POTENTIAL ESTIMATES AND QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

POTENTIAL ESTIMATES AND QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA

Résumé

In this paper, we study the existence and regularity of the quasilinear parabolic equations: $$u_t-\text{div}(A(x,t,\nabla u))=B(u,\nabla u)+\mu$$ in $\mathbb{R}^{N+1}$, $\mathbb{R}^N\times(0,\infty)$ and a bounded domain $\Omega\times (0,T)\subset\mathbb{R}^{N+1}$. Here $N\geq 2$, the nonlinearity $A$ fulfills standard growth conditions and $B$ term is a continuous function and $\mu$ is a radon measure. Our first task is to establish the existence results with $B(u,\nabla u)=\pm|u|^{q-1}u$, for $q>1$. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with $B\equiv 0$, under minimal conditions on the boundary of domain and on nonlinearity $A$. Finally, due to these estimates, we solve the existence problems with $B(u,\nabla u)=|\nabla u|^q$ for $q>1$.
Fichier principal
Vignette du fichier
ParabolicequationsQH-10-09-2014.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00989464 , version 1 (11-05-2014)
hal-00989464 , version 2 (10-09-2014)

Identifiants

  • HAL Id : hal-00989464 , version 2

Citer

Quoc Hung Nguyen. POTENTIAL ESTIMATES AND QUASILINEAR PARABOLIC EQUATIONS WITH MEASURE DATA. 2014. ⟨hal-00989464v2⟩
252 Consultations
522 Téléchargements

Partager

More