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Effectivized Hölder-logarithmic stability estimates

for the Gel’fand inverse problem

M.I. Isaev and R.G. Novikov

Abstract

We give effectivized Hölder-logarithmic energy and regularity depen-
dent stability estimates for the Gel’fand inverse boundary value problem
in dimension d = 3. This effectivization includes explicit dependance of
the estimates on coefficient norms and related parameters. Our new es-
timates are given in L

2 and L
∞ norms for the coefficient difference and

related stability efficiently increases with increasing energy and/or coeffi-
cient difference regularity. Comparisons with preceeding results are given.

1 Introduction and main results

We consider the equation

−∆ψ + v(x)ψ = Eψ, x ∈ D ⊂ R
3, (1.1)

where
D is an open bounded domain in R

3, ∂D ∈ C2, (1.2)

v ∈ L∞(D). (1.3)

Equation (1.1) can be regarded as the stationary Schrödinger equation of quan-
tum mechanics at fixed energy E. Equation (1.1) at fixed E arises also in
acoustics and electrodynamics.

As in Section 5 of Gel’fand’s work [9] we consider an operator establishing
a relationship between ψ and ∂ψ/∂ν on ∂D for all sufficiently regular solutions
ψ of equation (1.1) in D̄ = D ∪ ∂D at fixed E, where ν is the outward normal
to ∂D. As in [26], [16] (for example) we represent such an operator as the
Dirichlet-to-Neumann map Φ̂(E) defined by the relation

Φ̂(E)(ψ|∂D) =
∂ψ

∂ν
|∂D, (1.4)

where we assume also that

E is not a Dirichlet eigenvalue for operator −∆+ v in D. (1.5)

The map Φ̂ = Φ̂(E) can be regarded as all possible boundary measurements
for the physical model described by equation (1.1) at fixed energy E under
assumption (1.5).

We consider the following inverse boundary value problem for equation (1.1):

Problem 1.1. Given Φ̂ for some fixed E, find v.
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This problem is known as the Gel’fand inverse boundary value problem for
the Schrödinger equation at fixed energy E in three dimensions (see [9], [26]).
For E = 0 this problem can be regarded also as a generalization of the Calderón
problem of the electrical impedance tomography in three dimensions (see [5],
[26]). Problem 1.1 can be also considered as an example of ill-posed problem;
see [4], [23] for an introduction to this theory.

Let, for real m ≥ 0,

Hm(R3) =
{

w ∈ L2(R3) : F−1(1 + |ξ|2)m
2 Fw ∈ L2(R3)

}

,

||w||Hm(R3) =
∥

∥F−1(1 + |ξ|2)m
2 Fw

∥

∥

L2(R3)
,

(1.6)

where F denote the Fourier transform

Fw(ξ) = 1

(2π)3

∫

R3

eiξxw(x)dx, ξ ∈ R
3.

In addition, for real m ≥ 0, we consider the spaces Wm(R3) defined by

Wm(R3) =
{

w ∈ L1(R3) : (1 + |ξ|2)m
2 Fw ∈ L∞(R3)

}

,

||w||Wm(R3) =
∥

∥(1 + |ξ|2)m
2 Fw

∥

∥

L∞(R3)
.

(1.7)

We note that for integer m the space Wm(R3) contains the standard Sobolev
space Wm,1(R3) of m-times smooth functions in L1 on R3.

In the present work we obtain, in particular, the following theorems:

Theorem 1.1. Suppose that D satisfies (1.2) and v1, v2 satisfy (1.3), (1.5) for
some real E. Suppose also that: ||vj ||L∞(D) ≤ N for some N > 0, j = 1, 2;
supp(v2−v1) ⊂ D, v2−v1 ∈ Hm(R3), ‖v2−v1‖Hm(R3) ≤ NHm for some m > 0
and NHm > 0. Let

δ = ||Φ̂2(E)− Φ̂1(E)||L∞(∂D)→L∞(∂D), (1.8)

where Φ̂1(E), Φ̂2(E) denote the Dirichlet-to-Neumann maps for v1, v2, respec-
tively. Then, there exist some positive constants A,B, α, β depending on D only
such that

||v2 − v1||L2(D) ≤ A
(

αE + β(1 − τ)2
(

ln
(

3 + δ−1
))2
)

1
2

δτ+

+B (1 +N)
4m
3 NHm

(

αE + β(1 − τ)2
(

ln
(

3 + δ−1
))2
)−m

3

(1.9)

for any τ ∈ (0, 1] and E ≥ 0.
Besides, estimate (1.9) is also fulfilled for any τ ∈ (0, 1) and E < 0 under

the following additional condition:

αE + β(1− τ)2
(

ln
(

3 + δ−1
))2

> 0. (1.10)

