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Abstract

A method is provided for designing and training noise-driven recurrent neural networks

as models of stochastic processes. The method unifies and generalizes two known separate

modeling approaches, Echo State Networks (ESN) and Linear Inverse Modeling (LIM), under

the common principle of relative entropy minimization. The power of the new method is

demonstrated on a stochastic approximation of the El Niño phenomenon studied in climate

research.

1 Introduction

Blackbox modeling methods for stochastic systems have a broad range of applications in physics,

biology, economy or the social sciences. Generally speaking, a model of a stochastic system is a

representation of the conditional distribution of the system’s future given the present state (Markov

models) or some part or the entire system past. There is a large variety of such stochastic predictors

among which we focus on generic methods which do not depend on the type of data considered.

The Auto-Regressive-Moving-Average (ARMA) models [Box et al., 2013] form a class of linear

stochastic approximators which has led to many derivative works and is widely used in engineering

applications. In particular, it covers the case of multivariate linear stochastic differential equations

(SDE), or Ornstein-Uhlenbeck processes, which is the basic structure used in the Linear Inverse

Modeling (LIM) theory [Penland and Magorian, 1993]. ARMA models are generally learnt by op-

timizing a least squares measure of the prediction error. A notable characteristic of ARMA models

is that the dimension of the underlying SDE is identical to the observable dimension of the target

time series. By contrast, dynamic Bayesian networks [Murphy, 2002], with Hidden Markov Mod-

els (HMM)[Baum and Petrie, 1966, Rabiner, 1989] as the most widely employed special case, rely

on hidden variables. HMM are trained by maximum likelihood schemes, typically with some ver-

sion of the expectation maximization algorithm [Dempster et al., 1977, Moon, 1996]. A problem

with dynamic Bayesian networks, inherited from their simpler static counterparts, is that inference

(e.g. prediction) quickly becomes computationally expensive when the dependency structure of

hidden variables is not particularly simple (as it is in HMMs). The Temporal Restricted Boltzmann

Machine [Sutskever and Hinton, 2006], a recent addition to the spectrum of such models, is a point

in case. With the advent of kernel machines in machine learning community, models based on

Gaussian Processes have been designed to approximate stochastic processes [Rasmussen, 2006].

A critical point regarding these models lies in their computational complexity when working with

long time series. There is also a large body of literature about online adaptive predictors, e.g.
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Kalman filters [Haykin, 2005]. In this paper however we focus on non-adaptive models trained on

all available training data using a batch algorithm.

Recurrent neural networks (RNNs) have also been used in various ways for approximating

stochastic dynamical systems. In their basic forms [Williams and Zipser, 1995, Pearlmutter, 1995],

RNNs are models of deterministic dynamical systems; if trained on data sampled from stochastic

sources, at exploitation time such RNNs will not propose future distributions but only a single

expected mean future trajectory. RNNs represent, in principle, a promising model class because

they are dense in interesting classes of target systems, implying that arbitrarily accurate models

can in principle be found [Funahashi and Nakamura, 1993, Sontag, 1997]. Gradient-descent based

learning algorithms for RNNs are typically computationally expensive and cannot be guaranteed

to converge. Since about a decade, an alternative approach to RNN design and training, now gen-

erally called reservoir computing [Jaeger and Haas, 2004, Maass et al., 2002], has overcome the

problem of learning complexity. The key idea in this field is not to train all parameters of an RNN

but only the weights of connections leading from the RNN “body” (called reservoir) to the output

neurons. Here we will build on a particular instantiation of reservoir computing called Echo State

Networks (ESNs).

Although deterministic models at the outset, neural network architectures for predicting future

distributions have been variously proposed [Husmaier and Taylor, 1997, Buesing et al., 2011], or

neural networks were embedded as components in hybrid models of stochastic systems [Krogh and Riis, 1999,

Chatzis and Demiris, 2011]. Here we propose a novel way to use RNNs in a stochastic frame-

work based on the way stochasticity is taken into account in LIM. LIM consists in tuning both

the drift and the diffusion term of an Ornstein-Uhlenbeck process to approximate a stochastic

process. First, the drift is optimized to approximate the time series as if it were determinis-

tic; then, the diffusion is chosen so that the variances of both systems are identical. LIM is

widely used in climate research and stands as a simple approach giving relatively good results

[Penland, 1996, Hawkins et al., 2011, Zanna, 2012, Barnston et al., 2012, Newman, 2013].

To compare two stochastic processes, and thus to define what it means to approximate a

stochastic process, we use the relative entropy (also known as Kullback-Leibler divergence) [Kullback and Leibler, 1951].

Although not a true distance, it displays many interesting properties, interpretations and relation-

ships with other quantities such as the mutual information [Cover and Thomas, 2012] or the rate

function in large deviations theory [Ellis, 2005]. It also is computationally convenient (as opposed

to the Wasserstein distance for instance), and has been widely used used in machine learning

[Ackley et al., 1985, Hinton et al., 2006]. Usually, this measure is used to compare the laws of two

discrete or continuous random variables, but it can also be used to compare the laws of two stochas-

tic processes in the path space, which is at the basis of this paper. This way of measuring the dif-

ference in law between two stochastic processes amounts in performing a change of probabilities

thanks to Girsanov Theorem [Karatzas and Shreve, 1991], whose applications range from math-

ematical finance [Avellaneda et al., 1997] to simulation methods for rare events [Wainrib, 2013].

In the context of recurrent neural networks, we have already shown that the learning rule deriving

from the minimization of relative entropy has interesting biological features since it combines two

biologically plausible learning mechanisms [Galtier and Wainrib, 2013]

In this paper, we show how to train a noise-driven RNN to minimize its relative entropy with

respect to a target process. The method consists two steps. First, the drift of the neural network is

trained by minimizing its relative entropy with respect to the target (Section 3). Second, the noise

matrix of the network is determined based on a conservation principle similarly to LIM (Section

4). We show how this approach extends the existing ESN and LIM theory in Section 5. Numerical

approximations to the double well potential and to the El Niño phenomenon studied in climate

research are presented in Section 6.

2 Model

We define here two mathematical objects that are, a priori, unrelated: a stochastic time series and

an autonomous RNN made of two layers. The time series is assumed to be a sample path of an
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underlying stochastic process which is the modelling target. The objective is to make the RNN

approximate the target process.

