n−1) −−−−−→

n→+∞
0 ,

where {Yk}1≤k≤ǫnn(n−1) denote i.i.d. Bernoulli variables with parameter

ξ = min(q,l), π∗
q,l

6∈{0,1}

[
π∗
q,l ∧ 1− π∗

q,l

]
, and a ∧ b = min(a, b).

Finally since no upper bound does depend on z∗[n], every convergence in prob-
ability with respect to P ∗ can be turned into a convergence with respect to P.

Upper bound of (20): Φn(π, z[n]) can be expressed as:

Φn(π, z[n])

=
∑

qlq′l′

Nqq′ (z[n])Nll′ (z[n])

n(n− 1)

[
π∗
q,l log πq′l′ + (1− π∗

q,l) log(1− πq′l′)
]
, (23)

where Nqq′(z[n]) = |{i | z∗i = q, and zi = q′}|.
Let Ñqq′(π) = Nqq′(z̃[n](π)), N

∗
q = |{i | z∗i = q}|, ãqq′ (π) =

Ñqq′ (π)

N∗
q

, and

Ãπ the stochastic matrix of ãqq′ (π). Coefficient ãqq′ (π) yield the proportion of
vertices from class q attributed to class q′ by z[n]. Note that (23) shows that

Φn(π, z[n]) only depends on z[n] through the matrix Ãπ . Therefore, one uses the
notation Φn(π,A(z[n])) in place of Φn(π, z[n]).

Definitions of Ãπ and Āπ imply that Φn(π, Ãπ) ≥ Φn(π, Āπ) and M(π) =

M(π, Āπ) ≥ M(π, Ãπ). Therefore,
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1. Φn(π, Ãπ) ≥ M(π)

⇒ 0 ≤ Φn(π, Ãπ)−M(π) ≤ Φn(π, Ãπ)−M(π, Ãπ),

2. Φn(π, Ãπ) ≤ M(π)

⇒ 0 ≤ M(π) − Φn(π, Ãπ) ≤ M(π, Āπ)− Φn(π, Āπ).

Then,
∣∣∣Φn(π, Ãπ)−M(π)

∣∣∣ ≤ sup
A∈A

|Φn(π,A)−M(π,A)| .

Moreover for every A ∈ A,

Φn(π,A)−M(π,A) =

∑

qq′ll′

[

N∗
q N

∗
l

n(n− 1)
− α

∗
qα

∗
l

]

aqq′all′

[

π
∗
q,l log πq′l′ + (1− π

∗
q,l) log(1− πq′l′)

]

.

Since any πq′l′ ∈ {0, 1} such that π∗
q,l 6= πq′l′ is excluded, (A2) provides

∣∣π∗
q,l log πq′l′ + (1− π∗

q,l) log(1− πq′l′)
∣∣ ≤ ∆(ζ) < +∞ ,

where ∆(ζ) > 0 is independent of π and q, and only depends on ζ from As-
sumption (A2).

Then, since 0≤ aq,l≤ 1 for every (q, l), the strong law of large numbers applied
to each N∗

q entails that supπ
{
|Φn

(
π, z̃[n](π)

)
−M(π)|

}
−−−−−→
n→+∞

0 P− a.s. .

D.2. Proof of Proposition D.1

Proposition D.1 (Existence of a copy of ẑ[n] in P). Let π be defined as in Sec-
tion 2.1 and satisfying (A2). Let us further assume that there exists a sequence
{ǫn}n∈N∗ such that ǫn → 0 and nǫn → +∞ as n→ +∞, and

∣∣∣
{
(i, j) | i 6= j, πẑi,ẑj ∈ {0, 1} and πẑi,ẑj 6= π∗

z∗
i
,z∗

j

}∣∣∣ ≤ ǫnn(n− 1), a.s. .

Then, there exist zP[n] ∈ P and a real sequence {an}N∗ such that

0 ≤ φn(π, ẑ[n])− φn(π, z
P
[n]) ≤ an, and

∣∣∣Φn(π, ẑ[n])− Φn(π, z
P
[n])
∣∣∣ ≤ an, a.s. ,

where an → 0 as n→ +∞, and an does neither depend on z∗[n] nor on π.

Proof of Proposition D.1. First let us introduce

L =
{
(q1, q2) ∈ {1, . . . , Q}2 | Nq1,q2 > n

√
ǫn

}
,

where

Nq1,q2 = |{1 ≤ i ≤ n | ẑi = q1, z
∗
i = q2}| .

For every 1 ≤ i ≤ n, we define zPi in the following way:
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1. zPi = ẑi, if (ẑi, z
∗
i ) ∈ L,

2. zPi = c(z∗i ), otherwise,

where 1 ≤ c(z∗i ) ≤ Q is obtained by applying Lemma D.2 with q2 = z∗i .
Then it results that (zPi , z

∗
i ) ∈ L for every 1 ≤ i ≤ n.

