Photometric Bundle Adjustment for Dense Multi-View 3D Modeling - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Photometric Bundle Adjustment for Dense Multi-View 3D Modeling

Résumé

Motivated by a Bayesian vision of the 3D multi-view reconstruction from images problem, we propose a dense 3D reconstruction technique that jointly refines the shape and the camera parameters of a scene by minimizing the photometric reprojection error between a generated model and the observed images, hence considering all pixels in the original images. The minimization is performed using a gradient descent scheme coherent with the shape representation (here a triangular mesh), where we derive evolution equations in order to optimize both the shape and the camera parameters. This can be used at a last refinement step in 3D reconstruction pipelines and helps improving the 3D reconstruction's quality by estimating the 3D shape and camera calibration more accurately. Examples are shown for multi-view stereo where the texture is also jointly optimized and improved, but could be used for any generative approaches dealing with multi-view reconstruction settings (ie. depth map fusion, multi-view photometric stereo).
Fichier principal
Vignette du fichier
DP2014.pdf (3.6 Mo) Télécharger le fichier
Vignette du fichier
statue-results.png (1.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Loading...

Dates et versions

hal-00985811 , version 1 (30-04-2014)

Identifiants

  • HAL Id : hal-00985811 , version 1

Citer

Amaël Delaunoy, Marc Pollefeys. Photometric Bundle Adjustment for Dense Multi-View 3D Modeling. 2014. ⟨hal-00985811⟩
689 Consultations
2261 Téléchargements

Partager

More