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Abstract

A polynomial optimization problem (POP) consists of minimizing a multivariate
real polynomial on a semi-algebraic set K described by polynomial inequalities and
equations. In its full generality it is a non-convex, multi-extremal, difficult global
optimization problem. More than an decade ago, J. B. Lasserre proposed to solve
POPs by a hierarchy of convex semidefinite programming (SDP) relaxations of
increasing size. Each problem in the hierarchy has a primal SDP formulation (a
relaxation of a moment problem) and a dual SDP formulation (a sum-of-squares
representation of a polynomial Lagrangian of the POP). In this note, when the
POP feasibility set K is compact, we show that there is no duality gap between
each primal and dual SDP problem in Lasserre’s hierarchy, provided a redundant
ball constraint is added to the description of set K. Our proof uses elementary
results on SDP duality, and it does not assume that K has an interior point.

1 Introduction

Consider the following polynomial optimization problem (POP)

infx f(x) :=
∑

α fαx
α

s.t. gi(x) :=
∑

α gi,αx
α ≥ 0, i = 1, . . . , m

(1)

where we use the multi-index notation xα := xα1

1 · · ·xαn

n for x ∈ R
n, α ∈ N

n and where the
data are polynomials f, g1, . . . , gm ∈ R[x] so that in the above sums only a finite number
of coefficients fα and gi,α are nonzero. Let K denote its feasibility set:

K := {x ∈ R
n : gi(x) ≥ 0, i = 1, . . . , m}
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To solve POP (1), Lasserre [3, 4] proposed a semidefinite programming (SDP) relaxation
hierarchy with guaranteed asymptotic global convergence provided an algebraic assump-
tion holds:

Assumption 1 There exists a polynomial u ∈ R[x] such that {x ∈ R
n : u(x) ≥ 0} is

bounded and u = u0 +
∑m

i=1 uigi where polynomials ui ∈ R[x], i = 0, 1, . . . , m are sums of
squares (SOS) of other polynomials.

Nie et al. [5] have proven that Assumption 1 also implies generically finite convergence,
that is to say that for almost every instance of POP, there exists a finite-dimensional
SDP relaxation in the hierarchy whose optimal value is equal to the optimal value of
the POP. Assumption 1 can be difficult to check computationally (as the degrees of the
SOS multipliers can be arbitrarily large), and it is often replaced by the following slightly
stronger assumption:

Assumption 2 The description of K contains a ball constraint, say gm(x) = R2 −
∑n

i=1 x
2
i for some real number R.

Indeed, under Assumption 2, simply choose u = gm, u1 = · · · = um−1 = 0, and um = 1 to
conclude that Assumption 1 holds as well. In practice, it is often easy to see to it that
Assumption 2 holds. In the case of a POP with a bounded feasible set, a redundant ball
constraint can be added.

More generally, if the intersection of the sublevel set {x ∈ R
n : f(x) ≤ f(x0)} with

the feasible set of the POP is bounded for some feasible point x0, then a redundant
ball constraint can also be added. As an illustration, a reviewer suggested the example
of the minimization of f(x) = x2

1 + x2
2 − 3x1x2 on the unbounded set defined on R

2

by the constraint g1(x) = 1 − 3x1x2 ≥ 0. The intersection of the feasible set with
the set defined by the constraint f(x) ≤ f(0) = 0 is included in the ball defined by
g2(x) = 1− x2

1 − x2
2 ≥ 0 so that the POP can be equivalently defined on the bounded set

K = {x ∈ R
2 : g1(x) ≥ 0, g2(x) ≥ 0}.

Each problem in Lasserre’s hierarchy consists of a primal-dual SDP pair, called SDP re-
laxation, where the primal corresponds to a convex moment relaxation of the original
(typically nonconvex) POP, and the dual corresponds to a SOS representation of a poly-
nomial Lagrangian of the POP. The question arises of whether the duality gap vanishes
in each SDP relaxation. This is of practical importance because numerical algorithms to
solve SDP problems are guaranteed to converge only where there is a zero duality gap,
and sometimes under the stronger assumption that there is a primal or/and dual SDP
interior point.

In [6, Example 4.9], Schweighofer provides a two-dimensional POP with no interior point
for which Assumption 1 holds, yet a duality gap exists at the first SDP relaxation:
inf x1x2 s.t. x ∈ K = {x ∈ R

2 : −1 ≤ x1 ≤ 1, x2
2 ≤ 0}, with primal SDP value

equal to zero and dual SDP value equal to minus infinity. This shows that a stronger
assumption is required to ensure a zero SDP duality gap. A sufficient condition for strong
duality has been given in [4]: set K should contain an interior point. However, this may
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be too restrictive: in the proof of Lemma 1 in [2] the authors use notationally awkward
arguments involving truncated moment matrices to prove the absence of SDP duality gap
for a certain set K that contains no interior point. This shows that the existence of an in-
terior point is not necessary for a zero SDP duality gap. More generally, it is not possible
to assume the existence of an interior point for POPs with explicit equality constraints,
and a weaker assumption for zero SDP duality gap is welcome.