Let us now introduce

N =
{
(q, q′, l, l′) ∈ {1, . . . , Q}4 | πq,l ∈ {0, 1} and π∗

q′,l′ 6= πq,l

}
.

Then for every couple (i, j), (zPi , z
∗
i , z

P
j , z

∗
j ) 6∈ N since (zPi , z

∗
i ) ∈ L and

(zPj , z
∗
j ) ∈ L thanks to Lemma D.3. As a consequence, it comes zP[n] ∈ P since

{
(i, j) | i 6= j, πzP

i
,zP

j
∈ 0, 1 and πzP

i
,zP

j
6= π∗

z∗
i
,z∗

j

}
= ∅ .

Finally, the conclusion results from (A2) by noticing that the number of
changes between ẑ[n] and z

P
[n] is at most Q2n

√
ǫn.

Lemma D.2. Set L =
{
(q1, q2) ∈ {1, . . . , Q}2 | Nq1,q2 > n

√
ǫn
}
, where

Nq1,q2 = |{1 ≤ i ≤ n | ẑi = q1, z
∗
i = q2}| .

With the notation and assumptions of Proposition D.1, if (A4) holds true then

∀1 ≤ q2 ≤ Q, ∃1 ≤ q1 ≤ Q, (q1, q2) ∈ L .

Proof of Lemma D.2. Otherwise, there exists q2 such that for every 1 ≤ q1 ≤ Q,
(q1, q2) 6∈ L. Then,

|{1 ≤ i ≤ n | z∗i = q2}| =
Q∑

q1=1

Nq1,q2 ≤ Qn
√
ǫn ,

which contradicts (A4).

Lemma D.3. With the same notation and assumptions as Lemma D.2, let us
introduce

N =
{
(q, q′, l, l′) ∈ {1, . . . , Q}4 | πq,l ∈ {0, 1} and π∗

q′,l′ 6= πq,l

}
.

Then,

(q, q′, l, l′) ∈ N ⇒ (q, q′) 6∈ L or (l, l′) 6∈ L .

Proof of Lemma D.3. If (q, q′) ∈ L and (l, l′) ∈ L, then Nq,q′Nl,l′ > n2ǫn, which
contradicts that

∣∣∣
{
(i, j) | i 6= j, πẑi,ẑj ∈ 0, 1 and πẑi,ẑj 6= π∗

z∗i ,z
∗
j

}∣∣∣ ≤ ǫnn(n− 1) .
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Appendix E: Proof of Proposition 3.8

E.1. Proof of Proposition 3.8

Preliminaries First in the same line as the proof of Theorem 3.1, the main
quantity to deal with is

log
P̂X[n](z[n])

P̂X[n](z∗[n])
(24)

=
∑

i6=j

{
Xi,j log

(
π̂zi,zj
π̂z∗

i
,z∗

j

)
+ (1−Xi,j) log

(
1− π̂zi,zj
1− π̂z∗

i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

,

where P̂X[n](z[n]) = Pα̂,π̂

(
Z[n] = z[n] | X[n]

)
is the same quantity as

PX[n](z[n]) = Pα∗,π∗

(
Z[n] = z[n] | X[n]

)
where (α∗, π∗) has been replaced by

(α̂, π̂), and z[n] and z
∗
[n] denote label vectors such that

∥∥z[n] − z∗[n]
∥∥
0
= r, with

1 ≤ r ≤ n.
Second, let us assume that

‖π̂ − π∗‖∞ ≤ min

[
ζ, min

(q,l), π∗
q,l

6∈{0,1}

{
π∗
q,l(1− π∗

q,l)

2

}]
, (25)

where ζ is given by (A2), which is fulfilled on the event

Ωn = {‖π̂ − π∗‖∞ ≤ vn} (26)

for large enough values of n since vn = o
(√

logn/n
)
. Note that by assumption,

P [ Ωcn ] −−−−→n→∞
0. It is also important to notice that the definition of π̂ implies

that every π̂q,l ∈ {0, 1} ∪ [ζ, 1 − ζ] (see (A2)), which leads on Ωn to

∀(q, l), π∗
q,l ∈ {0, 1} ⇒ π̂q,l = π∗

q,l . (27)

Finally for a given vector z[n], let us introduce the following sets of couples
(i, j):

D∗ = D∗(z[n]) :=
{
(i, j) | i 6= j, π∗

zi,zj 6= π∗
z∗
i
,z∗

j

}
, (28)

D̂ = D̂(z[n]) :=
{
(i, j) | i 6= j, π̂zi,zj 6= π̂z∗

i
,z∗

j

}
. (29)

Proof First, the log-ratio (24) can be decomposed into the following terms

log
P̂X[n](z[n])

P̂X[n](z∗[n])

=
∑

i6=j

{
Xi,j log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1−Xi,j) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