Theorem 1.2. Suppose that D satisfies (1.2) and v1, v2 satisfy (1.3), (1.5) for
some real E. Suppose also that: ||vj ||L∞(D) ≤ N for some N > 0, j = 1, 2;
supp(v2 − v1) ⊂ D, v2 − v1 ∈ Wm(R3), ‖v2 − v1‖Wm(R3) ≤ NWm for some
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m > 3 and NWm > 0. Let δ be defined by (1.8). Then, there exist some positive
constants Ã, B̃, α̃, β̃ depending on D only such that

||v2 − v1||L∞(D) ≤ Ã
(

α̃E + β̃(1− τ)2
(

ln
(

3 + δ−1
))2
)

1
2

δτ+

+B̃
(1 +N)

2(m−3)
3 NWm

m− 3

(

α̃E + β̃(1− τ)2
(

ln
(

3 + δ−1
))2
)−m−3

6

(1.11)

for any τ ∈ (0, 1] and E ≥ 0.
Besides, estimate (1.11) is also fulfilled for any τ ∈ (0, 1) and E < 0 under

the following additional condition

α̃E + β̃(1− τ)2
(

ln
(

3 + δ−1
))2

> 0. (1.12)

Theorems 1.1 and 1.2 are proved in Sections 3 and 4, respectively. These
proofs are based on Lemmas 2.1, 2.2 and 2.3 given in Section 2. Then these
proofs are based on the intermediate estimates (3.7), (4.8) which may be of
independent interest.

Remark 1.1. The estimates of Theorem 1.2 can be regarded as a significant
effectivization of the following estimates of [16] for the three-dimensional case:

||v2 − v1||L∞(D) ≤ C1(Nm, D,m,E)
(

ln
(

3 + δ−1
))−s1 (1.13)

for E ∈ R;

||v2 − v1||L∞(D) ≤ C2(Nm, D,m, τ)(1 +
√
E)δτ+

+ C3(Nm, D,m, τ)(1 +
√
E)s−s1

(

ln
(

3 + δ−1
))−s (1.14)

for E ≥ 0, τ ∈ (0, 1) and any s ∈ [0, s1]. Here δ is defined by (1.8) and
s1 = (m− 3)/3.

In addition, estimates (1.13) and (1.14) were obtained in [16] under the
assumptions that: D satisfies (1.2), vj satisfies (1.3), (1.5), supp vj ⊂ D, vj ∈
Wm,1(R3), ‖vj‖Wm,1(R3) ≤ Nm, j = 1, 2, for some integer m > 3 and Nm > 0.

Actually, Theorem 1.2 was obtained in the framework of finding the depen-
dance of C1, C2, C3 of (1.13), (1.14) on Nm, m and τ . One can see that the
estimates of Theorem 1.2 depend explicitely on coefficient norms N , NWm and
parameteres m, τ and imply (1.13), (1.14) with some C1, C2, C3 explicitely de-
pendent on Nm, m, τ as a corollary. Besides, in Theorem 1.2 we do not assume
that each of potentials v1, v2 is m-times differentiable and is supported in D (in
a similar way with Theorem 2.1 of [34]).

By the way we would like to note also that even for E = 0 the reduction of
Hölder-logarithmic stability estimates like (1.9), (1.11) to pure logarithmic esti-
mates like (1.13) is not optimal for large m because of the following asymptotic
formula:

sup
δ∈(0,1]

∣

∣

∣

∣

δτ

(ln(3 + δ−1))
−µ

∣

∣

∣

∣

= O
((µ

τ

)µ

e−
µ

τ

)

as µ→ +∞.

In particular, even for E = 0 the Hölder-logarithmic estimates (1.9), (1.11) are
much more informative than their possible pure logarithmic reductions.
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Remark 1.2. Theorem 1.1 was obtained as an extention of Theorem 1.2 to
the L2-norm case. In addition, it is important to note that the second (“log-
arithmic”) term of the right-hand side of (1.9) is considerably better than the
analogous term of (1.11). In particular,

R = O
(

(

ln
(

3 + δ−1
))− 2m

3

)

for δ → 0,

R = O
(

E−m
3

)

for E → +∞,

whereas

R̃ = O

(

(

ln
(

3 + δ−1
))−m−3

3

)

for δ → 0,

R̃ = O
(

E−m−3
6

)

for E → +∞,

where R and R̃ denote the second (“logarithmic”) terms of the right-hand sides
of (1.9) and (1.11), respectively.

