Integrability methods in the time minimal coherence transfer for Ising chains of three spins - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2015

Integrability methods in the time minimal coherence transfer for Ising chains of three spins

Résumé

The objective of this article is to analyze the integrability proper-ties of extremal solutions of Pontryagin Maximum Principle in the time min-imal control of a linear spin system with Ising coupling in relation with con-jugate and cut loci computations. Restricting to the case of three spins, the problem is equivalent to analyze a family of almost-Riemannian metrics on the sphere S 2 , with Grushin equatorial singularity. The problem can be lifted into a SR-invariant problem on SO(3), this leads to a complete understanding of the geometry of the problem and to an explicit parametrization of the extremals using an appropriate chart as well as elliptic functions. This approach is com-pared with the direct analysis of the Liouville metrics on the sphere where the parametrization of the extremals is obtained by computing a Liouville nor-mal form. Finally, an algebraic approach is presented in the framework of the application of differential Galois theory to integrability.
Fichier principal
Vignette du fichier
Integrability for Ising 3-spins chains.pdf (647.95 Ko) Télécharger le fichier
Article-final.pdf (240.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00969285 , version 1 (02-04-2014)
hal-00969285 , version 2 (11-11-2014)
hal-00969285 , version 3 (24-02-2016)

Licence

Domaine public

Identifiants

Citer

Bernard Bonnard, Thierry Combot, Lionel Jassionnesse. Integrability methods in the time minimal coherence transfer for Ising chains of three spins. Discrete and Continuous Dynamical Systems - Series A, 2015, Special issue on optimal control and related fields, 35 (9), pp.4095-4114. ⟨10.3934/dcds.2015.35.4095⟩. ⟨hal-00969285v2⟩
455 Consultations
305 Téléchargements

Altmetric

Partager

More