The target time series u is assumed to be the discretization of an n-dimensional ergodic con-

tinuous process defined on the time interval [0, T ]. The discretization step is chosen to be dt = 1
which corresponds to fixing the timescale. Imposing T ∈ N, u can be seen as a matrix in R

n×T .

For each t ∈ {1, .., T}, we use the notation ut for the n-dimensional vector corresponding to the

value of the continuous target time series at time t. Similarly, we write δut
def
= ut+1 − ut and

δu ∈ R
n×T corresponding to the previous definition (with the convention that δuT = 0).

The two-layer neural network is defined as follows. The first layer, also called retina, has n
neurons, as many as the target time series dimension. We take v0

t ∈ R
n to be the activity of the

retina at time t which will eventually approximate the target time series. The second layer, also

called reservoir, has m neurons. Because each reservoir neuron does not directly correspond to a

variable of the target, they are said to be hidden neurons. We denote the activity of the reservoir

at time t by v1
t ∈ R

m. Each layer has a complete internal connectivity, recurrent connections,

that is, all neurons within a layer are interconnected. The two layers are interconnected with

feedforward, i.e. retina to reservoir, connections and feedback, i.e. reservoir to retina, connections,

as shown in Figure 1.a. In this paper, according to a guiding principle in reservoir computing

[Lukoševičius and Jaeger, 2009], the feedforward and reservoir matrices W10 and W11 are drawn

randomly and remain unchanged. Only connections leading to retina neurons will be adapted.

These are collected in W = (W00 W01) ∈ R
n×(n+m).

Retina:
n neurons

Reservoir:
m neurons

Reservoir activity

Retinal activity

Reservoir lateral
connectivity

Retina lateral
connectivity

Feedforward
connectivity

Feedback
connectivity

Figure 1: Structure and main notations of the neural network described in Section 2.

The activity of each layer is governed by the following differential law:

{

dv0
t =

(

− v0
t +W00v

0
t +W01v

1
t )dt+ΣdBt

dv1
t = ǫ

(

− lv1
t + s(W10v

0
t +W11v

1
t )
)

dt
(1)

where ǫ, l ∈ R+, s is a sigmoid function, e.g. tanh, that is applied elementwise, i.e. s(x)i = s(xi),
Σ ∈ R

n×n is the noise matrix and Bt is an n-dimensional Brownian motion.

In order to unify LIM and ESNs, we submit this architecture to certain restrictions. In particu-

lar, we choose the first layer to be linear and we choose a tanh nonlinearity in the reservoir. Later,

we will make a simple choice for a numerical differentiation scheme for the same reason.

3 Training to minimize relative entropy

This section explains the training of the connection matrices W00 and W01 so that the distance

between the neural network and the target time series is minimized. In other words, the drift of

the neural network will be designed to match that of the target stochastic process.
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3.1 Relative entropy between target and retina

We now define a quantity measuring the dynamical distance between the target time series and

the retinal activity. At first sight, these two mathematical objects have a different nature: the first

is a time series and the second is a dynamical system. However, we assume that there exists a

dynamical system (possibly very complicated and/or with hidden variables) which has generated

the target time series. Thus, we want to compute the distance between this system and the neural

network. A natural measure of similarity between stochastic processes is the relative entropy or

Kullback-Leibler divergence. First, we show how to compute the relative entropy between two

diffusion processes with the same diffusion. Second, we apply it to computing the “distance“

between the neural network and the target time series.

3.1.1 Relative entropy between two diffusion processes sharing the same diffusion coeffi-

cient

We now introduce the computation of the relative entropy, or Kullback-Leibler divergence, be-

tween two n-dimensional diffusion processes x and y sharing the same diffusion coefficient

Σ ∈ R
n×n. Let {Ω,F , P, {Ft}0≤t≤T } be a probability space, equipped with the natural filtra-

tion of the standard Brownian motion. Consider two diffusion processes (xt) and (yt) in R
n

under P , solutions of the following stochastic differential equation:

dxt = f(xt)dt+ΣdBt (2)

dyt = g(yt)dt+ΣdBt (3)

where Bt is a n-dimensional P -Brownian motion.

Defining and computing the relative entropy naturally follows from the application of the

Girsanov theorem [Girsanov, 1960] described in chapter 3.5 of Karatzas and Shreve’s textbook

[Karatzas and Shreve, 1991]1. It provides a stochastic change of variable which makes it possible

to change the drift of a diffusion process provided the underlying measure of the Brownian motion

is changed accordingly. Indeed, there exists a probability measure Q and B̃t a n-dimensional

Q-brownian motion, such that the stochastic process (xt) is also solution of

dxt = g(xt)dt+ΣdB̃t (4)

The probability measure has to be coherent with this change of drift, which is enforced through

the Radon-Nikodym derivative of Q with respect to P

dQ

dP
= exp

(

n
∑

i=1

∫ T

0

[

Σ−1
(

g(xt)− f(xt)
)

]

i
dBt,i −

1

2

∫ T

0

∥

∥

∥
Σ−1

(

f(xt)− g(xt)
)

∥

∥

∥

2
dt

)

(5)

where
[

Σ−1
(

g(xt)− f(xt)
)

]

i
and dBt,i are the ith components of Σ−1

(

g(xt)− f(xt)
)

and dBt

respectively.

For this quantity to be well-defined, the probability measure P has to be absolutely contin-

uous with respect to Q. This is a consequence of the technical condition
∫ T
0 E[‖Σ−1

(

f(xt) −
g(xt)

)

‖2]dt <∞.

Given that both processes (xt) and (yt) are written with the same drift (3), (4), it is natural to

consider the relative entropy between the processes as the relative entropy between the measures

P and Q which reads

H(y|x) def
= H(Q|P )

def
= EQ

[

ln
(dQ

dP

)

]

(6)

Using (5) leads to

H(y|x) = 1

2
E

[
∫ T

0

∥

∥

∥
Σ−1

(

f(xt)− g(xt)
)

∥

∥

∥

2
dt

]

(7)

1we apply the theorem 5.1 with, in their notations, Xt = Σ−1
(

g(xt)− f(xt)
)

, Wt = Bt, W̃t = B̃t and ZT is the

Radon-Nikodym derivative of Q with respect to P according to equation 5.4.
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Strictly speaking, this quantity is not a distance since it is not symmetric. Yet it is always

positive and zero only when the two drifts f and g are equal. This makes it a natural and useful

measure of the similarity of two stochastic processes.