+
∑

i6=j

{
Xi,j log

(
π̂zi,zj
π∗
zi,zj

π∗
z∗
i
,z∗

j

π̂z∗
i
,z∗

j

)
+ (1 −Xi,j) log

(
1− π̂zi,zj
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

1− π̂z∗
i
,z∗

j

)}
·
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Second using the definition of D∗ and D̂ given by Eq. (28) and Eq. (29), and

that D̄∗ ∩ ¯̂
D ⊂

{
(i, j) | i 6= j, h(Xi,j ; π̂, π

∗, zi, zj , z
∗
i , z

∗
j ) = 0

}
where Ā denotes

the complement of any set A and

h(Xi,j ; π̂, π
∗, zi, zj, z

∗
i , z

∗
j )

= Xi,j log

(
π̂zi,zj
π∗
zi,zj

π∗
z∗
i
,z∗

j

π̂z∗
i
,z∗

j

)
+ (1−Xi,j) log

(
1− π̂zi,zj
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

1− π̂z∗
i
,z∗

j

)
,

it results

log
P̂X[n](z[n])

P̂X[n](z∗[n])

=
∑

(i,j)∈D∗

{
Xi,j log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1−Xi,j) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

+
∑

(i,j)∈D∗∪D̂

{
Xi,j log

(
π̂zi,zj
π∗
zi,zj

π∗
z∗
i
,z∗

j

π̂z∗
i
,z∗

j

)
+ (1 −Xi,j) log

(
1− π̂zi,zj
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

1− π̂z∗
i
,z∗

j

)}
.

Finally from the following equalities

log π̂zi,zj = log π∗
zi,zj + log

[
1 +

π̂zi,zj − π∗
zi,zj

π∗
zi,zj

]

and

log(1 − π̂zi,zj ) = log(1− π∗
zi,zj ) + log

[
1−

π̂zi,zj − π∗
zi,zj

1− π∗
zi,zj

]
,

the last sum can be further split into

∑

(i,j)∈D∗∪D̂

{
Xi,j log

(
π̂zi,zj
π∗
zi,zj

π∗
z∗
i
,z∗

j

π̂z∗
i
,z∗

j

)
+ (1−Xi,j) log

(
1− π̂zi,zj
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

1− π̂z∗
i
,z∗

j

)}

=
∑

(i,j)∈D∗∪D̂

log

[
1 +

(π̂zi,zj − π∗
zi,zj)(Xi,j − π∗

zi,zj)

π∗
zi,zj(1 − π∗

zi,zj )

]

−
∑

(i,j)∈D∗∪D̂

log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗i ,z
∗
j
)(Xi,j − π∗

z∗i ,z
∗
j
)

π∗
z∗
i
,z∗

j
(1 − π∗

z∗
i
,z∗

j
)

]
.

This leads to

log
P̂X[n](z[n])

P̂X[n](z∗[n])

=
∑

(i,j)∈D∗

{
Xi,j log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1−Xi,j) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i
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+
∑

(i,j)∈D∗∪D̂

log

[
1 +

(π̂zi,zj − π∗
zi,zj )(Xi,j − π∗

zi,zj )

π∗
zi,zj (1− π∗

zi,zj )

]

−
∑

(i,j)∈D∗∪D̂

log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xi,j − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1− π∗

z∗
i
,z∗

j
)

]

=T1 + T2 − T3 .

Note that (27) implies for every 1 ≤ i 6= j ≤ n,

π∗
zi,zj ∈ {0, 1} ⇒ log

[
1 +

(π̂zi,zj − π∗
zi,zj)(Xi,j − π∗

zi,zj)

π∗
zi,zj(1 − π∗

zi,zj )

]
= 0 .

In the sequel, the strategy consists in providing successive upper bounds for T1,
T2, and T3.

Upper bounding T1
The magnitude of T1 is given by a similar argument to that in the proof of
Theorem 3.1. Let us consider

T1 =
∑

D∗

{
Xi,j log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1−Xi,j) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

=
∑

D∗

{(
Xi,j − π∗

z∗
i
,z∗

j

)
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

1− π∗
z∗
i
,z∗

j

1− π∗
zi,zj

)}

+
∑

D∗

{
π∗
z∗
i
,z∗

j
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

)
+ (1 − π∗

z∗
i
,z∗

j
) log

(
1− π∗

zi,zj

1− π∗
z∗
i
,z∗

j

)}
+
∑

i

log
α̂zi
α̂z∗

i

= T1,1 + T1,2 .

Then for every t ∈ R,

P ∗ [T1 > t ] = P ∗ [T1,1 + T1,2 > t ] .

Upper bound of T1,2: The same proof as that of Lemma B.3 shows there exists
a constant K(π∗) = K∗ > 0 such that

T1,2 (|D∗|)−1 ≤ max
(q,l) 6=(q′,l′),π∗

q,l
6∈{0,1}

−k
(
π∗
q,l, π

∗
q′,l′
)
= −K∗ < 0 ,

for large enough values of n, where k
(
π∗
q,l, π

∗
q′,l′

)
= π∗

q,l log
( π∗

q,l

π∗
q′,l′

)
+ (1 −

π∗
q,l) log

( 1−π∗
q,l

1−π∗
q′,l′

)
and |D∗| denotes the cardinality of D∗. Thus,

P ∗ [T1 > t ] ≤ P ∗ [T1,1 − |D∗|K∗ > t ] .
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Upper bound of T1,1:

P ∗ [T1 > t ]

≤ P ∗


 ∑

(i,j)∈D∗

(
Xi,j − π∗

z∗
i
,z∗

j

)
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

1− π∗
z∗
i
,z∗

j

1− π∗
zi,zj

)
> t+ |D∗|K∗


 .