Remark 1.3. The estimates of Theorem 1.1 should be compared also with the
following estimate of [21] for the three-dimensional case:

‖v2 − v1‖H−m(R3) ≤ C

(

E2δ +
(√

E + ln δ−1
)−(2m−3)

)

, (1.15)

where C = C (Nm, D, supp(v2 − v1),m) > 0, ‖vj‖Hm(D) ≤ Nm (j = 1, 2),
supp (v2 − v1) ⊂ D, m > 3/2, δ is the distance between the boundary measure-
ments (Cauchy data) for v1, v2 and is, roughly speaking, similar to δ of (1.8)
and where δ ≤ 1/e.

A principal advantage of (1.9) in comparison with (1.15) consists in esti-
mation v2 − v1 in the L2-norm instead of the H−m-norm. Besides, estimate
(1.9) depends explicitely on coefficient norms N , NWm and parameteres m, τ
in contrast with (1.15). In addition, in (1.9) we do not assume that each of v1,
v2 belongs to Hm.

Remark 1.4. In the literature on Problem 1.1 estimates of the form (1.13) are
known as global logarithmic stability estimates. The history of these estimates
goes back to [1] for the case when s1 ≤ 1 and to [33] for the case when s1 > 1.

In addition, estimates of the form (1.9), (1.11), (1.14), (1.15) are known in
the literature as Hölder-logarithmic energy and regularity dependent stability
estimates. For the case when τ = 1 in (1.9), (1.11) or when s = 0 in (1.14)
the history of such estimates in dimension d = 3 goes back to [29], [31], where
such energy and regularity dependent rapidly convergent approximate stability
estimates were given for the inverse scattering problem.

Then for Problem 1.1 energy dependent stability estimates changing from
logarithmic type to Hölder type for high energies were given in [20]. However,
this high energy stability increasing of [20] is slow. The studies of [29], [31], [33],
[20] were continued, in particular, in [25], [16], [21] and in the present work.

Remark 1.5. In Theorems 1.1, 1.2 we consider the three-dimensional case for
simplicity only. Similar results hold in dimension d > 3.

As regards to logarithmic and Hölder-logarithmic stability estimates for
Problem 1.1 in dimension d = 2, we refer to [35], [37], [38]. In addition, for prob-
lems like Problem 1.1 the history of energy and regularity dependent rapidly
convergent approximate stability estimates in dimension d = 2 goes back to [28].
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Remark 1.6. In a similar way with results of [17], [18] and subsequent studies
of [36], estimates (1.9), (1.11) can be extended to the case when we do not
assume that condition (1.5) is fulfiled and consider an appropriate impedance
boundary map (Robin-to-Robin map) instead of the Dirichlet-to-Neumann map.

Remark 1.7. Apparently, estimates analogous to estimates of Theorems 1.1
and 1.2 hold if we replace the difference of DtN maps by the difference of corre-
sponding near field scattering data in a similar way with results of [10], [14], [19].

Remark 1.8. The optimality (in different senses) of estimates like (1.13), (1.14)
was proved in [24], [12], [13]. See also [6], [15] and references therein for the case
of inverse scattering problems.

Remark 1.9. Estimates (1.9), (1.11) for τ = 1 are roughly speaking coherent
with stability properties of the approximate monochromatic inverse scattering
reconstruction of [29], [31], implemented numerically in [2]. Estimates (1.9),
(1.11) for E = 0 are roughly speaking coherent with stability properties of the
reconstruction of [32].

In addition, estimates (1.9), (1.11) can be used for the convergence rate anal-
ysis for iterative regularized reconstructions for Problem 1.1 in the framework of
an effectivization of the approach of [10] for monochromatic inverse scattering
problems.

2 Lemmas

Let v̂ denote the Fourier transform of v:

v̂(ξ) = Fv(ξ) = 1

(2π)3

∫

R3

eiξxv(x)dx, ξ ∈ R
3. (2.1)

Lemma 2.1. Suppose that D satisfies (1.2) and v1, v2 satisfy (1.3), (1.5) for
some real E. Suppose also that ||vj ||L∞(D) ≤ N, j = 1, 2, for some N > 0. Let
δ be defined by (1.8). Then

|v̂2(ξ) − v̂1(ξ)| ≤ c1(1 +N)2

(

e2ρLδ +
‖v1 − v2‖L2(D)
√

E + ρ2

)

(2.2)

for any ρ > 0 such that

|ξ| ≤ 2
√

E + ρ2, E + ρ2 ≥ (1 +N)2r21 ,

where L = max
x∈∂D

|x| and constants c1, r1 > 0 depend on D only.

Some version of estimate (2.2) was given in [16] (see formula (4.13) of [16]).
Lemma 2.1 is proved in Section 6. This proof is based on results presented in
Section 5.