Note that although the drift g initially corresponds to the stochastic process (yt), it is evaluated

at the value xt. This is one of the main feature of relative entropy: it measures the difference of

the drifts along the trajectory of one process.

It is crucial that the diffusion matrix Σ is the same in both equations (2) and (3). If it were not

the case, the two measures P and Q would not be absolutely continuous and the Radon-Nikodym

derivative, and a fortiori the relative entropy, would not be defined.

3.1.2 Application to our case

The main conceptual problem to apply the previous result is that, in practice, we do not know the

continuous-time stochastic process which we assume has generated the discrete target time series.

The time series is the only piece of information we have. Actually, many stochastic processes

could have generated this discrete time series. We want to find the stochastic processes of the

form (2), which are the more likely to have produced the time series. Let us call f the smooth

function that defines the diffusion process (2) which was most likely to produce the target time

series. Although we do not and will not know the explicit formula for f , we formally define the

distance between the neural network (1) and the target time series as the relative entropy between

the neural network and the diffusion process (2) with this particular f . We will eventually make

this quantity computable.

We also need to bridge the gap between the discrete definition of the target time series and the

continuous formulation of the relative entropy in (7). This can be done by discretizing equation (7)

on the partition adapted to the definition of u. Assuming that the sampling of u is fine enough, we

can reasonably replace the integral by a discrete sum. At this step we can also use the ergodicity

property of the target time series to drop the expectation in this equation. Therefore, a first tentative

of definition of the relative entropy between the target time series and the neural network is

H =
1

2T

T
∑

t=0

∥

∥

∥
Σ−1

(

f(ut)− g(ut)
)

∥

∥

∥

2
+O(T−1/2) (8)

The term O(T−1/2) accounts for the ergodicity approximation when the total time window T is

not infinite.

However, in practice, it is not possible to have a direct access to f(u). Estimating the drift

f(u) from the observation of the time-series u belongs to the class of problems called numeri-

cal differentiation. Since the seminal work of Savitzky and Golay [Savitzky and Golay, 1964], in

which the signal is first approximated by moving polynomials before differentiation, a large num-

ber of numerical methods have been introduced, from finite difference methods to regularization

or algebraic methods (see [Liu et al., 2011] and references therein). However, for simplicity and

to rigorously relate to ESNs and LIM, we will simply approximate f(u) by a temporal difference

approximation which we called δu. Recall

δut = ut+1 − ut =

(
∫ t+1

t
f(xs)ds+Σξt

)

(9)

where xt is the realization of the process from which u was sampled and the ξt are i.i.d standard

Gaussian random variables. We now assume that f is smooth enough and that the sampling of the

stochastic process realization, which leads to defining the time series, is fine enough, so that the

following approximation (of order 0) holds:

∫ t+1

t
f(xs)ds ≃ f(ut) (10)

5



We now form the difference ‖Σ−1
(

f(ut) − g(ut)
)

‖2 and introduce Σ−1δut in the computa-

tion. This leads to

‖Σ−1
(

f(ut)− g(ut)
)

‖2 ≃ ‖Σ−1
(

f(ut)− δut

)

‖2

+ 2〈Σ−1
(

f(ut)− δut

)

,Σ−1
(

δut − g(ut)
)

〉
+ ‖Σ−1

(

δut − g(ut)
)

‖2

≃ ‖ξt‖2

+ 2
〈

ξt,Σ
−1f(ut) + ξt

〉

− 2〈ξt,Σ−1g(ut)〉
+ ‖Σ−1

(

δut − g(ut)
)

‖2

Let us look at what becomes each of the four lines above when taking the empirical average (or

equivalently the expectation by ergodicity):

• The first line becomes 1.

• In the second line, the first term 2〈ξt,Σ−1f(ut)〉 has zero mean and thus vanishes. The

second term becomes 2.

• The third line is centered and thus vanishes.

• Finally, the last term is the one we want to keep in the algorithm.

To summarize, it remains

H ≃ 1

2T

(

T
∑

t=0

∥

∥Σ−1
(

δut − g(ut)
)
∥

∥

2
)

+O(T−1/2) (11)

One could also use a Taylor expansion for equation (10) which would add some corrective

terms to (11). However, provided that the sampling of the target is fine enough, these terms can be

neglected.

To be fully exhaustive, one should also look at the term O(T−1/2) coming from the central

limit theorem for ergodic convergence, and this term may also have some contribution which

depends on the connectivity, in particular from the second term in line 3: 2〈ξt,Σ−1g(ut)〉. It is

zero-mean, so in the limit T → ∞ it will disappear when we take the empirical average, but its

variance is in fact 4E[Σ−1g(u)2] which is not necessarily zero.

One last modification of the formal definition in equation (7) stems from its problematic de-

pendence on the noise matrix Σ. Recall we intend to tune the noise to minimize the relative

entropy. Given the definition (7) a trivial choice is to have an extremely strong noise: in this case

the two stochastic processes are so random that they can be said to be identical. However, this is a

situation which we would like to avoid: we want to find a reasonable noise matrix Σ. To correct

this pathologic behavior, it seems natural to divide the formal definition (7) by the square of the

operator norm of Σ−1 which we write |||Σ−1|||2 (or equivalently multiplying by the square of the

smallest eigenvalue of Σ). The resulting quantity simply is proportional to the original definition,

but without this problem. Note that this does not mean that we restrict our approach to unit norm

noises matrices as is shown later.

This finally leads to a definition corresponding to equation (11) without the various error terms.

Besides, we also want to take into account a regularization term. This leads to defining an ana-

log to regularized relative entropy between the target time series u and our neural network (1)

(respectively corresponding to x and y in (2) and (3)) as

Hu(W)
def
=

1

2T

T
∑

t=0

∥

∥

∥
S−1

(

− ut +W00ut +W01u
1
t − δut

)

∥

∥

∥

2
+

α2

2
‖S−1W‖2 (12)

6



where S−1 = Σ−1

|||Σ−1|||
and u1 ∈ R

m×T is the solution of

δu1
t = ǫ

(

− lu1
t + s(W10ut +W11u

1
t )
)

governing the reservoir when it is fed by the target time series (as opposed to the retinal activity).