Hoeffding’s inequality associated with (A2) provides a constant Cζ > 0 such
that for every t ∈ R

P ∗


 ∑

(i,j)∈D∗

(
Xi,j − π∗

z∗
i
,z∗

j

)
log

(
π∗
zi,zj

π∗
z∗
i
,z∗

j

1− π∗
z∗
i
,z∗

j

1− π∗
zi,zj

)
> t+ |D∗|K∗




≤ exp

[
−|D∗|2 (K∗)2 + 2t |D∗|K∗

|D∗|Cζ

]
= exp

[
−2t

K∗

Cζ

]
· exp

[
− |D∗| (K

∗)2

Cζ

]
.

Upper bounding T2
With t > 0 on the event {T2 > t}, log(1 + x) ≤ x for every x > −1 leads to

0 < t < T2 ≤
∑

(i,j)∈D̂∪D∗

(π̂zi,zj − π∗
zi,zj )(Xi,j − π∗

zi,zj )

π∗
zi,zj (1− π∗

zi,zj )
·

Then with N q,l
q′,l′ =

∑
(i,j)∈D̂∪D∗ 1(z∗

i
=q′,z∗

j
=l′)1(zi=q,zj=l), it comes

T2 ≤
∑

q,l

∣∣∣∣∣∣∣∣

(π̂q,l − π∗
q,l)

π∗
q,l(1− π∗

q,l)

∑

(i, j) ∈ D̂ ∪ D∗

zi = q, zj = l

(
Xi,j − π∗

q,l

)
∣∣∣∣∣∣∣∣

≤
∑

q,l

∣∣∣∣∣
(π̂q,l − π∗

q,l)

π∗
q,l(1− π∗

q,l)

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′
)

∣∣∣∣∣∣∣∣∣∣

+
∑

q,l

∣∣∣∣∣
(π̂q,l − π∗

q,l)

π∗
q,l(1− π∗

q,l)

∣∣∣∣∣

∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′

(
π∗
q′,l′ − π∗

q,l

)
∣∣∣∣∣∣
.

Introducing the event Ωn defined by (26) and using (A2), one gets for every
t > 0

P ∗ [ Ωn ∩ {T2 > t} ]

≤ P ∗



ζ2
∑

q,l

∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q′ , l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′
)

∣∣∣∣∣∣∣∣∣∣

> t/(2vn)
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+ P ∗


 ζ2

∑

q,l

∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′

(
π∗
q′,l′ − π∗

q,l

)
∣∣∣∣∣∣
> t/(2vn)


 .

For the first term, Hoeffding’s inequality requires summing over a determin-
istic set of indices, which leads to

P ∗



ζ2
∑

q,l

∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q′ , l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′
)

∣∣∣∣∣∣∣∣∣∣

> t/(2vn)




=
∑

k

∑

D, |D|=k

P ∗



ζ2
∑

q,l

∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

(i, j) ∈ D ∪ D∗

(z∗
i
, z∗

j
) = (q′ , l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′
)

∣∣∣∣∣∣∣∣∣∣

> t/(2vn)




.

where the sum over k is computed for ⌈γ/2nr⌉ ≤ k ≤ 2nr by Proposition B.4
and Lemma E.1.

For each set D such that |D| = k, a union bound and Hoeffding’s inequality
provide

P ∗



ζ2
∑

q,l

∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

(i, j) ∈ D ∪ D∗

(z∗
i
, z∗

j
) = (q′, l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′
)

∣∣∣∣∣∣∣∣∣∣

> t/(2vn)




≤ Q2 max
q,l

P ∗




∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

(i, j) ∈ D ∪ D∗

(z∗
i
, z∗

j
) = (q′ , l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′
)

∣∣∣∣∣∣∣∣∣∣

> t/
[
2vn(ζQ)2

]




≤ Q2 exp

[
− 2

[ 2vn(ζQ)2 ]
2

t2

k + |D∗|

]
= Q2 exp

[
− 1

2(ζQ)4
t2

v2n(k + |D∗|)

]
.