Lemma 2.2. Let w ∈ Hm(R3), ‖w‖Hm(R3) ≤ NHm for some real m > 0 and
NHm > 0, where the space Hm(R3) is defined in (1.6). Then, for any r > 0,







∫

|ξ|≥r

|Fw(ξ)|2dξ







1/2

≤ c2NHm r−m, (2.3)
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where Fw is defined according to (2.1) and c2 = (2π)−3/2.

Proof of Lemma 2.2. Note that

∫

|ξ|≥r

|Fw(ξ)|2dξ ≤
∥

∥

∥

∥

(1 + |ξ|2)m
2 Fw

rm

∥

∥

∥

∥

2

L2(R3)

. (2.4)

Using (1.6), (2.4) and the Parseval theorem

‖Fw̃‖L2(R3) = (2π)−3/2‖w̃‖L2(R3) (2.5)

for w̃ ≡ F−1(1 + |ξ|2)m
2 Fw, we get estimate (2.3).

�

Lemma 2.3. Let w ∈ Wm(R3), ‖w‖Wm(R3) ≤ NWm for some real m > 3 and
NWm > 0, where the space Wm(R3) is defined in (1.7). Then, for any r > 0,

∫

|ξ|≥r

|Fw(ξ)|dξ ≤ c̃2
NWm

m− 3
r3−m, (2.6)

where Fw is defined according to (2.1) and c̃2 = 4π.

Proof of Lemma 2.3. Note that

rm|Fw(ξ)| ≤ (1 + |ξ|2)m/2|Fw(ξ)| ≤ NWm for |ξ| ≥ r. (2.7)

Using (2.7), we obtain that

∫

|ξ|≥r

|Fw(ξ)|dξ ≤
+∞
∫

r

NWm

tm
4πt2dt ≤ 4πNWm

m− 3
r3−m. (2.8)

�

3 Proof of Theorem 1.1

Using the Parseval formula (2.5), we get that

‖v2 − v1‖L2(D) = (2π)3/2‖v̂2 − v̂1‖L2(R3) ≤ (2π)3/2(I1(r) + I2(r)), (3.1)

for r > 0, where v̂j is defined according to (2.1) with vj ≡ 0 on R3 \D, j = 1, 2,

I1(r) =







∫

|ξ|≤r

|v̂2(ξ)− v̂1(ξ)|2dξ







1/2

,

I2(r) =







∫

|ξ|≥r

|v̂2(ξ)− v̂1(ξ)|2dξ







1/2

.
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Let

r = q(1 +N)−4/3(E + ρ2)1/3, q =
1

2π

(

16πc21
3

)−1/3

, (3.2)

where c1 is the constant of Lemma 2.1.
Then, using Lemma 2.1 for |ξ| ≤ r, we get that

I1(r) ≤





4πr3

3
c21(1 +N)4

(

e2ρLδ +
‖v1 − v2‖L2(D)
√

E + ρ2

)2




1/2

≤

≤ (2π)−3/2

(

√

E + ρ2 e2ρLδ

2
+

‖v1 − v2‖L2(D)

2

)

(3.3)

for q(1 +N)−4/3(E + ρ2)1/3 ≤ 2
√

E + ρ2 and E + ρ2 ≥ (1 +N)2r21 .
In addition, using (2.3), we have that

I2(r) ≤ c2NHm r−m. (3.4)

Let r2 = r2(D) ≥ r1 be such that

E + ρ2 ≥ r22 =⇒ q(E + ρ2)1/3 ≤ 2
√

E + ρ2. (3.5)

Using (3.1), (3.3)–(3.5) with r defined in (3.2), we obtain that

‖v2 − v1‖L2(D) ≤
√

E + ρ2 e2ρLδ

2
+

‖v1 − v2‖L2(D)

2
+

+(2π)3/2c2
(1 +N)

4m
3

qm
NHm(E + ρ2)−

m
3 ,

(3.6)

1

2
‖v2 − v1‖L2(D) ≤

√

E + ρ2 e2ρLδ

2
+

+
(1 +N)

4m
3

qm
NHm(E + ρ2)−

m
3 ,

(3.7)

for E + ρ2 ≥ (1 +N)2r22 , where L, c2 are the constants of Lemmas 2.1, 2.2 and
q, r2 are the constants of formulas (3.2), (3.5).

