
HAL Id: hal-00989200
https://hal.science/hal-00989200v1

Submitted on 9 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel MapReduce-based approach for distributed
frequent subgraph mining

Sabeur Aridhi, Laurent d’Orazio, Monder Maddouri, Engelbert Mephu

To cite this version:
Sabeur Aridhi, Laurent d’Orazio, Monder Maddouri, Engelbert Mephu. A novel MapReduce-based
approach for distributed frequent subgraph mining. Reconnaissance de Formes et Intelligence Artifi-
cielle (RFIA) 2014, Jun 2014, France. �hal-00989200�

https://hal.science/hal-00989200v1
https://hal.archives-ouvertes.fr

A novel MapReduce-based approach for distributed frequent subgraph mining∗

Sabeur Aridhi 1,2,3, Laurent d’Orazio 1,2, Mondher Maddouri 4 and Engelbert Mephu Nguifo 1,2

1 CNRS, UMR 6158, LIMOS, F-63173 Aubiere, France.
2 Clermont University, Blaise Pascal University, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France.

3 University of Tunis El Manar, LIPAH - FST, Academic Campus, Tunis 2092, Tunisia.
4 Taibah University, Almadinah, Kingdom of Saudi Arabia.

{aridhi,dorazio,mephu}@isima.fr - maddourimondher@yahoo.fr.

Résumé

Durant ces dernières années, l’utilisation de graphes a

fait l’objet de nombreux travaux, notamment en bases de

données, apprentissage automatique, bioinformatique et en

analyse des réseaux sociaux. Particulièrement, la fouille

de sous-graphes fréquents constitue un défi majeur dans

le contexte de très grandes bases de graphes. Dans ce pa-

pier, nous présentons une nouvelle approche basée sur le

paradigme MapReduce pour approcher la fouille de sous-

graphes fréquents à grande échelle. L’approche proposée

offre une nouvelle technique de partitionnement qui tient

compte des caractéristiques des données et qui améliore le

partitionnement par défaut de MapReduce. Une étude des

performances de notre approche a été réalisée et a montré

son efficacité.

Mots Clef

Fouille de sous-graphes, partitionnement de graphes, den-

sité de graphe, MapReduce.

Abstract

Recently, graph mining approaches have become very po-

pular, especially in certain domains such as bioinforma-

tics, chemoinformatics and social networks. One of the most

challenging tasks is frequent subgraph discovery. This task

has been highly motivated by the tremendously increasing

size of existing graph databases. Due to this fact, there

is an urgent need of efficient and scaling approaches for

frequent subgraph discovery. In this paper, we propose a no-

vel approach to approximate large-scale subgraph mining

by means of a density-based partitioning technique, using

the MapReduce framework. Our partitioning aims to ba-

lance computational load on a collection of machines. We

experimentally show that our approach decreases signifi-

cantly the execution time and scales the subgraph discovery

process to large graph databases.

Keywords

Frequent subgraph mining, MapReduce, cloud computing,

graph density, graph partitioning.

∗An extended version of this paper will be published in the journal

Information Systems (http ://dx.doi.org/10.1016/j.is.2013.08.005)

1 Introduction

Graphs show up in diverse set of disciplines, ranging from

computer networks, social networks to bioinformatics, che-

moinformatics and others. These fields exploit the repre-

sentation power of graph format to describe their associa-

ted data, e.g., social networks consist of individuals and

their relationships. In bioinformatics, the protein structure

can be considered as a graph where nodes represent the

amino acids and edges represent the interactions between

them. Finding recurrent and frequent substructures may

give important insights on the data under consideration.

These substructures may correspond to important functio-

nal fragments in proteins such as active sites, feature posi-

tions, junction sites. Mining these substructures from data

in a graph perspective falls in the field of graph mining and

more specifically in frequent subgraph mining.

Frequent subgraph mining is a main task in the area of

graph mining and it has attracted much interest. Conse-

quently, several subgraph mining algorithms have been de-

veloped, such as FSG [13], Gaston [16], ORIGAMI [8] and

gSpan [20]. However, existing approaches are mainly used

on centralized computing systems and evaluated on relati-

vely small databases [18]. Nowadays, there is an exponen-

tial growth in both the graph size and the number of graphs

in databases, which makes the above cited approaches face

the scalability issue. In this context, several distributed so-

lutions have been proposed [9, 15]. Nevertheless, the data

distribution techniques adopted by these works does not in-

clude data characteristics. Consequently, these techniques

may face scalability problems such as load balancing pro-

blems. To overcome this obstacle, a data partitioning tech-

nique that considers data characteristics should be applied.

