A novel MapReduce-based approach for distributed frequent subgraph mining
Résumé
Recently, graph mining approaches have become very popular, especially in certain domains such as bioinformatics, chemoinformatics and social networks. One of the most challenging tasks is frequent subgraph discovery. This task has been highly motivated by the tremendously increasing size of existing graph databases. Due to this fact, there is an urgent need of efficient and scaling approaches for frequent subgraph discovery. In this paper, we propose a novel approach to approximate large-scale subgraph mining by means of a density-based partitioning technique, using the MapReduce framework. Our partitioning aims to balance computational load on a collection of machines. We experimentally show that our approach decreases significantly the execution time and scales the subgraph discovery process to large graph databases.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...