Then,

P ∗



ζ2
∑

q,l

∣∣∣∣∣∣∣∣∣∣

∑

q′,l′

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q′ , l′)

(zi, zj) = (q, l)

(
Xi,j − π∗

q′,l′
)

∣∣∣∣∣∣∣∣∣∣

> t/(2vn)




≤ Q2
2nr∑

k=⌈γ/2nr⌉

(2nr)k exp

[
− 1

2(ζQ)4
t2

v2n(k + |D∗|)

]
.
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For the second term, Lemma E.1 provides

P ∗


 ζ2

∑

q,l

∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′

(
π∗
q′,l′ − π∗

q,l

)
∣∣∣∣∣∣
> t/(2vn)




≤ Q2 max
q,l

P ∗



∣∣∣∣∣∣

∑

q′,l′

N q,l
q′,l′

(
π∗
q′,l′ − π∗

q,l

)
∣∣∣∣∣∣
> t/

[
2vn(ζQ)2

]



≤ Q2P ∗
[
4nr > t/

[
2vn(ζQ)2

] ]
.

Upper bounding T 3
Let us first notice

log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xi,j − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1− π∗

z∗
i
,z∗

j
)

]

= (1−Xi,j) log

[
1−

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)

(1 − π∗
z∗
i
,z∗

j
)

]
+Xi,j log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j

]
·

Then,

∑

(i,j)∈D̂∪D∗

log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xi,j − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1− π∗

z∗
i
,z∗

j
)

]

=
∑

q,l

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q, l)

(1−Xi,j) log

[
1−

(π̂q,l − π∗
q,l)

(1− π∗
q,l)

]
+Xi,j log

[
1 +

(π̂q,l − π∗
q,l)

π∗
q,l

]
·

Centering the Xi,js, it comes

∑

(i,j)∈D̂∪D∗

log

[
1 +

(π̂z∗
i
,z∗

j
− π∗

z∗
i
,z∗

j
)(Xi,j − π∗

z∗
i
,z∗

j
)

π∗
z∗
i
,z∗

j
(1− π∗

z∗
i
,z∗

j
)

]

=
∑

q,l

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q, l)

(π∗
q,l −Xi,j) log

[
1−

(π̂q,l − π∗
q,l)

(1− π∗
q,l)

]

+ (Xi,j − π∗
q,l) log

[
1 +

(π̂q,l − π∗
q,l)

π∗
q,l

]

+
∑

q,l

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q, l)

(1− π∗
q,l) log

[
1−

(π̂q,l − π∗
q,l)

(1− π∗
q,l)

]

+ π∗
q,l log

[
1 +

(π̂q,l − π∗
q,l)

π∗
q,l

]
,
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which leads to

T3 =
∑

q,l

(
log

[
1 +

(π̂q,l − π∗
q,l)

π∗
q,l

]
− log

[
1−

(π̂q,l − π∗
q,l)

(1− π∗
q,l)

])

×
∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q, l)

(Xi,j − π∗
q,l)

+
∑

q,l

N∗
q,l

[
(1 − π∗

q,l) log

[
1−

(π̂q,l − π∗
q,l)

(1− π∗
q,l)

]
+ π∗

q,l log

[
1 +

(π̂q,l − π∗
q,l)

π∗
q,l

]]
,

where N∗
q,l =

∑
(i,j)∈D̂∪D∗ 1(z∗

i
=q, z∗

j
=l).

Second on the event Ωn, (25) and |log(1 + x)| ≤ 2 |x| for every x ∈ [−1/2, 1/2]
entail

|T3| ≤ 4vn
∑

q,l

∣∣∣∣∣∣∣∣

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q, l)

(Xi,j − π∗
q,l)

∣∣∣∣∣∣∣∣
+ 4vn

∑

q,l

N∗
q,l .

Then for every t > 0,

P ∗ [ Ωn ∩ {|T3| > t} ] ≤ P ∗


 4vn

∑

q,l

∣∣∣∣∣∣∣∣

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q, l)

(Xi,j − π∗
q,l)

∣∣∣∣∣∣∣∣
> t/2




+ P ∗


 4vn

∑

q,l

N∗
q,l > t/2


 .

Similarly to T2, partitioning and Hoeffding’s inequality lead to

P ∗


 4vn

∑

q,l

∣∣∣∣∣∣∣∣

∑

(i, j) ∈ D̂ ∪ D∗

(z∗
i
, z∗

j
) = (q, l)

(Xi,j − π∗
q,l)

∣∣∣∣∣∣∣∣
> t/2




≤ Q2
2nr∑

k=⌈γ/2nr⌉

(2nr)k exp

[
− 2

82Q4

t2

v2n(k + |D∗|)

]
,

and Lemma E.1 provides

P ∗


 4vn

∑

q,l

N∗
q,l > t/2


 ≤ P ∗ [ vn4nr > t/8 ] .

Then,

P ∗ [ Ωn ∩ {|T3| > t} ] ≤ Q2
2nr∑

k=⌈γ/2nr⌉

(2nr)k exp

[
− 2

82Q4

t2

v2n(k + |D∗|)

]

+ P ∗ [ vn4nr > t/8 ] .



1892 A. Celisse et al.

Gathering T1-, T2-, and T3-upper bounds
At the beginning the following steps are very close to those in the proof of
Theorem B.4.