In this paper, we propose a scalable and distributed ap-

proach for large scale frequent subgraph mining based on

MapReduce framework [6]. The proposed approach offers

the possibility to apply any of the known subgraph mining

algorithms in a distributed way. In addition, it allows many

partitioning techniques for the graph database. In our work,

we consider two instances of data partitioning : (1) the de-

fault partitioning method proposed by MapReduce frame-

work and (2) a density-based partitioning technique. The

second partitioning technique allows a balanced computa-

tional loads over the distributed collection of machines.

This paper is organized as follows. In the next section, we

define the problem of large-scale subgraph mining. In Sec-

tion 3, we present our approach of large-scale subgraph mi-

ning with MapReduce. Then, we describe our experimental

study in Section 4.

2 Problem definition
In this section, we present definitions and notations used in

this paper and we define the problem we are addressing and

specify our assumptions.

A graph is a collection of objects denoted as G = (V,E),
where V is a set of vertices and E ⊆ V ×V is a set of edges.

A graph G′ is a subgraph of another graph G, if there exists

a subgraph isomorphism from G′ to G, denoted as G′ ⊆ G.

The definitions of subgraph and subgraph isomorphism are

given as follows.

Definition 1 (Subgraph) A graph G′ = (V ′, E′) is a sub-

graph of another graph G = (V,E) iff V ′ ⊆ V and

E′ ⊆ E.

Definition 2 (Graph and subgraph isomorphism)

An isomorphism of graphs G and H is a bijection

f : V (G) −→ V (H) such that any two vertices u and v

of G are adjacent in G if and only if f(u) and f(v) are

adjacent in H . A graph G′ has a subgraph isomorphism

with G if :

– G′ is a subgraph of G, and

– there exists an isomorphism between G′ and G.

A task of major interest in this setting is frequent sub-

graph mining (FSM) with respect to a minimum support

threshold. There are two separate problem formulations for

FSM : (1) graph transaction based FSM and (2) single graph

based FSM. In graph transaction based FSM, the input data

comprises a collection of medium-size graphs called tran-

sactions. In single graph based FSM, the input data, as

the name implies, comprises one very large graph. In this

work, we are interested in large scale graph transaction ba-

sed FSM. The definitions of subgraph support and the graph

transaction based FSM are given as follows.

Definition 3 (Subgraph relative support) Given a graph

database DB = {G1, . . . , GK}, the relative support of a

subgraph G′ is defined by

Support(G′, DB) =

∑k

i=1
σ(G′, Gi)

|DB|
, (1)

where

σ(G′, Gi) =

{

1, if G′ has a subgraph isomorphism with Gi,

0, otherwise.

In the following, support refers to relative support.

Definition 4 (Graph transaction based FSM) Given

a minimum support threshold θ ∈ [0, 1], the frequent

subgraph mining task with respect to θ is finding all

subgraphs with a support greater than θ, i.e., the set

SG(DB, θ) = {(A,Support(A,DB)) : A is a subgraph

of DB and Support(A,DB) ≥ θ}.

Definition 5 (Graph density) The graph density measures

the ratio of the number of edges compared to the maximal

number of edges. A graph is said to be dense if the ratio is

close to 1, and is said to be sparse if the ratio is close to 0.

The density of a graph G = (V,E) is calculated by

density(G) = 2 ·
|E|

(|V | · (|V |− 1))
.

In this work, we are interested in frequent subgraph mining

in large scale graph databases.

Let DB = {G1, . . . , GK} be a large-scale graph data-

base with K graphs, SM = {M1, . . . ,MN} a set of dis-

tributed machines, θ ∈ [0, 1] is a minimum support thre-

shold. For 1 ≤ j ≤ N , let Partj(DB) ⊆ DB be

a non-empty subset of DB. We define a partitioning of

the database over SM by the following : Part(DB) =
{Part1(DB), . . . , PartN (DB)} such that

–
⋃N

i=1
{Parti(DB)} = DB, and

– ∀i ̸= j, Parti(DB) ∩ Partj(DB) = ∅.
In the context of distributed frequent subgraph mining, we

propose the following definitions.