Let τ ∈ (0, 1) and

γ =
1− τ

2L
, ρ = γ ln

(

3 + δ−1
)

. (3.8)

Due to (3.7), for δ such that

E +
(

γ ln(3 + δ−1)
)2 ≥ (1 +N)2r22 , (3.9)

the following estimate holds:

1

2
‖v1 − v2‖L2(D) ≤

≤ 1

2

(

E +
(

γ ln
(

3 + δ−1
))2
)1/2

(

3 + δ−1
)2γL

δ+

+
(1 +N)

4m
3

qm
NHm

(

E +
(

γ ln
(

3 + δ−1
))2
)−m

3

,

(3.10)
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where γ is defined in (3.8). Note that

(

3 + δ−1
)2γL

δ = (1 + 3δ)1−τ δτ ≤ 4δτ for δ ≤ 1. (3.11)

Combining (3.10), (3.11), we get that

||v2 − v1||L2(D) ≤ A1

(

λ
(

E + γ2
(

ln
(

3 + δ−1
))2
))

1
2

δτ+

+B1 (1 +N)
4m
3 NHm

(

λ
(

E + γ2
(

ln
(

3 + δ−1
))2
))−m

3

(3.12)

for δ ≤ 1 satisfying (3.9) and some positive constants A1, B1, λ depending on D
only.

In view of definition (1.6), we have that

||v2 − v1||L2(D) ≤ ||v2 − v1||Hm(R3) ≤ NHm .

Hence, we get that, for 0 < E +
(

γ ln(3 + δ−1)
)2 ≤ (1 +N)2r22 ,

||v2 − v1||L2(D) ≤ (1 +N)
4m
3 NHm

(

E + γ2
(

ln
(

3 + δ−1
))2

r22

)−m
3

. (3.13)

On other hand, in the case when E +
(

γ ln(3 + δ−1)
)2 ≥ (1 +N)2r22 and δ > 1

we have that

||v2 − v1||L2(D) ≤ c3||v2 − v1||L∞(D) ≤ c32N ≤

≤ 2c3

(

E + γ2
(

ln
(

3 + δ−1
))2

r22

)
1
2

δτ ,
(3.14)

where

c3 =





∫

D

1 dx





1/2

. (3.15)

Combining (3.8), (3.12)–(3.14), we obtain estimate (1.9). This completes
the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Due to the inverse Fourier transform formula

v(x) =

∫

R3

e−iξxv̂(ξ)dξ, x ∈ R
3, (4.1)

we have that

‖v1 − v2‖L∞(D) ≤ sup
x∈D

∣

∣

∣

∣

∣

∣

∫

R3

e−iξx (v̂2(ξ)− v̂1(ξ)) dξ

∣

∣

∣

∣

∣

∣

≤ Ĩ1(r) + Ĩ2(r) (4.2)
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for r > 0, where

Ĩ1(r) =

∫

|ξ|≤r

|v̂2(ξ)− v̂1(ξ)|dξ,

Ĩ2(r) =

∫

|ξ|≥r

|v̂2(ξ)− v̂1(ξ)|dξ.

Let

r = q̃(1 +N)−2/3(E + ρ2)1/6, q̃ =

(

8πc1c3
3

)−1/3

, (4.3)

where c1 is the constant of Lemma 2.1 and c3 is defined by (3.15).
Then, combining the definition of Ĩ1, Lemma 2.1 for |ξ| ≤ r and the inequal-

ity
||v2 − v1||L2(D) ≤ c3||v2 − v1||L∞(D),

we get that

Ĩ1(r) ≤
4πr3

3
c1(1 +N)2

(

e2ρLδ +
c3‖v1 − v2‖L∞(D)

√

E + ρ2

)

≤

≤ 1

2c3

√

E + ρ2 e2ρLδ +
‖v1 − v2‖L∞(D)

2

(4.4)

for q̃(1 +N)−2/3(E + ρ2)1/6 ≤ 2
√

E + ρ2 and E + ρ2 ≥ (1 +N)2r21 .
In addition, using (2.6), we get that

Ĩ2(r) ≤ c̃2
NWm

m− 3
r3−m. (4.5)

Let r̃2 = r̃2(D) ≥ r1 be such that

E + ρ2 ≥ r̃22 =⇒ q̃(E + ρ2)1/6 ≤ 2
√

E + ρ2. (4.6)

Using (4.2), (4.4)–(4.6) with r defined in (4.3), we obtain that

‖v2 − v1‖L∞(D) ≤
1

2c3

√

E + ρ2 e2ρLδ +
‖v1 − v2‖L∞(D)

2
+

+c̃2
(1 +N)

2(m−3)
3

(m− 3)q̃m−3
NWm(E + ρ2)−

m−3
6 ,

(4.7)

1

2
‖v2 − v1‖L∞(D) ≤

1

2c3

√

E + ρ2 e2ρLδ+

+ 4π
(1 +N)

2(m−3)
3

(m− 3)q̃m−3
NWm(E + ρ2)−

m−3
6

(4.8)

for E + ρ2 ≥ (1 +N)2r̃22 , where L, c̃2 are the constants of Lemmas 2.1, 2.3 and
c3, q̃, r̃2 are the constants of formulas (3.15), (4.3), (4.6).