For every ǫ > 0

P ∗




∑

[z[n]] 6=[z∗
[n]

]

P̂X[n]([z[n]])

P̂X[n]([z∗[n]])
> ǫ




≤ P ∗







∑

[z[n]] 6=[z∗
[n]

]

P̂X[n]([z[n]])

P̂X[n]([z∗[n]])
> ǫ



 ∩ Ωn


+ P ∗ [ Ωcn ] .

Furthermore,

P ∗







∑

[z[n]] 6=[z∗
[n]

]

P̂X[n]([z[n]])

P̂X[n]([z∗[n]])
> ǫ



 ∩ Ωn




≤
n∑

r=1

∑

z[n] 6∈ [z∗
[n]

]
∥∥z[n] − z∗

[n]

∥∥
0 = r

P ∗

[{
log

P̂X[n](z[n])

P̂X[n](z∗[n])
> −(r+1) logn−r logQ+log ǫ

}
∩ Ωn

]

≤
n∑

r=1

∑

z[n] 6∈ [z∗
[n]

]
∥∥z[n] − z∗

[n]

∥∥
0 = r

P ∗

[{
log

P̂X[n](z[n])

P̂X[n](z∗[n])
> −5r log n

}
∩ Ωn

]

(n ≥ max
{
Q, ǫ−1

}
)

=
n∑

r=1

∑

z[n] 6∈ [z∗
[n]

]
∥∥z[n] − z∗

[n]

∥∥
0 = r

P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ] .

It remains to deal with P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ]:

P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ]

≤ P ∗ [ {T1 + T2 − T3 > −5r logn} ∩ Ωn ∩ {|T3| ≤ r logn} ]
+ P ∗ [ {|T3| > r logn} ∩ Ωn ]

≤ P ∗ [ {T1 + T2 > −6r logn} ∩ Ωn ] + P ∗ [ {|T3| > r logn} ∩ Ωn ]

≤ P ∗ [T1 > −7r logn ] + P ∗ [ {|T2| > r logn} ∩ Ωn ]

+ P ∗ [ {|T3| > r logn} ∩ Ωn ] .

Upper bounding T1 comes from Proposition B.4 and results in

P ∗ [T1 > −7r log n ] ≤ exp

[
r logn

14K∗

Cζ

]
· exp

[
− |D∗| (K

∗)2

Cζ

]

≤ exp

[
r logn

14K∗

Cζ

]
· exp

[
−nrγ(K

∗)2

2Cζ

]
.
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For T2, Lemma E.1 provides

P ∗ [ {|T2| > r logn} ∩ Ωn ] ≤ Q2
2nr∑

k=⌈γ/2nr⌉

(2nr)k exp

[
− 1

2(ζQ)4
(r logn)2

4nrv2n

]

+Q2P ∗
[
4nr > r logn/

[
2vn(ζQ)2

] ]

≤ Q2 exp [ 8nr logn ] · exp
[
− 1

2(ζQ)4
(r logn)2

4nrv2n

]

+Q2P ∗

[
vn >

logn

8n(ζQ)2

]
.

Similarly for T3, it results

P ∗ [ {|T3| > r logn} ∩ Ωn ] ≤ Q2
2nr∑

k=⌈γ/2nr⌉

(2nr)k exp

[
− 2

82Q4

(r logn)2

4nrv2n

]

+ P ∗ [ vn4nr > (r logn)/8 ]

≤ Q2 exp [ 8nr logn ] · exp
[
− 2

82Q4

(r logn)2

4nrv2n

]

+ P ∗

[
vn >

logn

32n

]
.

From the previous bounds, one observes that requiring vn = o(logn/n) makes
P ∗
[
vn >

logn
32n

]
and P ∗

[
vn >

logn
8n(ζQ)2

]
vanish as n grows, which leads to

P ∗ [ {T1 + T2 − T3 > −5r logn} ∩Ωn ]

≤ Q2 exp [ 8nr logn ] · exp
[
− 2

82Q4

r(log n)2

4nv2n

]

+Q2 exp [ 8nr logn ] · exp
[
− 1

2(ζQ)4
r(log n)2

4nv2n

]

+ exp

[
r logn

14K∗

Cζ

]
· exp

[
−nrγ(K

∗)2

2Cζ

]

≤ C1

(
exp

[
8n logn− C2

(log n)2

nv2n

])r

for large enough values of n and constants C1, C2 > 0 only depending on Q, ζ,
γ, and K∗ but not of z∗.

Following the same line as in the proof of Theorem 3.1, for every ǫ > 0 and
large enough values of n, it comes

P ∗







∑

[z[n]] 6=[z∗
[n]

]

P̂X[n]([z[n]])

P̂X[n]([z∗[n]])
> ǫ



 ∩ Ωn




≤
n∑

r=1

(
n

r

)
(Q− 1)rC1

(
exp

[
8n logn− C2

(logn)2

nv2n

])r

= C1

(
[ 1 + (Q − 1)u′n ]

n − 1
)
,
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where u′n = exp
[
8n logn− C2

(logn)2

nv2n

]
. Thus requiring vn = o

(√
logn/n

)
, it

comes

[ 1 + (Q− 1)u′n ]
n
= exp [n log (1 + (Q− 1)u′n) ]

≤ exp [ (Q− 1)nu′n ] −−−−−→
n→+∞

1 ,

which concludes the proof since no upper bound does depend on z∗.