Motivated by these observations, in this note we prove that under the basic Assump-
tion 2 on the description of set K, there is no duality gap in the SDP hierarchy. Our
interpretation of this result, and the main message of this contribution, is that in the
context of Lasserre’s hierarchy for POP, a practically relevant description of a bounded
semialgebraic feasibility set must include a redundant ball constraint.

2 Proof of strong duality

For notational convenience, let g0(x) = 1 ∈ R[x] denote the unit polynomial. Define the
localizing matrix

Md−di(giy) :=

(

∑

γ

gi,γyα+β+γ

)

|α|,|β|≤d−di

=
∑

|α|≤2d

Ai,αyα

where di is the smallest integer greater than or equal to half the degree of gi, for i =
0, 1, . . . , m, and |α| = ∑n

i=1 αi. The Lasserre hierarchy for POP (1) consists of a primal
moment SDP problem

(Pd) :
infy

∑

α fαyα
s.t. y0 = 1

Md−di(giy) � 0, i = 0, 1, . . . , m

and a dual SOS SDP problem

(Dd) :

supz,Z z

s.t. f0 − z =
∑m

i=0〈Ai,0, Zi〉
fα =

∑m
i=0〈Ai,α, Zi〉, 0 < |α| ≤ 2d

Zi � 0, i = 0, 1, . . . , m, z ∈ R

where A � 0 stands for matrix A positive semidefinite, 〈A,B〉 = trace AB is the inner
product between two matrices. The Lasserre hierarchy is indexed by an integer d ≥
dmin := maxi=0,1,...,m di. The primal-dual pair (Pd, Dd) is called the SDP relaxation of

order d for POP (1). The size of the primal variable (yα)|α|≤2d is

(

n+ 2d
n

)

and the size

of the dual variable Zi is

(

n + d− di
n

)

.

Let us define the following sets:

• Pd: feasible points for Pd;
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• Dd: feasible points for Dd;

• int Pd: strictly feasible points for Pd;

• int Dd: strictly feasible points for Dd;

• P∗
d : optimal solutions for Pd;

• D∗
d: optimal solutions for Dd.

Finally, let us denote by val Pd the infimum in problem Pd and by valDd the supremum
in problem Dd.

Lemma 1 int Pd nonempty or int Dd nonempty implies val Pd = valDd.

Lemma 1 is classical in convex optimization, and it is generally called Slater’s condition,
see e.g. [7, Theorem 4.1.3].

Lemma 2 The two following statements are equivalent :

1. Pd is nonempty and int Dd is nonempty;

2. P∗
d is nonempty and bounded.

A proof of Lemma 2 can be found in [8]. According to Lemmas 1 and 2, P∗
d nonempty

and bounded implies strong duality. This result is also mentioned without proof at the
end of [7, Section 4.1.2].

Lemma 3 Under Assumption 2, set Pd is included in the Euclidean ball of radius

√

(

n+ d

n

) d
∑

k=0

R2k

centered at the origin.

Proof: If Pd = ∅, the result is obvious. If not, consider a feasible point (yα)|α|≤2d ∈ Pd.
Let k ∈ {1, . . . , d}. In the SDP problem Pk, the localizing matrix associated to the ball
constraint gm(x) = R2 −∑n

i=1 x
2
i ≥ 0 reads

Mk−1(gmy) =

(

∑

γ

gm,γ yα+β+γ

)

|α|,|β|≤k−1
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with trace equal to

traceMk−1(gmy) =
∑

|α|≤k−1

∑

γ gm,γ y2α+γ

=
∑

|α|≤k−1

(

gm,0 y2α +
∑

|γ|=1 gm,2γ y2α+2γ

)

=
∑

|α|≤k−1

(

R2y2α −∑|γ|=1 y2(α+γ)

)

=
∑

|α|≤k−1R
2y2α −∑|α|≤k−1,|γ|=1 y2(α+γ)

= R2(
∑

|α|≤k−1 y2α) + y0 −
∑

|α|≤k y2α

= R2 traceMk−1(y) + 1− traceMk(y).