Definition 6 (Globally frequent subgraph) For a given

minimum support threshold θ ∈ [0, 1], g is globally frequent

subgraph if Support(g,DB) ≥ θ. Here, θ is called global

support threshold (GS).

Definition 7 (Locally frequent subgraph) For a given

minimum support threshold θ ∈ [0, 1] and a tolerance

rate τ ∈ [0, 1], g is locally frequent subgraph at site i if

Support(g, Parti(DB)) ≥ ((1−τ) ·θ). Here, ((1−τ) ·θ)
is called local support threshold (LS).

Definition 8 (Loss Rate) Given S1 and S2 two sets with

S2 ⊆ S1 and S1 ̸= ∅, we define the loss rate in S2 com-

pared to S1 by

LossRate(S1, S2) =
| S1 − S2 |

| S1 |
, (2)

Definition 9 Given a parameter ε ∈ [0, 1] and SG(DB, θ).
An ε-approximation of SG(DB, θ) is a subset S ⊆
SG(DB, θ) such that

LossRate(SG, S) ≤ ε. (3)

We define the problem of distributed subgraph mining by

finding a good partitioning of the database over SM and by

minimizing well defined approximation of SG(DB, θ).
We measure the cost of computing an ε-approximation of

SG(DB, θ) with a given partitioning method PM(DB) by

the standard deviation of the set of runtime values in mapper

machines.

Definition 10 (Cost of a partitioning method) Let R =
{Runtime1(PM), . . . , RuntimeN (PM)} be a set of run-

time values. Runtimej(PM) represents the runtime of

computing frequent subgraphs in the partition j (Partj) of

the database. The operator E denotes the average or expec-

ted value of R. Let µ be the mean value of R :

µ = E[R]. (4)

The cost measure of a partitioning technique is :

Cost(PM) =
√

E[(R− µ)2]. (5)

A large cost value indicates that the runtime values are far

from the mean value and a small cost value indicates that

the runtime values are near the mean value. The smaller the

value of the cost is, the more efficient the partitioning is.

3 Density-based partitioning for

large-scale subgraph mining
In this section, we present the proposed approach for

large scale subgraph mining with MapReduce. It first des-

cribes the proposed framework to approximate large-scale

frequent subgraph mining. Then, it presents our density-

based partitioning technique.

3.1 A MapReduce-based framework to ap-

proximate large-scale frequent subgraph

mining

In this section, we present the proposed framework for large

scale subgraph mining with MapReduce (see Figure 1).

FIGURE 1 – A system overview of our approach.

In the following paragraphs, we give a detailed description

of our approach.

Data partitioning. In this step, the input database is parti-

tioned into N partitions. The input of this step is a graph da-

tabase DB = {G1, . . . , GK} and the output is a set of parti-

tions Part(DB) = {Part1(DB), . . . , PartN (DB)}. Our

framework allows two partitioning techniques for the graph

database. The first partitioning method is the default one

proposed by MapReduce framework that we called MRGP

(which stands for MapReduce Graph Partitioning). It ar-

bitrarily constructs the final set of partitions according to

chunk size. Though, MRGP does not consider the charac-

teristics of the input data during partitioning. Besides the

standard MRGP partitioning, we propose a different parti-

tioning technique taking into account the characteristics of

the input data during the creation of partitions. We termed

it Density-based Graph Partitioning (shortly called DGP).

More precisely, DGP tends to balance graph density distri-

bution in each partition (for more details, see Section 3.2).

Distributed subgraph mining. In this phase, we use a

frequent subgraph mining technique that we run on each

partition in parallel. The Algorithms 1 and 2 present our

Map and Reduce functions :

Algorithm 1 Map function

Require: A partitioned graph database DB =
{Part1(DB), . . . , PartN (DB)}, support thre-

shold θ, tolerance rate τ , key = i, value= graph

partition Parti(DB)
Ensure: locally frequent subgraphs in Parti(DB)