E.2. Lemma E.1

Lemma E.1. Let π ∈ MQ(R) denote a matrix with coefficients πq,l belong to
[0, 1], and z[n]and z

∗
[n] be two label vectors such that

∑n
i=1 1zi 6=z

∗
i
= r. Then,

∣∣∣
{
(i, j) | i 6= j, πzi,zj 6= πz∗

i
,z∗

j

}∣∣∣ ≤ 2nr .

Proof of Lemma E.1. Without loss of generality, one can assume the first r co-
ordinates of z[n] are different from those of z∗[n]. Then, any difference between

πzi,zj and π
z∗
i
,z∗

j

can only occur if (zi, zj) 6= (z∗i , z
∗
j ). It results

∣∣∣
{
(i, j) | i 6= j, πzi,zj 6= πz∗

i
,z∗

j

}∣∣∣ =
∣∣∣
{
(i, j) | i 6= j, πzi,zj 6= πz∗

i
,z∗

j
, i ≤ r

}∣∣∣

+
∣∣∣
{
(i, j) | i, πz∗

i
,zj 6= πz∗

i
,z∗

j
, i > r, j ≤ r

}∣∣∣
≤ nr + (n− r)r

≤ 2nr .

Lemma E.2. With the same notation as Proposition 3.8 and the assumptions
of Theorem 3.9, the maximum likelihood estimator of α is given by

∀1 ≤ q ≤ Q, α̂q =
1

n

n∑

i=1

P̂ (Zi = q | X[n]) .

Proof of Lemma E.2. Let us introduce some notation:

• (z[n], π) 7→ fX[n]
(z[n], π) = L1

(
X[n]; z[n], π

)
,

• (α, π) 7→ fX[n]
(α, π) = L2

(
X[n];α, π

)
,

• α 7→ fZ[n]
(α) =

∏n
i=1 αZi

,
• (α, π) 7→ fX[n],Z[n]

(α, π) = fX[n]
(Z[n], π)fZ[n]

(α) denote the complete like-
lihood of (α, π).

We start computing the derivative of fX[n]
(α, π)+λ(

∑
q αq − 1) with respect

to αk, for 1 ≤ k ≤ Q and λ ∈ R.

∂
[
fX[n]

(α, π) + λ(
∑

q αq − 1)
]

∂αk
=
∑

z[n]

Nk(z[n])

αk
fX[n]

(z[n], π)fz[n]
(α) + λ ,
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where Nk(z[n]) =
∑n

i=1 1(zi=k). Multiplying by αk and summing over k leads to

λ = −nfX[n]
(α̂, π) ,

where α̂ denotes the optimum location of α (for which the derivative vanishes).
It results for every k

α̂k =
∑

z[n]

Nk(z[n])

n

fX[n]
(z[n], π)fZ[n]

(α̂)

fX[n]
(α̂, π)

=
∑

z[n]

Nk(z[n])

n

fX[n],z[n]
(α̂, π)

fX[n]
(α̂, π)

=
∑

z[n]

Nk(z[n])

n

fX[n],z[n]
(α̂, π)

fX[n]
(α̂, π)

=
∑

z[n]

Nk(z[n])

n
f
X[n]
z[n]

(α̂, π) ,

where f
X[n]
z[n]

(α̂, π) = Pα̂,π

[
Z[n] = z[n] | X[n]

]
(Section 3.1.2) denotes the a pos-

teriori probability of Z[n] = z[n] given X[n] with parameters (α̂, π).
Finally, the result comes from

α̂k =
1

n

n∑

i=1

∑

z[n]

1(zi=k)f
X[n]
z[n]

(α̂, π)

=
1

n

n∑

i=1

∑

z[n]

1(zi=k)Pα̂,π

[
Z[n] = z[n] | X[n]

]

=
1

n

n∑

i=1

Pα̂,π

[
Zi = k | X[n]

]
.

Replacing π by the MLE π̂ of π∗, the MLE of α∗ satisfies for every k

α̂k =
1

n

n∑

i=1

Pα̂,π̂

[
Zi = k | X[n]

]
=

1

n

n∑

i=1

P̂
(
Zi = k | X[n]

)
.

Appendix F: Proof of Theorem 4.2

Lemma F.1. Let ẑ[n] = ẑ[n](π) = Argmaxz[n]
L1(X[n]; z[n], π). For every X[n] ∈

Xn, (α, π) ∈ Θ, and τ[n] ∈ Sn, it comes that

J (X[n]; τ[n], α, π) ≤ L2(X[n];α, π) ≤ L1(X[n]; ẑ[n], π) .