Let τ ∈ (0, 1) and

γ =
1− τ

2L
, ρ = γ ln

(

3 + δ−1
)

. (4.9)
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Due to (4.8), for δ such that

E +
(

γ ln(3 + δ−1)
)2 ≥ (1 +N)2r̃22 , (4.10)

the following estimate holds:

1

2
‖v1 − v2‖L∞(D) ≤

≤ 1

2c3

(

E +
(

γ ln
(

3 + δ−1
))2
)1/2

(

3 + δ−1
)2γL

δ+

+4π
(1 +N)

2(m−3)
3

(m− 3)q̃m
NWm

(

E +
(

γ ln
(

3 + δ−1
))2
)−m−3

6

,

(4.11)
where γ is defined in (4.9). Note that

(

3 + δ−1
)2γL

δ = (1 + 3δ)1−τ δτ ≤ 4δτ for δ ≤ 1. (4.12)

Combining (4.11), (4.12), we get that

||v2 − v1||L∞(D) ≤ Ã1

(

λ̃
(

E + γ2
(

ln
(

3 + δ−1
))2
))

1
2

δτ+

+B̃1
(1 +N)

2(m−3)
3 NWm

m− 3

(

λ̃
(

E + γ2
(

ln
(

3 + δ−1
))2
))−m−3

6

(4.13)

for δ ≤ 1 satisfying (4.10) and some positive constants Ã1, B̃1, λ̃ depending on
D only.

Using (1.7) and (4.2), we get that

||v2 − v1||L∞(D) ≤
∫

R3

(

(1 + |ξ|2)−m/2||v2 − v1||Wm(R3)

)

dξ ≤

≤ NWm

+∞
∫

0

4πt2

(1 + t2)m/2
dt ≤ c4

em−3

m− 3
NWm

(4.14)

for some c4 > 0. Here we used also that

+∞
∫

0

4πt2

(1 + t2)m/2
dt ≤

1
∫

0

4πt2dt+

+∞
∫

1

4πt2

tm
dt ≤ c4

(

1 +
1

m− 3

)

≤ c4
em−3

m− 3
.

Using (4.14), we get that, for 0 < E +
(

γ ln(3 + δ−1)
)2 ≤ (1 +N)2r̃22 ,

||v2 − v1||L∞(D) ≤

≤ c4
(1 +N)

2(m−3)
3 NWm

m− 3

(

E + γ2
(

ln
(

3 + δ−1
))2

e6r̃22

)−m−3
6

.
(4.15)

On other hand, in the case when E +
(

γ ln δ−1
)2 ≥ (1 + N)2r̃22 and δ > 1 we

have that

||v2 − v1||L∞(D) ≤ 2N ≤ 2

(

E + γ2
(

ln
(

3 + δ−1
))2

r̃22

)
1
2

δτ . (4.16)

Combining (4.9), (4.13), (4.15) and (4.16), we obtain estimate (1.11). This
completes the proof of Theorem 1.2.
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5 Faddeev functions

Suppose that
v ∈ L∞(D), v ≡ 0 on R

3 \D, (5.1)

where D satisfies (1.2). More generally, one can assume that

v is a sufficiently regular function on R
3

with sufficient decay at infinity.
(5.2)

Under assumptions (5.2), we consider the functions ψ, µ, h:

ψ(x, k) = eikxµ(x, k), (5.3)

µ(x, k) = 1 +

∫

R3

g(x− y, k)v(y)µ(y, k)dy,

g(x, k) = −(2π)−3

∫

R3

eiξxdξ

ξ2 + 2kξ
,

(5.4)

where x ∈ R3, k ∈ C3, Im k 6= 0,

h(k, l) = (2π)−3

∫

R3

ei(k−l)xv(x)µ(x, k)dx, (5.5)

where k, l ∈ C3, k2 = l2, Im k = Im l 6= 0. Here, (5.4) at fixed k is considered
as a linear integral equation for µ, where µ is sought in L∞(R3).

The functions ψ, h and G = eikxg are known as the Faddeev functions,
see [7], [8], [11], [26]. These functions were introduced for the first time in [7], [8].

In particular, we have that

(∆ + k2)G(x, k) = δ(x),

(−∆+ v(x))ψ(x, k) = k2ψ(x, k),

where x ∈ R3, k ∈ C3 \ R3.
We recall also that the Faddeev functions G, ψ, h are some extension

to the complex domain of functions of the classical scattering theory for the
Schrödinger equation (in particular, h is an extension of the classical scattering
amplitude).

Note also that G, ψ, h in their zero energy restriction, that is for k2 = 0,
l2 = 0, were considered for the first time in [3]. The Faddeev functions G, ψ, h
were, actually, rediscovered in [3].

