Estimating the parameters of a seasonal Markov-modulated Poisson process
Résumé
We present a new model of counting processes in insurance. The process is a Markov-modulated Poisson process featuring seasonality. We prove the strong consistency and the asymptotic normality of a maximum split-time likelihood estimator of the parameters of this model, and present an algorithm to compute it in practice. The method is illustrated on a simulation study.
Domaines
Théorie [stat.TH]Origine | Fichiers produits par l'(les) auteur(s) |
---|