1: Si ← FSMLocal(Parti(DB), θ, τ)
2: for all s in Si do

3: EmitIntermediate(s, Support(s, Parti(DB)))
4: end for

Algorithm 2 Reduce function

Require: support threshold θ, key=a subgraph s, va-

lues=local supports of s

Ensure: globally frequent subgraphs in DB

1: GlobalSupportCount ← 0
2: for all v in values do

3: GlobalSupportCount ← GlobalSupportCount+
v

4: end for

5: GlobalSupport ← GlobalSupportCount
N

6: if GlobalSupport >= θ then

7: Emit(s,GlobalSupport)
8: end if

In the Map function, the input pair would be like

⟨key, Parti(DB)⟩ where Parti(DB) is the graph par-

tition number i. The FSMLocal function applies the

subgraph mining algorithm to Parti(DB) with a to-

lerance rate value and produces a set Si of locally

frequent subgraphs. Each mapper outputs pairs like

⟨s, Support(s, Parti(DB))⟩ where s is a subgraph of Si

and Support(s, Parti(DB)) is the local support of s in

Parti.

The Reduce function receives a set of pairs

⟨s, Support(s, Parti(DB))⟩ and computes for each

key (a subgraph), the global support GlobalSupport. Only

globally frequent subgraphs will be kept.

Analysis. The output of our approach is an ε-approximation

of the exact solution SG(DB, θ). Algorithms 1 and 2 do

not offer a complete result since there are frequent sub-

graphs that can not be extracted. The decrease in the number

of ignored frequent subgraphs can be addressed by a good

choice of tolerance rate for the extraction of locally frequent

subgraphs. Theoretically, we can achieve the exact solution

with our approach (which refers to LossRate(S, SG) = 0)

by adjusting the tolerance rate parameter to τ = 1 which

means a zero value of ε (ε = 0). This means that the set of

locally frequent subgraphs contains all possible subgraphs

(Local support equal to zero LS = 0) and the set of globally

frequent subgraphs contains the same set as SG(DB, θ). In

this case, the value of the loss rate is zero. However, the ge-

neration of the exact solution can cause an increase of the

running time.

3.2 The Density-based Graph Partitioning

method

Considering the fact that the task of frequent subgraph mi-

ning depends on the density of graphs [18] [10], we propose

a density-based partitioning method that we called DGP

(which stands for Density-based Graph Partitioning) which

consists of constructing partitions (chunks) according to the

density of graphs in the database. The goal behind this par-

titioning is to ensure load balancing and to limit the impact

of parallelism and the bias of the tolerance rate. Figure 2

gives an overview of the proposed partitioning method.

FIGURE 2 – The DGP method.

The proposed partitioning technique can be resumed into

two levels : (1) dividing the graph database into B buckets

and (2) constructing the final list of partitions.

The first level of our partitioning method consists of two

steps : graph densities computing and density-based decom-

position. The graph densities computing step is performed

by a MapReduce pass DensitiesComputing that com-

pute the densities of all instances in the database using its

Map function. The Reduce function is the identity func-

tion which output a sorted list of graphs according to the

densities values. In fact, the sorting of graphs is done auto-

matically by the Reduce function since we used the density

value as a key. In the second step, a density-based decom-

position is applied which divides the sorted graph database

into B buckets. The output buckets contain the same num-

ber of graphs.

The second level of our partitioning method is to construct

the output partitions. To do this, we first divide each bu-

cket into N sub-partitions Bi = {Pi1, · · · , PiN}. Then, we

construct the output partitions. Each one is constructed by

appending one sub-partition from each bucket.

4 Experiments

This section presents an experimental study of our approach

on synthetic and real datasets. It first describes the used da-

tasets and the implementation details. Then, it presents a

discussion of the obtained results.

4.1 Experimental setup

Datasets. The datasets used in our experimental study are

described in Table 1.

TABLE 1 – Experimental data

Dataset Type Number of graphs Size on disk Average size

DS1 Synthetic 20,000 18 MB [50-100]

DS2 Synthetic 100,000 81 MB [50-70]

DS3 Real 274,860 97 MB [40-50]

DS4 Synthetic 500,000 402 MB [60-70]

DS5 Synthetic 1,500,000 1.2 GB [60-70]

DS6 Synthetic 100,000,000 69 GB [20-100]

The synthetic datasets are generated by the synthetic data

generator GraphGen provided by Kuramochi and Karypis

[13]. The real dataset we tested is a chemical compound da-

taset which is available from the Developmental Therapeu-

tics Program (DTP) at National Cancer Institute (NCI) 1.