For further considerations we will use the following notations:

ΣE =
{

k ∈ C
3 : k2 = k21 + k22 + k23 = E

}

,

ΘE = {k ∈ ΣE , l ∈ ΣE : Im k = Im l} ,
|k| = (|Re k|2 + |Im k|2)1/2 for k ∈ C

3.

Under assumptions (5.2), we have that:

µ(x, k) → 1 as |k| → ∞, (5.6)
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where x ∈ R3, k ∈ ΣE ;

v̂(ξ) = lim
(k, l) ∈ ΘE , k − l = ξ
|Imk| = |Im l| → ∞

h(k, l) for any ξ ∈ R
3, (5.7)

where v̂ is defined by (2.1).
Results of the type (5.6) go back to [3]. Results of the type (5.7) go back

to [11]. These results follow, for example, from equation (5.4), formula (5.5)
and the following estimates:

g(x, k) = O(|x|−1) for x ∈ R
3,

uniformly in k ∈ C
3 \ R3,

(5.8)

‖Λ−sg(k)Λ−s‖L2(R3)→L2(R3) = O(|k|−1), for s > 1/2,

as |k| → ∞, k ∈ C
3 \ R3,

(5.9)

where g(x, k) is defined in (5.4), g(k) denotes the integral operator with the
Schwartz kernel g(x − y, k) and Λ denotes the multiplication operator by the
function (1 + |x|2)1/2. Estimate (5.8) was given in [11]. Estimate (5.9) was for-
mulated, first, in [22]. Concerning proof of (5.9), see [40]. In addition, estimate
(5.9) in its zero energy restriction goes back to [39].

In the present work we use the following lemma:

Lemma 5.1. Let D satisfy (1.2) and v satisfy (5.1). Let ||v||L∞(D) ≤ N for
some N > 0. Then

|µ(x, k)| ≤ c5(1 +N) for x ∈ R
3, |k| ≥ r3(1 +N), (5.10)

where µ(x, k) is the Faddeev function of (5.4) and constants c5, r3 > 0 depend
on D only.

Lemma 5.1 is proved in Section 6. This proof is based on estimates (5.8)
and (5.9).

In addition, we have that (see [27], [30]):

h2(k, l)− h1(k, l) = (2π)−3

∫

R3

ψ1(x,−l)(v2(x) − v1(x))ψ2(x, k)dx

for (k, l) ∈ ΘE, |Im k| = |Im l| 6= 0,

and v1, v2 satisfying (5.2),

(5.11)

h2(k, l)− h1(k, l) = (2π)−3

∫

∂D

ψ1(x,−l)
[(

Φ̂2 − Φ̂1

)

ψ2(·, k)
]

(x)dx

for (k, l) ∈ ΘE, |Im k| = |Im l| 6= 0,

and v1, v2 satisfying (1.5), (5.1),

(5.12)

where ψj , hj denote ψ and h of (5.3) and (5.5) for v = vj , and Φ̂j denotes the

Dirichlet-to-Neumann map Φ̂ for v = vj in D, where j = 1, 2.
In the present work we also use the following lemma:
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Lemma 5.2. Let D satisfy (1.2). Let vj satisfy (5.1), ||vj ||L∞(D) ≤ N, j = 1, 2,
for some N > 0. Then

|v̂1(ξ)− v̂2(ξ)− h1(k, l) + h2(k, l)| ≤
c6N(1 +N)‖v1 − v2‖L2(D)

(E + ρ2)1/2

for (k, l) ∈ ΘE, ξ = k − l, |Im k| = |Im l| = ρ,

E + ρ2 ≥ r24(1 +N)2,

(5.13)

where E ∈ R, v̂j is the Fourier transform of vj, hj denotes h of (5.5) for v = vj,
(j = 1, 2) and constants c6, r4 > 0 depend on D only.

Some versions of estimate (5.13) were given in [16], [27], [30] (see, for exam-
ple, formula (3.18) of [16]). Lemma 5.2 is proved in Section 6.