The definition of δu1 ∈ R
m×T is similar to that of δu. In the following, we abusively call Hu(W)

the relative entropy between the target time series and the network.

The second term in (12) is a regularization term which ensures decent generalization properties

of the following algorithm. It does not change the qualitative meaning of the notion of relative

entropy but penalizes the networks with high connection strength. The reason why it contains a

multiplication by Σ−1 will become clear later. In short, it will make the system decoupled and we

will be able to compute subsequently the connections first and the noise matrix second.

One can also understand the definition (12) without referring to the analogy with relative

entropy, in the special case Σ = Id and α = 0. Indeed, as shown in Figure 2, it corresponds to

integrating the distance between the derivative of the target time series and the flow of the retinal

activity along the trajectories of the target time series. Therefore, it is obvious that if this quantity

is null then the vector field of the retinal activity will be tangent to the target time series derivative.

Therefore, initializing the network with the value of the target time series at time t = 0, will lead

the network to reproduce precisely the target time series.

t=0

t=T

Figure 2: Illustration of the computation of the relative entropy in the case Σ = Id. It corresponds

to integrating all the green bars along the trajectory of the target time series. The solid blue line

corresponds to the target time series. The red arrows correspond to the speed vectors of the target

time series. The black arrows correspond to the vector field of the retinal neural network.

Observe that the relative entropy (12) (even more the rigorous definition (7)) are quite similar

to the quantity usually minimized for prediction [Williams and Zipser, 1995, Pearlmutter, 1995,

Bishop, 2006]. The main difference is that this is the integral of the distance between the derivative

of the target time series and activity variable, instead of the mere distance between target and

activity.

Note that the relative entropy (12) can easily be shown to be proportional to the negative of

the log-likelihood of the target given the neural network. This close relationship shows that, in

this case where the stochastic processes are diffusion processes, minimizing the relative entropy is

rigorously equivalent to maximizing the log-likelihood.

3.2 Gradient of the relative entropy

Now, the idea is to compute the gradient of Hu(W) with respect to retinal and feedback connec-

tivities. This will be useful because the gradient cancels out at the minimum of the relative entropy.

This gives us a useful way to compute the connectivity W∗ = (W∗
00 W∗

01) ∈ R
n×(n+m) such

that the network best approximates the target stochastic process. Because the relative entropy (12)

is quadratic in W, it is convex. Thus, it has a single critical point which is a global minimum.

For readability, we introduce the continuous nn-dimensional function defined on [0, T ] by

ζ(W) = W00u+W01u
1 − δu− u (13)

7



such that

Hu(W) =
1

2

T
∑

t=0

∥

∥

∥
S−1ζt(W)

∥

∥

∥

2
+

α2

2
‖S−1W‖2 (14)

The gradient will be computed in an operator framework, i.e. as the differential of the relative

entropy. Observe that the differential is a linear operator such that

dWHu(J) =
1

2
dW

(

T
∑

t=0

〈S−1ζt,S
−1ζt〉+ α2〈S−1W,S−1W〉

)

(J)

=
T
∑

t=0

1

2
dW
〈

S−1ζt,S
−1ζt

〉

(J) + α2〈S−1W,S−1J〉

=
T
∑

t=0

〈S−1ζt(W),S−1dWζt(J)〉+ α2〈S−1W,S−1J〉

=
T
∑

t=0

〈
(

SS′)−1ζt(W), dWζt(J)〉+ α2〈(SS′)−1W,J〉 (15)

Because ζ(W) is affine in W00 and W01, it appears that

dW00
ζ(J) = Ju and dW01

ζ(J) = Ju1 (16)

In both cases, we have a differential of the form dWζ(J) = Jb, with b = u (resp. b = u1) is a

matrix of Rn×T (resp. Rm×T ).

Observe that ∇WHuij = dWHu(E
ij) where Eij is the canonical matrix made of zeros except at

position ij where it is one. Then,

dWHu(E
ij) =

T
∑

t=0

〈(SS′)−1ζt(W),Eijbt〉+ α2〈(SS′)−1W,Eij〉

=

T
∑

t=0

{

(SS′)−1ζt(W)
}

i
bjt + α2{(SS′)−1W}ij

=
{

(SS′)−1ζ(W)b′
}

ij
+ α2{(SS′)−1W}ij

which leads to

∇WHu = (SS′)−1ζ(W)b′ + α2(SS′)−1W

Using the definition of ζ leads to

(SS′)∇WHu = −
[

(δu+u)u′ (δu+u)u1′
]

+(W00 W01)

(

α2Id +

[

uu′ uu1′

u1u′ u1u1′

])

(17)

The global minimum can be computed as ∇W∗Hu = 0. Since we have assumed that S is a

full rank matrix, this leads to the following formula

W∗ =
[

(δu+ u)u′ (δu+ u)u1′
]

(

α2Id +

[

uu′ uu1′

u1u′ u1u1′

])−1

= (δu+ u)

(

u

u1

)′
(

α2Id +

(

u

u1

)(

u

u1

)′
)−1 (18)

It is interesting to observe that the solution does not depend on the noise matrix Σ. It is this

property which makes it possible for the problem to be decoupled in two parts: (i) computation of

W∗ and (ii) computation of Σ.
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4 Computing the noise with a conservation principle

This section is devoted to computing the noise matrix Σ such that the neural network matches the

statistics of the target time series. Obviously the choice of a simple additive noise (i.e. Σ does

not depend on v nor t) in system (1), restricts the class of target system the neural network can

approximate accurately. Although the match will not be perfect, we will see the method provides

a reasonable and (more crucially) coherent noisy neural network approximating the statistics of

the target.

At first sight, it may seem appropriate to choose Σ so that the covariance of the retinal activity

matches that of the target. However, the non-linearity in the reservoir makes it seemingly impossi-

ble to compute analytically the covariance of system (1). Therefore, we have not been able to use

this idea to fix Σ.