From the structure of the localizing matrix, it holds Mk−1(gmy) � 0 hence
traceMk−1(gmy) ≥ 0 and

traceMk(y) ≤ 1 +R2 traceMk−1(y)

from which we derive

traceMd(y) ≤
d
∑

k=1

R2(k−1) +R2d traceM0(y) =

d
∑

k=0

R2k

since traceM0(y) = y0 = 1. The 2-norm ‖Md(y)‖2, equal to the maximum eigenvalue of
Md(y), is upper bounded by traceMd(y), the sum of the eigenvalues of Md(y), which are
all nonnegative. Moreover the Frobenius norm satisfies

‖Md(y)‖2F := 〈 Md(y) , Md(y) 〉

= 〈 ∑|δ|≤2dA0,δ yδ ,
∑

|δ|≤2dA0,δ yδ 〉

=
∑

|δ|≤2d 〈A0,δ, A0,δ〉 y2δ by orthogonality of matrices (A0,δ)|δ|≤2d

≥ ∑

|δ|≤2d y2δ because 〈A0,δ, A0,δ〉 ≥ 1

where matrices (A0,δ)|δ|≤2d can be written using column vectors (eα)|α|≤d , containing only
zeros apart from the value 1 at index α, via the explicit formula

A0,δ =
∑

α + β = δ

|α|, |β| ≤ d

eαe
T
β .

The proof follows then from

√

∑

|δ|≤2d

y2δ ≤ ‖Md(y)‖F ≤
√

(

n + d

n

)

‖Md(y)‖2 ≤
√

(

n+ d

n

) d
∑

k=0

R2k.

�
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Theorem 1 Assumption 2 implies that −∞ < val Pd = valDd for all d ≥ dmin.

Proof: Let d ≥ dmin. Firstly, let us consider the case when Pd is nonempty. According
to Lemma 3, Pd is bounded and closed, and the objective function in Pd is linear, so we
conclude that P∗

d is nonempty and bounded. According to Lemma 2, intDd is nonempty,
and from Lemma 1, val Pd = valDd.

Secondly, let us consider the case when Pd is empty. An infeasible SDP problem can
be either weakly infeasible or strongly infeasible, see [10, Section 5.2] for definitions. Let
us prove by contradiction that Pd cannot be weakly infeasible. If Pd is weakly infeasible,
there must exist a sequence (yp)p∈N such that

∀p ∈ N ,

{

1− 1
p+1

≤ y
p
0 ≤ 1 + 1

p+1

λmin(Md−di(giy
p)) ≥ − 1

p+1
, i = 0, 1, . . . , m

where λmin denotes the minimum eigenvalue of a symmetric matrix. According to the
proof of Lemma 3, for all 1 ≤ k ≤ d and all real numbers (yα)|α|≤2d, one has

traceMk−1(gmy) = R2 traceMk−1(y) + y0 − traceMk(y).

Clearly, traceMk−1(gmy) ≥ − c
1+p

where c :=

(

n+ d

n

)

denotes the size of the moment

matrix Md(y). The following holds

traceMk(y
p) ≤ R2 traceMk−1(y

p) + 1 +
1 + c

1 + p

from which we derive

traceMd(y
p) ≤ (1 +

1 + c

1 + p
)

d
∑

k=0

R2k.

Together with λmin(Md(y
p)) ≥ − 1

1+p
, this yields

λmax(Md(y
p)) ≤ (1 +

1 + c

1 + p
)

d
∑

k=0

R2k +
c− 1

1 + p

where λmax denotes the minimum eigenvalue of a symmetric matrix. Hence for all p ∈ N,
the spectrum of the moment matrix Md(y

p) is lower bounded by l := −1 and upper
bounded by u := (2 + c)

∑d
k=0R

2k + c− 1. Therefore:

√

∑

|δ|≤2d

(ypδ )
2 ≤ ‖Md(y

p)‖F ≤
√
c max(|l|, |u|)

The sequence (yp)p∈N is hence included in a compact set. Thus there exists a subse-
quence which converges towards ylim such that ylim0 = 1 and λmin(Md−di(giy

lim)) ≥ 0,
i = 0, 1, . . . , m. The limit ylim is thus included is Pd, which is a contradiction.
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SDP problem Pd is strongly infeasible which means that its dual problem Dd has an
improving ray [10, Definition 5.2.2]. To conclude that val Dd = +∞, all that is left to
prove is that Dd 6= ∅. Consider the primal problem Pd discarding all constraints but
y0 = 1, Md(y) < 0, and Md−1(gmy) < 0. It is a feasible and bounded SDP problem owing
to Lemma 3. According to Lemma 2, its dual problem must contain a feasible point
(z, Z0, Zm) and hence (z, Z0, 0, . . . , 0, Zm) ∈ Dd.

�

3 Conclusion

We prove that strong duality always holds in Lasserre’s SDP hierarchy for POPs whose
description of the feasible set contains a ball constraint. To preclude numerical troubles
with SDP solvers, we advise to systematically add a ball constraint, combined with an
appropriate scaling so that all scaled variables belong to the unit sphere. Without scaling,
numerical troubles can occur as well, but they are not due to the presence of a duality
gap, see [1] and also the example of [9, Section 6].
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