Implementation platform. All the experiments of our

approach were carried out using a local hadoop cluster with

five nodes. The processing nodes used in our tests are equip-

ped with a Quad-Core AMD Opteron(TM) Processor 6234

2.40 GHz CPU and 4 GB of memory for each node.

4.2 Experimental results

Accuracy and speedup. We mention that we could not

conduct our experiment with the sequential algorithms in

the case of DS4, DS5 and DS6 due to the lack of memory.

However, with the distributed algorithm we were able to

handle those datasets.

We illustrate in Figure 3 the effect of the proposed partitio-

ning methods on the rate of lost subgraphs.

We can easily see in Figure 3 that the density-based graph

partitioning allows low values of loss rate especially with

low values of tolerance rate. We also notice that FSG and

Gaston present a higher loss rate than gSpan in almost all

cases.

We note also that the use of the proposed density-based par-

titioning method significantly improves the performance of

1. http ://dtp.nci.nih.gov/branches/npb/repository.html

(a) DS1

(b) DS2

(c) DS3

FIGURE 3 – Effect of the partitioning method on the rate of

lost subgraphs.

our approach. This improvement is expressed by the dimi-

nution of the runtime in comparison with results given by

the default MapReduce partitioning method. This result can

be explained by the fact that each partition of the database

contains a balanced set of graphs in term of density. Conse-

quently, this balanced distribution of the data provides an ef-

fective load balancing scheme for distributed computations

over worker nodes. Figure 4 shows the effect of the density-

based partitioning method on the distribution of workload

across the used worker nodes in comparison with the de-

fault MapReduce partitioning method.

As illustrated in Figures 4, the density-based partitioning

method allows a balanced distribution of workload across

the distributed worker nodes.

In order to evaluate the capability of the density-based par-

titioning method to balance the computations over the used

nodes, we show in Figure 5 the cost of this partitioning me-

thod in comparison with the MapReduce-based partitioning

method. For each partitioning method and for each dataset,

we present the mean value of the set of runtime values in the

FIGURE 4 – Effect of the partitioning method on the distri-

bution of computations. We used θ = 30% and τ = 0.3.

used set of machines and the cost bar which corresponds to

the error bar. This cost bar gives a general idea of how ac-

curate the partitioning method is.

FIGURE 5 – Cost of partitioning methods. We used θ =
30% and τ = 0.3.

As shown in Figure 5, the density-based partitioning me-

thod allows minimal cost values in almost all datasets and

all thresholds setting. This can be explained by the balan-

ced distribution of graphs in the partitions. It is also clear

that FSG and Gaston present a smaller runtime than gSpan

(see Figure 5).

In order to study the scalability of our approach and to show

the impact of the number of used machines on the large-

scale subgraph mining runtime, we present in Figure 6 the

runtime of our approach for each number of mapper ma-

chines.

FIGURE 6 – Effect of the number of workers on the runtime.

We used DGP as a partitioning method, gSpan as a subgraph

extractor, θ = 30% and τ = 0.3.

As illustrated in Figure 6, our approach scales with the num-

ber of machines. In fact, the execution time of our approach

is proportional to the number of nodes or machines. com-

putationally to large datasets .

Chunk size and replication factor. In order to evaluate

the influence of some MapReduce parameters on the per-

formance of our implementation, we conducted two types

of experiments. Firstly, we varied the block size and calcu-

lated the runtime of the distributed subgraph mining process

of our system. In this experiment, we used five datasets and

varied the chunk size from 10MB to 100MB. Secondly, we

varied the number of copies of data and calculated the run-

time of the distributed subgraph mining process.

FIGURE 7 – Effect of chunk size on the runtime. We used

DGP as a partitioning method, gSpan as a subgraph extrac-

tor, θ = 30% and τ = 0.3.

FIGURE 8 – Effect of replication factor on the runtime. We

used DGP as a partitioning method, gSpan as a subgraph

extractor, θ = 30% and τ = 0.3.

The experimentations presented in Figure 7 show that with

small values of chunk size and with big datasets, the run-

time of our approach is very important. Otherwise, the other

values of chunk size do not notably affect the results.

As shown in Figure 8, the runtime of our approach is

slightly inversely proportional to the replication factor

(number of copies of data). This is explained by the high

availability of data for MapReduce tasks. Also, a high re-

plication factor helps ensure that the data can survive the

failure of a node.