Another method consists in using a generalized fluctuation dissipation relation. Penland and

Matrosova [Penland and Matrosova, 1994] have detailed a method to use a conservation principle

to link the correlation of the activity, the flow of the retina and the matrix ΣΣ′. Following the lines

of their derivation, we generalize their approach to the case of reservoirs.

The generalized fluctuation dissipation relation is based on the Fokker-Planck equation [Risken, 1996]

of the neural network (1). Any stochastic differential system can be described equivalently by a

sample path dynamics governed by (1) or a Fokker-Planck equation which governs the evolu-

tion of the probability density function. It corresponds to the Eulerian description of the original

stochastic differential equation. It can intuitively be understood as a balance of how much goes in

and out of a small box centered on v, taking into account both a drift and a diffusion mechanism.

In our case, it takes the form of the following partial differential equation.

∂p(v0,v1, t)

∂t
= −div

[(

−v0 +W00v
0 +W01v

1

ǫ
(

− lv1 + s(W10v
0 +W11v

1)
)

)

p(v0,v1, t)

]

+
1

2
∆

[(

ΣΣ′ 0
0 0

)

p(v0,v1, t)

]

(19)

where div is the divergence operator, i.e. div(x) =
∑

i
∂xi

∂vi
which corresponds to the drift, and ∆ is

the Laplacian operator, i.e. ∆J =
∑

i,j
∂2

Jij

∂vi∂vj
, which corresponds to the diffusion. Note that this

Fokker-Planck equation is independent of the underlying choice between Itô or Stratonovich noise

in the initial system (1), because we assumed Σ does not depend on the activity of the network.

A conservation principle about the moments of the stochastic process v can easily be derived

from equation (19). Indeed, multiply it by {v0
t }p{v0

t }q (the components p and q of the activity

v0
t ) and integrate over the entire domain. We can use the integration by part formula several times

to get

∂E[{v0
t }p{v0

t }q]
∂t

= E
[(

− {v0
t }p + {W00v

0
t }p + {W01v

1
t }p
)

{v0
t }q
]

+ E
[(

− {v0
t }q + {W00v

0
t }q + {W01v

1
t }q
)

{v0
t }p
]

+ΣΣ′ (20)

Given that the target is ergodic, it is natural to assume that its approximation also has this

property. Therefore, it is legitimate to replace the expectations by time integrals over [0, T ] divided

by T in the previous equation. In a matrix formalism, this reads

v0
Tv

0
T
′ − v0

0v
0
0
′

T
=
(

− v0 +W00v
0 +W01v

1
)

v0′ + v0
(

− v0 +W00v
0 +W01v

1
)′
+ΣΣ′

A careful inspection of the terms shows that the left hand side is negligible when T is large enough

(which will always be the case in practice). Thus, we will drop this term for simplicity (although

it would not pose any problem to take it into account).

Notice the correlations terms v0v0′ and v0v1′ in the previous equation. Recall our initial wish

to choose Σ so that both neural network and target second order moments are matched. Although
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we could not directly implement this wish, we are now able to replace the network correlation

terms by the observed moments of the target in the present formulation. This ansatz leads to the

following generalized fluctuation dissipation relation [Penland and Matrosova, 1994]:

ΣΣ′ =
(

Id −W00

)uu′

T
−W01

u1u′

T
+

uu′

T

(

Id −W00

)

− uu1′

T
W01 (21)

This equation can be seen as a coherency requirement between drift and diffusion of the network

and second order moments of the target. Fortunately, the derivation of the drift leads to an explicit

equation (18) independent of the matrix Σ. Therefore, the previous equation can be used to char-

acterize Σ based on the knowledge of W. Given that the square root of matrix is not injective,

there are several choices for the matrix Σ. They all correspond to an ambiguity on the sign of its

eigenvalues. We arbitrarily pick one of them and have thus found a coherent noise matrix.

5 Comparison with existing methods

Our approach takes selected features of two existing methods for approximation, ESN and LIM,

and unifies them in a mathematical framework. This section is devoted to clarifying the links with

these two methods.

Retina:
n neurons

Retinal activity

Retina lateral
connectivity

ESN LIM

n dimensional
input

Reservoir:
m neurons

Reservoir lateral
connectivity

Input/output
connectivity

Feedforward
connectivity

Feedback
connectivity

n dimensional
output

a) b)

Figure 3: Architecture of related existing models. To be compared with Fig.1. a) Architecture of

an ESN (see section 5.2): the inputs and outputs are different layers. However, when the network

is set to the prediction mode the value of the inputs is copied from the outputs, which corresponds

to closing up the loop as in Fig.1. b) Architecture of LIM (see section 5.1): there is no reservoir

and only a retina.

5.1 Adding nonlinearities to Linear Inverse Modeling

The proposed method rigorously extends LIM by adding non-linearities to the model dynamics.

Linear inverse modeling consists in designing a multidimensional linear stochastic (also called

Ornstein-Uhlenbeck) process which reproduces a target multivariate time series [Penland and Sardeshmukh, 1995,

Penland, 1996]. Naturally, the dimension of the approximating process is identical to the dimen-

sion of the target. A pervasive idea in machine learning is to consider additional (often called

hidden) variables which will help the reconstruction of the target multivariate time series. In the

framework presented in this paper, they correspond to the neurons in the reservoir, while the linear

dynamical system analogous to LIM corresponds to the neurons in the retina. Due to the non-

linearity of the dynamics of these additional variables or neurons, the present framework is as a

non-linear extension of LIM. Actually, it turns out to be a surprisingly simple extension since the

same formula can be used to calculate the linear matrix in LIM and the rectangular matrix which

combines the additional variables to improve the retina’s predictions.
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More precisely, LIM consists in finding the matrices B,Q ∈ R
n×n such that the following

dynamical system reproduces the target time series u.

v̇0
t = Bv0

t +
√

QḂt

where Ḃt is a white noise and
√

is the matrix square root (i.e. Q is the covariance of
√
QḂt).

Note that we have intentionally used the same variable v0 for the LIM and the activity in the retina.

