Strong duality in Lasserre's hierarchy for polynomial optimization - Archive ouverte HAL
Article Dans Une Revue Optimization Letters Année : 2016

Strong duality in Lasserre's hierarchy for polynomial optimization

Résumé

A polynomial optimization problem (POP) consists of minimizing a multivariate real polynomial on a semi-algebraicset $K$ described by polynomial inequalities and equations. In its full generality it is a non-convex,multi-extremal, difficult global optimization problem. More than an decade ago, J.~B.~Lasserre proposed to solve POPs by a hierarchy of convex semidefinite programming (SDP) relaxationsof increasing size. Each problem in the hierarchy has a primal SDP formulation (a relaxation ofa moment problem) and a dual SDP formulation (a sum-of-squares representationof a polynomial Lagrangian of the POP). In this note, when the POP feasibility set $K$ is compact,we show that there is no duality gap between each primal and dual SDP problemin Lasserre's hierarchy, provided a redundant ball constraint is added to thedescription of set $K$. Our proof uses elementary results on SDP duality,and it does not assume that $K$ has an interior point.
Fichier principal
Vignette du fichier
nogap.pdf (100.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00997726 , version 1 (28-05-2014)
hal-00997726 , version 2 (01-12-2014)

Identifiants

Citer

Cédric Josz, Didier Henrion. Strong duality in Lasserre's hierarchy for polynomial optimization. Optimization Letters, 2016, 10 (1), pp.3-10. ⟨10.1007/s11590-015-0868-5⟩. ⟨hal-00997726v2⟩
358 Consultations
403 Téléchargements

Altmetric

Partager

More