New normality test in high dimension with kernel methods - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

New normality test in high dimension with kernel methods

Résumé

A new goodness-of-fit test for normality in high-dimension (and Reproducing Kernel Hilbert Space) is proposed. It shares common ideas with the Maximum Mean Discrepancy (MMD) it outperforms both in terms of computation time and applicability to a wider range of data. Theoretical results are derived for the Type-I and Type-II errors. They guarantee the control of Type-I error at prescribed level and an exponentially fast decrease of the Type-II error. Synthetic and real data also illustrate the practical improvement allowed by our test compared with other leading approaches in high-dimensional settings.
Fichier principal
Vignette du fichier
rkhsgauss-preprint.pdf (476.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00977839 , version 1 (11-04-2014)

Identifiants

Citer

Jérémie Kellner, Alain Celisse. New normality test in high dimension with kernel methods. 2014. ⟨hal-00977839⟩
187 Consultations
119 Téléchargements

Altmetric

Partager

More