Based on the explicit expression of the Green function of a linear system [Risken, 1996], B

can be caracterized as follow

B =
1

τ
ln(u.+τu

′(uu′)−1) (22)

where ln is the logarithm for matrices and u.+τ is the matrixes whose column number t is ut+τ and

τ is an integer usually equal to 1 (depending on the intrinsic timescales of the target). Assuming

τ = 1 in the following, B can be written:

B = ln(Id + (u.+1 − u)u′(uu′)−1) =

+∞
∑

k=1

(−1)k+1

k

[

(u.+1 − u)u′(uu′)−1
]k

Assuming appropriate sampling of u such that ‖δu‖ ≪ 1, we can reasonably truncate B at first

order. This leads to the following approximation: B ≃ δuu′(uu′)−1.

To see the link with ESNsto, we must consider the case m = 0 in eq.1, so that W = Id +B.

From the above approximation, it follows W ≃ Id + δuu′(uu′)−1 ≃ (δu+ u)u′(uu′)−1, which

corresponds to W∗ in (18) with m = 0 and α = 0. Given the definition of both systems, it is clear

that the two methods are identical in this restricted case. However, when the sampling is not fine

enough, equation (22) may lead to solutions than differ from the log-free equation (18). One then

could also imagine a variation of ESNs using a matrix log when dealing with badly sampled data,

but this is beyond the scope of this paper.

Concerning the treatment of noise, we can observe that it is strictly the same with or without

additional reservoir neurons.

5.2 Adding noise to Echo States Networks

The proposed algorithm rigorously generalizes ESNs to a stochastic framework. Indeed, the for-

mula for the connectivity in equation (18) is identical to the solution given by applying the classical

deterministic ESN method [Jaeger and Haas, 2004, Lukoševičius and Jaeger, 2009].

To explain further the equivalence between this formalism and classical ESNs, we now intro-

duce the ESN formalism in its original form as summarized in Figure 3.a. Let us setup an ESN

of reservoir size m as a one time step predictor of the input u, where the input and the output

have, naturally, the same dimension n, and the model includes direct connections from the input

to the output. In fact, the initial setup of echo state network makes a distinction between input

and output, see Figure 3.a; whereas the model introduced in section 2 only has a retina, see Fig.1.

However, ESNs can also be run in a generative mode, where the current output becomes the next

input, closing the loop between the two. This closed loop system is precisely the same as the two

layer network of Section 2, where the joined input/output nodes become the retina with activations

v0, and the reservoir remains with activations v1. As summarized in Figure 3.a, connections from

the input to the reservoir correspond to W10, internal reservoir connections to W11, output con-

nections from the reservoir to W01, and connections from input directly to the output after closing

the loop become the recurrent connections in the retina W00.

Classical ESNs are discrete-time systems, as opposed to our continuous-time approach. Yet

the two methods are closely linked: ESNs correspond to a time-discretized version of (1).

{

v0
t+1 = W00v

0
t +W01v

1
t

v1
t+1 = s(W10v

0
t +W11v

1
t )

, (23)

where (1) is discretized using Euler’s approximation and the discretization step is taken to be equal

to 1 and ǫ = l = 1.
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Training such a setup to minimize a squared error on the input prediction
∑T

t=0

(

ut+1 − v0
t

)2

precisely corresponds to learning connections W00 and W01 according to the equation (18). In-

deed, observe that {δu+u}t = ut+1 is the prediction of the input (which corresponds to the target

signal in this setup). Taking u as input and u1 as teacher-forced reservoir activations, the equation

(18) turns out to be the ridge regression equation generally used in [Lukoševičius and Jaeger, 2009].

The treatment of noise proposed in this paper is a new contribution to the ESN theory. In that

sense, this paper consists in an extension of ESNs as time series approximators to stochastic ESNs

as stochastic process approximators.

6 Numerical simulations

This section shows two examples of application of the proposed ESNsto algorithm described in

algorithm 1.

Algorithm 1 ESNsto learning

# Initialization:

Components of W01 and W11 are drawn randomly following a normal law. The two matrices

are then rescaled get desired spectral radii.

u1
0,v

0
0,v

1
0 ← 0

# Collect reservoir states:

while t < T : do

u1
t+1 = (1− ǫl)u1

t + ǫl s(W10ut +W11u
1
t )

end while

# Learn connections:

(W00,W01)← (δu+ u)

(

u

u1

)′
(

α2Id +

(

u

u1

)(

u

u1

)′
)−1

# Compute noise connections:

Σ =
√

(

Id −W00

)

uu′

T −W01
u1u′

T + uu′

T

(

Id −W00

)

− uu1′

T W01

# Simulate ESNsto:

while True do
v0
t+1 = W00v

0
t +W01v

1
t +Σ randn(n)

v1
t+1 = (1− ǫlv1

t ) + ǫs(W10v
0
t +W11v

1
t )

end while

It is important to realize that the goal here is not to approximate or predict a time series, but

rather to approximate a stochastic process. Because a single stochastic process can have different

realizations, an approximation of such a process should not aim at reproducing a given path. In

this sense, we are not dealing with classical prediction tasks and we should exlusively focus on

building a system that reproduces the law of the target stochastic process. As a consequence, we

can not compare ESNsto with classical ESN since they do not approximate the same mathematical

objects.

We are going to compare the performances of LIM with that of ESNsto. LIM belongs to

several of the different classes of approximators that we mentioned in the introduction: it is a

Gaussian process, a multivariate autoregressive process of order one and an Ornstein-Uhlenbeck

process. Besides it can be easily compared to ESNsto, since the latter generalizes the former and

LIM simply is an ESNsto with 0 neurons in the reservoir. Establishing a complete benchmark of

the different methods for stochastic processes approximation is beyond the scope of this paper.

However, we point out the low computational complexity of learning, which is independent of

the length of the time series and mainly governed by the inversion of a positive semi definite

square matrix of size n. This is lower than the complexity of Hidden Markov Models or Gaussian

Processes for long time series.

To compute the relative entropy we have used a classical cross-validation framework. This
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means that we have divided the target time series in k blocks. Then for each block, we have

computed the connectivity and noise matrices on the remaining k − 1 blocks, and evaluated the

value of the relative entropy on the selected block. This provides a robust way to prevent over-

fitting.

This numerical section is only a proof of concept. The (hyper)parameters of the networks

(such as the spectral radius of W11) have been coarsely tuned, although they could significantly

improve the approximations if they were set carefully. The main reason for our negligence is that

we want to show that an off-the-shelf ESNsto model is better than LIM and does not require deep

knowledge or large effort of neural networks tuning.

