Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes - Archive ouverte HAL
Article Dans Une Revue Neural Networks Année : 2014

Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes

Résumé

A method is provided for designing and training noise-driven recurrent neural networks as models of stochastic processes. The method unifies and generalizes two known separate modeling approaches, Echo State Networks (ESN) and Linear Inverse Modeling (LIM), under the common principle of relative entropy minimization. The power of the new method is demonstrated on a stochastic approximation of the El Niño phenomenon studied in climate research.
Fichier principal
Vignette du fichier
Galtier_ESN_Arxiv_2014.pdf (4.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00994652 , version 1 (22-05-2014)

Identifiants

Citer

Mathieu N Galtier, Camille Marini, Gilles Wainrib, H. Jaeger. Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes. Neural Networks, 2014, 56, http://www.sciencedirect.com/science/article/pii/S0893608014000860. ⟨10.1016/j.neunet.2014.04.002⟩. ⟨hal-00994652⟩
264 Consultations
227 Téléchargements

Altmetric

Partager

More