Effectivized Holder-logarithmic stability estimates for the Gel'fand inverse problem
Résumé
We give effectivized Holder-logarithmic energy and regularity dependent stability estimates for the Gel'fand inverse boundary value problem in dimension $d=3$. This effectivization includes explicit dependance of the estimates on coefficient norms and related parameters. Our new estimates are given in $L^2$ and $L^\infty$ norms for the coefficient difference and related stability efficiently increases with increasing energy and/or coefficient difference regularity. Comparisons with preceeding results are given.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...