6 Proofs of Lemmas 2.1, 5.1 and 5.2

Proof of Lemma 5.1. Using (5.1), (5.4) and (5.9), we get that

‖µ(·, k)− 1‖L2(D) ≤

∥

∥

∥

∥

∥

∥

∫

R3

g(· − y)v(y)µ(y, k)dy

∥

∥

∥

∥

∥

∥

L2(D)

≤

≤ c7
N

|k| ‖µ(·, k)‖L2(D),

(6.1)

‖µ(·, k)‖L2(D) ≤ c3 + c7
N

|k| ‖µ(·, k)‖L2(D), (6.2)

where c3 is defined by (3.15) and c7 is some positive constant depending on D
only. Hence, we obtain that

‖µ(·, k)‖L2(D) ≤ 2c3 for |k| ≥ 2c7N. (6.3)

We use also that
∫

D

1

|x− y|2 dy ≤
∫

D

1 dy +

∫

|x−y|≤1

1

|x− y|2 dy ≤ c28, x ∈ D, (6.4)

where c8 = c8(D) > 0. Using (5.1), (5.4), (5.8), (6.3), (6.4), we get that

|µ(x, k)| ≤ 1 +

∣

∣

∣

∣

∣

∣

∫

D

g(x− y)v(y)µ(y, k)dy

∣

∣

∣

∣

∣

∣

≤

≤ 1 +





∫

D

|g(x− y)|2dy





1/2

N ‖µ(·, k)‖L2(R3) ≤

≤ c5(D)(1 +N) for x ∈ D, |k| ≥ 2c7N.

(6.5)

�
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Proof of Lemma 5.2. Due to (5.1), (5.11), we have that

h2(k, l)− h1(k, l) = (2π)−3

∫

D

ψ1(x,−l)(v2(x) − v1(x))ψ2(x, k)dx =

= (2π)−3

∫

D

ei(k−l)xµ1(x,−l)(v2(x) − v1(x))µ2(x, k)dx =

= v̂2(k − l)− v̂1(k − l) + I∆

(6.6)

for (k, l) ∈ ΘE , |Im k| = |Im l| 6= 0, where

I∆ = (2π)−3

∫

D

(µ1(x,−l)− 1)(v2(x)− v1(x))µ2(x, k)dx+

+(2π)−3

∫

D

µ1(x,−l)(v2(x)− v1(x))(µ2(x, k)− 1)dx+

+(2π)−3

∫

D

(µ1(x,−l)− 1)(v2(x) − v1(x))(µ2(x, k) − 1)dx.

(6.7)

Note that, for (k, l) ∈ ΘE , E ∈ R, |Im k| = |Im l| = ρ,

|k| =
√

|Re k|2 + |Im k|2 =
√

k2 + 2 |Imk|2 =
√

E + 2ρ2 = |l|. (6.8)

Using estimates (6.1), (6.3), (6.5) in (6.7), we get that

I∆ ≤ (2π)−3

(

‖µ1(·,−l)− 1‖L2(D)‖v2 − v1‖L2(D)‖µ2(·,−l)‖L∞(D)+

+‖µ1(·,−l)‖L∞(D)‖v2 − v1‖L2(D)‖µ2(·,−l)− 1‖L2(D)+

+‖µ1(·,−l)− 1‖L∞(D)‖v2 − v1‖L2(D)‖µ2(·,−l)− 1‖L2(D)

)

≤

≤ 2c3c7N‖v1 − v2‖L2(D)c5(1 +N)

(2π)3|k| +
c5(1 +N)‖v1 − v2‖L2(D)2c3c7N

(2π)3|l| +

+
(1 + c5(1 +N))‖v1 − v2‖L2(D)2c3c7N

(2π)3|l| ≤

≤ c8(D)
N(1 +N)‖v1 − v2‖L2(D)

√

E + 2ρ2

(6.9)

for (k, l) ∈ ΘE , |Im k| = |Im l| = ρ and |k| = |l| =
√

E + 2ρ2 ≥ 2c7N .
Formula (6.6) and estimate (6.9) imply (5.13).

�

Proof of Lemma 2.1. Due to (5.11), we have that

|h2(k, l)− h1(k, l)| ≤ c9‖ψ1(·,−l)‖L∞(∂D) δ ‖ψ2(·, k)‖L∞(∂D),

(k, l) ∈ ΘE , |Im k| = |Im l| 6= 0,
(6.10)

where

c9 = (2π)−3

∫

∂D

dx.
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Using formula (5.3) and Lemma 5.1, we find that

‖ψj(·, k)‖L∞(∂D) ≤ c5(1 +N)e|Imk|L, j = 1, 2,

for k ∈ ΣE , |k| ≥ r3(1 +N),
(6.11)

where L = max
x∈∂D

|x|. Combining (6.8), (6.10) and (6.11), we get that

|h2(k, l)− h1(k, l)| ≤ c9c
2
5(1 +N)2e2ρLδ,

for (k, l) ∈ ΘE, ρ = |Im k| = |Im l|,
E + ρ2 ≥ r23(1 +N)2.

(6.12)

Note that for any ξ ∈ R3 satisfying |ξ| ≤ 2
√

E + ρ2 (where ρ > 0) there exist
some pair (k, l) ∈ ΘE such that ξ = k − l and |Im k| = |Im l| = ρ. Therefore,
estimates (5.13) and (6.12) imply (2.2). �
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