5 Related work
Subgraph mining algorithms consist of two groups, the

Apriori-based algorithms and the non-Apriori-based algo-

rithms (or pattern growth approaches). The Apriori ap-

proach shares similar characteristics with the Apriori-

based itemset mining [1]. AGM [12] and FSG [13] are

two frequent substructures mining algorithms that use the

Apriori approach. Non-Apriori-based or pattern growth al-

gorithms such as gSpan [20], MoFa [4], FFSM [11], Gas-

ton [16] and ORIGAMI [8] have been developed to avoid

the overheads of the Apriori-based algorithms. All these al-

gorithms adopt the pattern growth methodology [7], which

intends to extend patterns from a single pattern directly.

The use of parallel and/or distributed algorithms for

frequent subgraph mining comes from the impossibility to

handle large graph and large graph databases on single ma-

chine. In this scope, several parallel and/or distributed solu-

tions have been proposed to alleviate this problem [3] [14]

[19] [15] [17] [5].

In [19], the authors propose a MapReduce-based algorithm

for frequent subgraph mining. The algorithm takes a large

graph as input and finds all the subgraphs that match a gi-

ven motif. The input large graph is represented as Perso-

nal Centre Network of every vertex in the graph [19]. For

each vertex in the graph, the algorithm calculates the candi-

date subgraph according to graph isomorphism algorithms.

It outputs the candidate subgraphs if they are isomorphic

with the motif.

In [14], the authors propose the MRPF algorithm for finding

patterns from a complex and large network. The algorithm

is divided into four steps : distributed storage of the graph,

neighbor vertices finding and pattern initialization, pattern

extension, and frequency computing. Each step is imple-

mented by a MapReduce pass. In each MapReduce pass,

the task is divided into a number of sub-tasks of the same

size and each sub-task is distributed to a node of the cluster.

MRPF uses an extended mode to find the target size pat-

tern. That is trying to add one more vertex to the matches of

i-size patterns to create patterns of size i+1. The extension

does not stop until patterns reach the target size. The propo-

sed algorithm is applied to prescription network in order to

find some commonly used prescription network motifs that

provide the possibility to discover the law of prescription

compatibility.

In [15], the authors propose an approach to subgraph search

over a graph database under the MapReduce framework.

The main idea of the proposed approach is first to build in-

verted edge indexes for graphs in the database, and then to

retrieve data only related to the query subgraph by using the

built indexes to answer the query.

The work presented in [9] presents an iterative MapReduce-

based approach for frequent subgraph mining. The authors

propose two heterogeneous MapReduce jobs per iteration :

one for gathering subgraphs for the construction of the next

generation of subgraphs, and the other for counting these

structures to remove irrelevant data.

Another attention was carried to the discovery and the study

of dense subgraphs from massive graphs. In [3], an algo-

rithm for finding the densest subgraph in a massive graph

is proposed. The algorithm is based on the streaming model

of MapReduce. In the work presented in [17], the authors

propose a statistical significance measure that compares the

structural correlation of attribute sets against their expected

values using null models. The authors define a structural

correlation pattern as a dense subgraph induced by a parti-

cular attribute set.

Most of the above-cited solutions deal with large-scale sub-

graph mining in the case of one large graph as input. Only a

few works include the subgraph mining process from large

graph databases which is the addressed issue in this work.

6 Conclusion

In this paper, we addressed the issue of distributing the

frequent subgraph mining process. We have described our

proposed approach for large-scale subgraph mining from

large-scale graph databases. The proposed approach relies

on a density-based partitioning to build balanced partitions

of a graph database over a set of machines. By running ex-

periments on a variety of datasets, we have shown that the

proposed method is interesting in the case of large scale da-

tabases (see [2]). The performance and scalability of our

approach are satisfying for large-scale databases.

In the extended version of this paper [2], we studied the ef-

fect of the number of buckets on the partitioning step. Also,

we studied the impact of some MapReduce parameters on

the performance of our approach. In this context, we tested

the impact of the block size and the number of copies of

data on the execution time of our approach.

In the future work, we will study the use of other topologi-

cal graph properties instead of the density in the partitioning

step. Also, we will study the relation between database cha-

racteristics and the choice of the partitioning technique.