The first example we consider is a widely considered toy model: the target is generated by

a noisy particle living in a double well. The second example, devoted to climate modeling, will

show how to approximate the El Niño phenomenon in the tropical Pacific ocean.

6.1 The noisy double-well

The double well example explores a basic form of non-linearity. It illustrates the significant im-

provement brought by reservoir neurons in dealing with non-linearities.

We consider a synthetic example where the data are generated as the solution of the stochastic

differential equation corresponding to a particle in an energy landscape made of two different

wells, as shown in Fig.4(a). More precisely, the target is a one-dimensional process described by

du = −∇uEdt+ σdBt (24)

where ∇uE =

{

1 if − 1 < u < 0 or u > 1
−1 else

is the gradient of the function described in

Fig.4(a) at point u. The typical behavior of such a system is illustrated in Fig.4(b). Roughly

speaking, the particle jumps from one well to the other after random durations. Informally, each

well can be said to be an attractor.

10-1

-1

2

(a) Double well energy landscape.

time-steps

(b) Trajectory of process (24).

Figure 4: Illustrations of the double well process (24). (left) Energy landscape. (right) Trajectory

of the process. The simulation was done using Euler-Maruyam algorithm with σ = 0.7, dt = 0.1
during 10000 time steps. These parameters are kept constant for the next simulations.

We now compare the approximations of this time series based on LIM and the ESNsto. We

see in Fig.5(a) that increasing the number of neurons in the reservoir improves the relative entropy

defined by (12). With no neurons in the reservoir, which corresponds to LIM, the relative entropy

is approximately 2.9. After a sharp decrease for the first dozens of additional neurons, the relative

entropy slowly decreases when the number of neurons increases to finally reach a value close to

2.65 for m = 150 neurons. Note that the simple numerical differentiation method that we have

used imposes a lower bound on the relative entropy shown here. Indeed, it is easy to observe

that the relative entropy between system (24) and itself using definition (12) is 2.45. We believe

that the gap between the ESNsto and the optimal value will decrease with additional neurons
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in the network, but may not vanish due to the over-fitting issue mentioned later. This suggests

that appropriately choosing the regularization parameter is crucial for optimal accuracy. We can

also observe that the variance of the relative entropy value, corresponding to different random

realizations for the connections in the reservoir W11 and W10, decreases with the number of

neurons: due to better averaging, large reservoirs are less dependent on the realization defining

their weights.

Running the LIM and ESNsto networks post-learning shows different qualitative behaviors as

displayed in Fig. 5(b) and 5(c). As opposed to LIM, the ESNsto reproduces patterns of noise-

induced jumps between two attractors.

number of neurons

(a) Relative entropy vs number of

neurons.

time-steps

(b) LIM trajectory.

time-steps

(c) ESNsto trajectory.

Figure 5: (a) Relative entropy as a function of the number of neurons in the reservoir. For any

number of neurons, we launched 10 simulations, to take into account the variability of reservoir

connections, and measured the relative entropy according to equation (12). The top (resp. bottom)

curve is the maximum (resp. minimum) value of the entropy among the different trials. The middle

curve is the mean. The relative entropy roughly decreases from 2.9 to 2.65 which is enough to

qualitatively change the behavior of the neural networks as shown in the left and middle picture.

(b) Result of the LIM simulation (i.e. m = 0) learned from the data in Fig.4(b). (c) Result of the

ESNsto simulation with m = 100 neurons. Parameters used: ǫ = 1, l = 1, s(x) = tanh(2x),
W11 is drawn according to a normal law and rescaled so that ‖W11‖ = 1 (operator norm), W10

is drawn uniformly in [−1.1], α = 1. The network simulations and learning were done during

T = 105 time steps. Note that there is a washout time interval of 500 at the beginning of the

learning (and reconstruction) in order to remove transient effects.

Significant qualitative improvements made possible by having neurons in the reservoir can

also be seen by empirically measuring some statistical quantities of the target, LIM and ESNsto

runs, as shown in Fig.6. The first three figures 6(a), 6(b) and 6(c), show that LIM is failing to

reproduce the bimodal distribution of the target corresponding to the two attractors: LIM has a

unimodal Gaussian-like distribution, whereas ESNsto is able to reproduce the bimodality thanks

to the non-linearities in the reservoir.

In Fig. 6(d), it is shown that the distribution of the times spent in each attractors between two

jumps is irrelevant for LIM whereas it is similar between target and ESNsto. This is also reflected

in the transition rates which is approximately 0.0019 for the data, 0.0016 for the ESNsto and

0.0075 for the LIM. However, it is to be noticed that an increase in the number of neurons beyond

150 neurons leads to a decrease of the transition rate (not shown). This underlines a drawback of

the method for non-ergodic time series which exhibit significant noisy flucutuations: the network

tries to put in the connectivity as much variability as possible; the noise term is simply taking care

of the left-overs. Therefore, the noise induced transitions in the target are not only modeled by the

diffusion term in the neural network but also by the drift. This effect will vanish if the learning

time series has enough ergodicity so that the noisy behavior is averaged out when computing the

drift. When there is a limited amount of time steps available, a better numerical differentiation

scheme may improve the approximation accuracy since it would filter out noise before asking the

drift to approximate it.
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(d) Distributions of the durations between jumps.

Figure 6: Distribution of the states of the data (a), LIM (b) and ESNsto (c). (d): Compared

histograms of the duration spent in a well between two jumps. The parameters used are the same

as for Fig.5.

6.2 El Niño phenomenon

In this section, we focus on approximating the geophysical process El Niño. It corresponds to

a large warming of Sea Surface Temperature (SST) in the eastern equatorial Pacific, occurring

irregularly every 2 to 7 years, and having a broad impact of the global climate [Trenberth, 1997,

Deser et al., 2010]. As many other geophysical processes, its dynamics evolves on different inter-

acting timescales. It is in particular strongly linked to atmospheric processes evolving at shorter

time scales with a nonlinear behaviour. Penland showed that the evolution of 3-month running

mean SST anomalies in the tropical Indo-Pacific, and thus of El Niño, are well approximated by

a LIM, where the rapidly varying nonlinear processes are parameterized as a stochastic forcing

of the slower system [Penland, 1996]. One commonly used index of the El Niño phenomenon

is the Niño 3.4 index (N34 index), defined as the averaged of SST anomalies between 5°S- 5°N

and 170°W-120°W. Using the definition of [Trenberth, 1997], an El Niño event is said to occur

when the N34 index, smoothed with a 5-month running mean, exceed 0.4°C for 6 months or more.

