An introduction to dimension reduction in nonparametric kernel regression - Archive ouverte HAL
Chapitre D'ouvrage Année : 2014

An introduction to dimension reduction in nonparametric kernel regression

Résumé

Nonparametric regression is a powerful tool to estimate nonlinear relations between some predictors and a response variable. However, when the number of predictors is high, nonparametric estimators may suffer from the curse of dimensionality. In this chapter, we show how a dimension reduction method (namely Sliced Inverse Regression) can be combined with nonparametric kernel regression to overcome this drawback. The methods are illustrated both on simulated datasets as well as on an astronomy dataset using the R software.
Fichier principal
Vignette du fichier
chap-girard-saracco-hal.pdf (7.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00977512 , version 1 (11-04-2014)

Licence

Identifiants

Citer

Stéphane Girard, Jerôme Saracco. An introduction to dimension reduction in nonparametric kernel regression. D. Fraix-Burnet; D. Valls-Gabaud. Regression methods for astrophysics, 66, EDP Sciences, pp.167-196, 2014, EAS Publications Series, ⟨10.1051/eas/1466012⟩. ⟨hal-00977512⟩
963 Consultations
1433 Téléchargements

Altmetric

Partager

More