Proof of Lemma F.1. The first inequality results from the definition of J given
by Eq. (10).
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The second one comes from ẑ[n](π) = Argmaxz[n]
L1(X[n]; z[n], π). Thus for

every (α, π),

L2(X[n];α, π) ≤ log



e

L1(X[n];ẑ[n],π)
∑

z[n]∈Zn

PZ[n]
(z[n])



 ≤ L1(X[n]; ẑ[n], π) .

Lemma F.2. Lemma F.1 and Assumption (A3) entail that there exists 0 <
γ < 1 such that for every (α, π),

∣∣L2(X[n];α, π)− L1(X[n]; ẑ[n], π)
∣∣ ≤ n log(1/γ) ,

∣∣J (X[n]; τ̂[n], α, π)− L1(X[n]; ẑ[n], π)
∣∣ ≤ n log(1/γ) .

Proof of Lemma F.2. From Lemma F.1 and definition of τ̂[n] it comes for every
(α, π):

J (X[n]; ẑ[n], α, π) ≤ J (X[n]; τ̂[n], α, π) ≤ L2(X[n];α, π) ≤ L1(X[n]; ẑ[n], π) .

Combined with J (X[n]; ẑ[n], α, π) = L1(X[n]; ẑ[n], π) +
∑n
i=1 logαẑi (see

Lemma F.3), it leads to both

∣∣L2(X[n];α, π) − L1(X[n]; ẑ[n], π)
∣∣ ≤ −

n∑

i=1

logαẑi ,

∣∣J (X[n]; τ̂[n], α, π) − L1(X[n]; ẑ[n], π)
∣∣ ≤ −

n∑

i=1

logαẑi .

Assumption (A3) yields the conclusion.

Lemma F.3. With the same notation as Theorem 4.2, let ẑ[n] = ẑ[n](π) =
Argminz[n]

L1(X[n]; z[n], π). Then for every (α, π),

J (X[n]; ẑ[n], α, π) = L1(X[n]; ẑ[n], π) +

n∑

i=1

logαẑi .

Proof of Lemma F.3. First, let us recall Eq. (10)

J (X[n]; τ[n], α, π) = L2(X[n];α, π)−K
(
Dτ[n]

, PX[n]
)

= log
[
f(X[n];α, π)

]
−K

(
Dτ[n]

, PX[n]
)
,

where (α, π) 7→ f(X[n];α, π) denotes the likelihood of (α, π).
Second, Eq. (9) and simple calculations lead to

K
(
Dτ[n]

, PX[n]
)

=
∑

z[n]

Dτ[n]
(z[n]) logDτ[n]

(z[n])−
∑

z[n]

Dτ[n]
(z[n]) logP

(
Z[n] = z[n] | X[n]

)
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=
∑

iq

τi,q log τi,q −
∑

z[n]

Dτ[n]
(z[n]) log

(
f(X[n], z[n];α, π)

f(X[n];α, π)

)
,

where (α, π) 7→ f(X[n], z[n];α, π) denotes the complete-likelihood of (α, π).
Then,

K
(
Dτ[n]

, PX[n]
)
−
∑

i,q

τi,q log τi,q

=−
∑

z[n]

Dτ[n]
(z[n]) log f(X[n]; z[n], π)

+
∑

z[n]

Dτ[n]
(z[n]) log f(z[n];α) + log f(X[n];α, π) ,

where α 7→ f(z[n];α) =
∏n
i=1

(∑Q
q=1 α

zi
q

)
. Hence,

K
(
Dτ[n]

, PX[n]
)
−
∑

i,q

τi,q log τi,q

= −
∑

i6=j

∑

q,l

[Xi,j log πq,l + (1−Xi,j) log(1 − πq,l) ] τi,qτj,l

+
∑

i,q

τi,q logαq + L2(X[n];α, π) .

Therefore for every τ[n],

J (X[n]; τ[n], α, π)

=
∑

i6=j

∑

q,l

[Xi,j log πq,l+(1−Xi,j) log(1−πq,l)]τi,qτj,l−
∑

iq

τi,q (log τi,q − logαq) .

With τ[n] = ẑ[n], it comes J (X[n]; ẑ[n], α, π) = L1(X[n]; ẑ[n], π) +
∑n

i=1 logαẑi ,
which concludes the proof.

Lemma F.4.

∣∣∣Dτ̃[n]
(z∗[n])− P̃ (z∗[n])

∣∣∣ ≤
√
−1

2
log
[
P̃ (z∗[n])

]
.

Proof of Lemma F.4.
∣∣∣Dτ̃[n]

(z∗[n])− P̃ (z∗[n])
∣∣∣ ≤

∥∥∥Dτ̃[n]
− P̃

∥∥∥
TV

≤
√

1

2
K
(
Dτ̃[n]

, P̃
)

≤
√

1

2
K
(
δz∗

[n]
, P̃
)
=

√
−1

2
log
[
P̃ (z∗[n])

]
.
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