Fig. 7 shows the N34 index (top) and the regression of SST anomalies onto this index (bottom),

indicating the warming in the eastern equatorial Pacific associated with a positive N34 index.

The target time series considered here are the N34 index, smoothed with a 3-month running

mean, and the 10 first principal components (PCs) of the empirical orthogonal function of 3-

month running mean SST anomalies in the IndoPacific region (30°S-30°N, 40°E-70°W). These

10 PCs represent 80% of the total variance of monthly IndoPacific SST anomalies, and they

are used instead of considering directly the SST anomalies at each grid point in the IndoPa-

cific to reduce the dimensionality of the system. The data come from the HadISST1 SST dataset

[Rayner et al., 2003], constructed from in situ SST observations and satellite derived estimates and

available from 1870. We used data from 1870 to 2011. Our target times series contain thus 1704

time steps (corresponding to 1704 months or 142 years) and a washout period of 240 time steps is

used at the beginning of the learning to remove transient effects.
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Figure 7: Niño 3.4 index, smoothed with a 3-month running mean (top) and associated SST

anomalies (bottom).

Here, we compare the approximations of the N34 index based on LIM and ESNsto. A crucial

parameter for the success of ESNsto was the choice of ǫ = 0.1 in equation (1). It is known that this

parameter controls the speed of the reservoir [Jaeger et al., 2007]. In our case, the reservoir needed

to evolve, not at the scale of months (which would have corresponded to ǫ = 1), but rather at

longer time scales to be helpful in reconstructing the dynamics. Fig. 8 shows the relative entropy

of the system as a function of the number of neurons and the ridge regularization parameter α.

Without any regularization, the relative entropy increases with the number of neurons. However,

for α > 10, the relative entropy decreases with the number of neurons and with α, suggesting that

ESNsto leads to a better approximation than LIM when using strong regularization. This can be

interpreted as overfitting in the case of weak regularization. Adding regularization penalizes the

accuracy on the training dataset (not shown) but significantly improve the generalization on the

test dataset, as observed in Fig. 8(b).

(a) Ridge regularization parameter ranging

from 0 to 5000

(b) Zoom for ridge regularization parameter

ranging from 500 to 5000

Figure 8: Relative Entropy as a function of the number of neurons m and the ridge regularisation

parameter α. Parameters used: ǫ = 0.1, l = 1/2, s(x) = tanh(2x), W11 is drawn according to a

normal law and rescaled so that ‖W11‖ = 1 (operator norm), W10 is drawn uniformly in [−1.1],
α = 1. Washout = 240. The cross-validation was done with k = 10 blocks. Each value of the

relative entropy corresponds to the average over 10 realizations of the weight matrices.

We now compare the simulations based on LIM and ESNsto with m = 500 and α = 3000.
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This choice of m and α is motivated by Fig. 8. The system is simulated forward for 105 time

steps, corresponding to more than 8000 years.

As shown in Fig. 9(a), the spectrum of the N34 index is closer to the target when approximated

by ESNsto than by LIM. At time scales longer than 4-5 years, the latter shows too much variability.

The spectrum obtained with ESNsto also shows a too high variability, but less than the LIM and

only at time scales longer than 7 years.

The distributions of the N34 index based on the LIM and ESNsto simulations are compared

with the targeted distribution in Fig. 9(b). Due to the low number of target samples, it is hard to

determine from the figure which distribution is closer to the target. A Kolmogorov-Smirnov test is

used to determine whether the simulated distributions differ from the targeted one. The p-values

in the case of LIM and ESNsto are respectively 0.45 and 0.62, meaning that, in both cases, we

cannot reject the null hypothesis that the simulated and targetted N34 indices are drawn from the

same distribution. The larger p-value in the case of ESNsto indicates a stronger evidence against

the null hypothesis.

Fig.9(c) shows the distributions of the time interval between two El Niño events. Again, a

Kolmogorov-Smirnov test is used to estimate if the simulated distributions differ from the targeted

one, and gives a p-value of 0.76 for LIM and 0.98 for ESNsto. The p-value almost equals 1 in the

case of ESNsto, suggesting a very good accuracy of our model to reproduce the some aspects of

the dynamics governing El Niño events.

frequency in cycles per month

(a) Spectrum of the N34 index.

Frequency in cycle per month.

(b) Distribution of the N34 index (c) Distribution of the time interval

between two El Niño events

Figure 9: Spectrum (left) and distribution (middle) of the N34 index, smoothed with a 3-month

running mean. Distribution of the time interval between two El Niño events (right). Black cor-

responds to the targeted time series, blue to LIM, and red to ESNsto. Parameters are identical to

those of Fig. (8).

7 Discussion

We have shown how to design a recurrent neural network to reproduce a target stochastic process.

By doing so, we have introduced a rigorous mathematical derivation which unifies ESNs and

LIM under the general principle of relative entropy minimization. Finally, we have shown how

the proposed system outperforms LIM, even when the parameters are only coarsely tuned, on a

simple synthetic task and on a climate example of well-known importance.

We have observed that the system is prone to over-fitting, which forced us to use large regular-

ization parameters. Indeed, the sequential computation of connectivity matrix followed by noise

matrix, implies that noise only takes care of left-overs. The connectivity matrix will try to encode

as much of the signal as possible, even some part of the inherent noise. This is problematic in

applications where the target process is significantly noise driven. However, when the number of

time steps of the target time series is large enough to have a good ergodic approximation or if

we improve the numerical differentiation scheme (e.g. using the Savitzky-Golay algorithm), we

believe this drawback will vanish.
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Possible extensions of this theory could include a proper treatment of the case of badly sampled

data as well as the generalization of the method to space dependent diffusion coefficients. Finally,

an important step in increasing accuracy of these networks would be to identify an appropriate

automatic tuning of the hyper parameters of the network (e.g. the spectral radius of the reservoir

connections).
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