Acknowledgements

This work was partially supported by the French Region of

Auvergne thru the project LIMOS-AGEATIS-NUMTECH,

by the French-Tunisian PHC project EXQUI, and the CNRS

Mastodons project PETASKY. We would like to thank the

anonymous reviewers for their useful comments.

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mi-

ning Association Rules in Large Databases. In VLDB

’94, pages 487–499. Morgan Kaufmann Publishers

Inc., 1994.

[2] S. Aridhi, L. d’Orazio, M. Maddouri, and E. Mephu

Nguifo. Density-based data partitioning strategy to

approximate large-scale subgraph mining. Informa-

tion Systems, Elsevier, in press.

[3] B. Bahmani, R. Kumar, and S. Vassilvitskii. Den-

sest subgraph in streaming and mapreduce. volume 5,

pages 454–465. VLDB Endowment, Jan. 2012.

[4] C. Borgelt and M. R. Berthold. Mining Molecular

Fragments : Finding Relevant Substructures of Mole-

cules. In IEEE ICDM ’02, pages 51–58, 2002.

[5] G. Buehrer, S. Parthasarathy, and Y.-K. Chen. Adap-

tive parallel graph mining for cmp architectures. In

ICDM, pages 97–106. IEEE Computer Society, 2006.

[6] J. Dean and S. Ghemawat. Mapreduce : Simplified

data processing on large clusters. Commun. ACM,

51(1) :107–113, Jan. 2008.

[7] J. Han, J. Pei, and Y. Yin. Mining frequent patterns

without candidate generation. volume 29, pages 1–12,

New York, NY, USA, May 2000. ACM.

[8] M. A. Hasan, V. Chaoji, S. Salem, J. Besson, and

M. J. Zaki. Origami : Mining representative orthogo-

nal graph patterns. In IEEE ICDM’07, pages 153–162.

IEEE Computer Society, 2007.

[9] S. Hill, B. Srichandan, and R. Sunderraman. An itera-

tive mapreduce approach to frequent subgraph mining

in biological datasets. In ACM BCB’12, pages 661–

666. ACM, 2012.

[10] J. Huan, W. Wang, and J. Prins. Efficient mining of

frequent subgraphs in the presence of isomorphism.

In IEEE ICDM ’03, pages 549–, 2003.

[11] J. Huan, W. Wang, and J. Prins. Efficient Mining of

Frequent Subgraphs in the Presence of Isomorphism.

In IEEE ICDM ’03, pages 549–552. IEEE Computer

Society, 2003.

[12] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-

Based Algorithm for Mining Frequent Substructures

from Graph Data. In ECML-PKDD’00, pages 13–23.

Springer-Verlag, 2000.

[13] M. Kuramochi and G. Karypis. Frequent Subgraph

Discovery. In IEEE ICDM ’01, pages 313–320, Wa-

shington, DC, USA, 2001.

[14] Y. Liu, X. Jiang, H. Chen, J. Ma, and X. Zhang.

Mapreduce-based pattern finding algorithm applied

in motif detection for prescription compatibility net-

work. In APPT ’09, pages 341–355. Springer-Verlag,

2009.

[15] Y. Luo, J. Guan, and S. Zhou. Towards efficient sub-

graph search in cloud computing environments. In

DASFAA’11, pages 2–13, Berlin, Heidelberg, 2011.

Springer-Verlag.

[16] S. Nijssen and J. N. Kok. A quickstart in frequent

structure mining can make a difference. In ACM

KDD’04, pages 647–652, New York, NY, USA, 2004.

ACM.

[17] A. Silva, W. Meira, Jr., and M. J. Zaki. Mining

attribute-structure correlated patterns in large attribu-

ted graphs. volume 5, pages 466–477. VLDB Endow-

ment, Jan. 2012.

[18] M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen. A

quantitative comparison of the subgraph miners mofa,

gspan, ffsm, and gaston. In ECML-PKDD’05, pages

392–403, Berlin, Heidelberg, 2005. Springer-Verlag.

[19] B. Wu and Y. Bai. An efficient distributed subgraph

mining algorithm in extreme large graphs. In AICI’10,

pages 107–115. Springer-Verlag, 2010.

[20] X. Yan and J. Han. gSpan : Graph-Based Substructure

Pattern Mining. In IEEE ICDM’02, pages 721–724,

2002.

References

